• Tidak ada hasil yang ditemukan

การศึกษาความเป็นไปได้ทางเทคนิคในการผลิตเครื่องกำจัดกลิ่นและแก๊สพิษ

N/A
N/A
Protected

Academic year: 2023

Membagikan "การศึกษาความเป็นไปได้ทางเทคนิคในการผลิตเครื่องกำจัดกลิ่นและแก๊สพิษ"

Copied!
131
0
0

Teks penuh

(1)

!" # $#%&'

A TECHNICAL FEASIBILITY STUDY ON ODOROUS ELIMINATOR

&! &&9

: ;

< 2551

(2)

! #!

$%$&'$()*) . ,# #!-% #$$ )$%&

)&( (!$-. &* . *% ' ).(!/$ 00).$$ 0&* .,* $, )123.(!3!4..$ $#5&$.,$

234&4&#!% % 6&$

#&234&4&!%23,$ &%7 0$ !% ,

&*$3 % &' 0$*/$$!%*$* ()*) ),&&$0 0 !5&$$00$8 # !% ' 9#:#* 0!%%, 0 & ),

&&$00 ;,5&0$$*# &$$234&4&!%23&$

$ .9$ ((# /!$)$)) .($ .$

$ !

$ $ <

'! 2552

(3)

/)!''- : '.. 2552

!"!#$#%&' 3!$4 $44 + 1. $443&- 6 ,#%&663 !"663,66&,-3&- &7#%&

6638 76.33 663+3 3!') '&"4

"!#$#%&'6 <'$=63>- #$)'?+, @6 6 +#%&6637. )!)' !4.' &! + !)!"!#$?+

, @6 2. $44!#$?+, @66 , 4&#$@" ' !?+, @63! (+4 )! 3&-+++ $44(34 3. $44(343!4.7+-

$&AB'&(")!(34 6 )@A)'!.(34

=63>- 7+-)!$$'"4.6 3&-#$

6$ "$&AB'(347+ +)!7(3&- #$6$

'!@ $ 230 (24.72 -=63>-/-(34) 3!+8(34 7+ +)! +4. 8 .8B( 45 33) & &+7+ +)!7(3&- 663#$6$ '4+)'!$&AB'(34&(&.7 $180 (19.24 -

=63>-/-(34) "&7(34!#$#%&')! $443

&-#$! ++ '&(+&!#

"&"K : (34 7+- 3&- 663 =63>-

(4)

University Year of Publication : B.E. 2552

ABSTRACT

An odorous eliminator consists of the three subsystems: Firstly, an oxidation system by ozone gas obtained from an ozone generator, type corona discharge was used as an oxidizing agent. It could produce ozone gas amount 76.33 mg (O3)/L(O2). This gas has got enough concentration to eliminate malodor and poisonous gas especially H2S. Alternatively, the excess concentration of ozone gas could be used for disinfection into an oxidized bag. Secondly, the odorous trap and disinfection system by acid or base and water for disinfection air pollution from incomplete oxidation before transfer to an adsorption system. Finally, the adsorption system which is contained high efficiency activated carbon was used as an adsorbent. This research was undertaken to study the method of improving the adsorption capacity of coconut shell-based activated carbon for H2S by surface oxidation and metal addition techniques. The carbon sample treated with 6.0 M HNO3 and Zn impregnation gave the highest adsorption capacity for H2S, with increased adsorption efficiency of 230% (24.72 mg H2S/g adsorbent) over that of the untreated sample at 45o C. The maximum increase of 180% (19.24 mg H2S/g adsorbent) adsorption efficiency over that of untreated sample was observed for the O3 oxidized sample impregnated with Zn. Thus, they could adsorb malodor and poisonous gas obtain from incomplete oxidation system before release the fresh air to an environment.

Keywords : Adsorption, Activated carbon, Oxidation, Ozone, Hydrogen sulfide

(5)

1 ... 1

... 1

!... 3

! #$ ... 3

%#$ ...3

&'()*+,-% ... 3

... 4

2 ... 2.1 12%... 5

2.1.1 12%'456... 5

2.1.2 12%'(... 6

2.2 689 '()&+12% ... 7

2.2.1 - 12%'().51'()%Langmuir Isotherm... 7

2.2.2 - 12%'().51'()%Freundlich IsothermM.. 7

2.2.3 - 12%'().51'()% Brunauer-Emmett- Teller (BET) IsothermMMMMMMMMMMMMMMMMM.. 9

2.2.4- 12%'().51'()% Dubinin - Radushkevich (DR)IsothermMMMMMMMMMMMMMM.. 10

2.2.5 %%12%[ %MMMMMMMMMMMMMMMMMM... 11

2.2.5.1 \%'1... 12

2.2.5.2 +[ 12%* MMMMMMMMMMMM 13 2.2.5.3 +12%%'1... 14

2.2.5.4 $%12%... 15

2.3 * ... 15

2.3.1 45'* MMMMMMMMMMMMM. 16 2.3.1.1 * ] &... 16

(6)

2.3.1.2 * ] ^... 16

2.3.2 16 ,_689 '()&... 17

2.4 %689 &* _42,... 18

2.5 __2 ... 19

2.5.1 %'),__2 ... 20

2.5.2 8) __2 ... 22

2.5.3 __2 ... 23

3 ... 25

3.1a( +4 '()'^%%-1... 25

3.2 %'()[]-a('... 25

3.2.1 a(%689 &... 27

3.2.1.1 2,-4#... 27

3.2.1.2 2,-4, ... 27

3.2.1.3 2,-4__2 ... 28

3.2.1.4 a(,__... 30

3.2.1.5 __4()4 , ... 32

3.2.2 ' .b6... 32

3.2.2 ' .b6... 32

3.2.2.1 _4[]- Fourier Transform Infrared Spectroscopy (FT-IR)... 32

3.2.2.2 .2+ ... 34

3.2.2.3 _4a( Boehmgs TitrationMMMMMMMM. 34 3.2.2.4 _4[]-8)8Atomic Absorption Spectroscopy :AAs... 35

3.2.2.5 689 '()&16 ,_... 36

3.2.2.6 -+'# ^ %%*... 37

3.2.3 '%12%... 37

("#)

(7)

3.2.3.1 8)8 electrochemical sensors... 38

3.2.3.2 (4,j_+ 2,\... 40

3.3 -8)+) k6 ... 41

3.4 l&4 !_4%1.MMMMMMMMMMMMMM. 41 4 &' ( )*' ... 46

4.1 %* 4*... 46

4.2 &+8)8 FT-IR Spectroscopy... 47

4.3 -4a( Boehmgs Titration... 51

4.4 .2+ ... 51

4.5 -4 Atomic Absorption Spectrometry ... 54

4.6 ,_2'12%, _+ ... 57

4.7 689 '()&16 ... 59

4.8 12%,j_+ 2,\_4* %... 61

4.8.1 +12%* +_ ... 61

4.8.2 +12%* '()12,-4 HNO3MMM 67 4.8.3 12%* '()%-42,_ (HNO3+Zn)MMMMMMMMMMMMMMMMMMMMMM 71 4.8.4 12%* '()%-42,_ (O3+Zn)MMMMMMMMMMMMMMMMMMMMMMM. 77 4.8.5 ,12%* +% 2, _MMMMMMMMMMMMMMMMMMMMMM... 86

4.8.6 6). H2S'()1%%... 88

5 ,- .- &' /'/ ... 92

& +4 ... 93

- ... 94

("#)

(8)

, ... 96

. (& ... 99

5& 4(4%'a%"%%+) k6 " 100

5& 4(4'a%%%&5.s"t*]89_

+) #6"... 110

-"#&* ... 116

("#)

(9)

2.1 Langmuir adsorption isotherm... 8

2.2 Freundlich isotherm... 9

2.3 BET isotherm... 10

2.4 Dubinin-Radushkevich (DR) isotherm.. 11

2.5 C ... 13

2.6 EFGHIJK... 14

2.7 MFNNOPGHIJK... 17

2.8 QPGIRSTGHIJK... 18

2.9 FF KOFNNFF... 21

2.10 QPGFFUKV... 23

2.11 WFFU LowtherYtype airYcooled plate... 23

3.1 R[RV\JR\IHIVF... 26

3.2 R[RV\JR\IHIHEKR\ HNO3... 26

3.3 R[RV\JR\IHIHEKR\ O3... 27

3.4 ET GEKHIJR\IR\ HNO3 O reflux column... 28

3.5 QET GEKHIJR\IR\FFO fluidized-bed reactor. 29 3.6 WFF (Model OZ-7501) UFFUKV... 29

3.7 EKFFO reflux column... 30

3.8 WWRTK Fourier transform infrared spectroscopy... 33

3.9 W OJ\ QI KBr... 33

3.10 WWRTK elements analyzer CHNS/O... 34

3.11 WWRTK atomic absorption spectrophotometer... 36

3.12 WWRTK automatic surface analyzer... 37

3.13 NVNiKNjJ I... 37

3.14 QQGMJNGHIJKJR\I... 38

3.15 QQGNjFOUK k... 39

3.16 WWOUJRVR kQ-RAE PLUS monitor... 39

(10)

3.17 HV kQPSKValve connection and regulator... 40

3.18 P \UMIRWVN NT kPq... 43

3.19 PF\RGWVN NT kPq... 43

3.20 PWVN NT kPqESOUIRHVNiP... 44

3.21 QQGWVN NT kPqOUIRHVNiP.... 45

4.1 FGHIJKVFR\NVNiKNjJ I... 47

4.2 SJ FT-IR GHIJKJR\IVF... 50

4.3 EF N2 GHIF\EKR\ HNO3 NRJ Zn 77 NR... 58

4.4 EF N2 GHIF\EKR\ O3 NRJ Zn 77 NR... 58

4.5 EF N2 GHISSR\R[ JJI 77 NR.. 59

4.6 breakthrough curve G H2S HIJKVF (1.01% H2S, balance N2 T = 10oC, P = 1.0 bar)... 64

4.7 breakthrough curve G H2S HIJKVF (1.01% H2S, balance N2 ,T = 30oC, P = 1.0 bar)... 64

4.8 breakthrough curve G H2S HIJKVF (1.01% H2S, balance N2 ,T = 45oC, P = 1.0 bar)... 65

4.9 S\\ breakthrough curvesG H2S HIJKVF JJI... 65

4.10 breakthrough curves G H2S HIJKVF NTJFNT T (T = 10oC, P = 1.0 bar)... 66

4.11 breakthrough curves G H2S HIJKVF NTJFNT T (T = 45oC, P = 1.0 bar)... 66

4.12 S\\ breakthrough curves G H2S HIJKVF NTHIJKVFR\JFNTT JJI... 67

(11)

4.13 I breakthrough curve G H2S HIJKJR\INV EKR\ 6.0 M HNO3 T = 10oC ,P = 1.0 bar... 68 4.14 I breakthrough curve G H2S HIJKJR\INV

EKR\ 2.0 M HNO3T = 30oC , P = 1.0 bar... 68 4.15 I breakthrough curve G H2S HIJKJR\INV

EKR\ 6.0 M HNO3 T = 30oC , P = 1.0 bar... 69 4.16 I breakthrough curve G H2S HIJKJR\INV

EKR\10.0 M HNO3 T = 30oC , P = 1.0 bar... 69 4.17 I breakthrough curve G H2S HIJKJR\INV

EKR\ 6.0 M HNO3 T = 45oC , P = 1.0 bar... 70 4.18 S\\ breakthrough curvesG H2S HIJR\IH

EKR\ 6.0 M HNO3 JJI... 70 4.19 S\\ breakthrough curves G H2S HIJR\IH

EKR\ 6.0 M HNO3 30oC RGG JJI... 71

4.20 C H2S GHIJR\IEKR\ 6.0

M HNO3 NTJFNTT (T = 10oC, P = 1.0 bar)... 72

4.21 C H2S GHIJR\IEKR\ 6.0

M HNO3 NTJFNTT (T = 30oC, P = 1.0 bar)... 73

4.22 C H2S GHIJR\IEKR\

10.0 M HNO3 NTJFNTT (T = 30oC, P = 1.0 bar)... 73

4.23 C H2S GHIJR\IEKR\ 6.0

M HNO3 NTJFNTT (T = 45oC, P = 1.0 bar)... 74

4.24 C H2S GHIJR\IEKR\

10.0 M HNO3 NTJFNTT (T = 45oC, P = 1.0 bar)... 74

4.25 S\\C H2S GHIJR\I

EKR\ 6.0 M HNO3 NTJFNTT (T = 10, 30 NT 45oC, P = 1.0 bar) 75

( )

(12)

4.26 S\\C H2S GHIJR\I

EKR\ 6.0 M HNO3 \I\R NTJFNTT (T = 10, 30 NT 45oC,

P = 1.0 bar)... 75

4.27 S\\C H2S GHIJR\IEV

F NTVEKR\ 6.0 M HNO3 NTJFNTT (T = 10, 30 NT 45oC, P = 1.0 bar)... 76

4.28 S\\C H2S GHIJR\IEV

F NTVEKR\ 6.0 M HNO3, 10.0 M HNO3 NTJFNT

T (T = 30 NT 45oC, P = 1.0 bar)... 76

4.29 C H2S GHIJR\IEKR\ O3

OCNEK(210oC, 90 min) NTJFNTT (T = 10oC, P = 1.0 bar).. 77

4.30 C H2S GHIJR\IEKR\ O3

O reflux column (90oC, 60 min) NTJFNTT (T = 10oC, P = 1.0 bar). 78

4.31 C H2S GHIJR\IEKR\ O3

O reflux column (90oC, 120 min) NTJFNTT (T = 10oC, P = 1.0 bar).. 78

4.32 C H2S GHIJR\IEKR\ O3

O reflux column (90oC, 180 min) NTJFNTT (T = 10oC, P = 1.0 bar).. 79

4.33 C H2S GHIJR\IEKR\ O3

O reflux column (210oC, 90 min) NTJFNTT (T = 10oC, P = 1.0 bar).. 79

4.34 C H2S GHIJR\IEKR\ O3

O reflux column (90oC, 60 min) NTJFNTT (T = 30oC, P = 1.0 bar). 80

4.35 C H2S GHIJR\IEKR\ O3

O reflux column (90oC, 120 min) NTJFNTT (T = 30oC, P = 1.0 bar).. 80

4.36 C H2S GHIJR\IEKR\ O3

O reflux column (90oC, 180 min) NTJFNTT (T = 30oC, P = 1.0 bar).. 81

4.37 C H2S GHIJR\IEKR\ O3

OCNEK(210oC, 90 min) NTJFNTT (T = 45oC, P = 1.0 bar).. 81

( )

(13)

4.38 C H2S GHIJR\IEKR\ O3

O reflux column (90oC, 60 min) NTJFNTT (T = 45oC, P = 1.0 bar). 82

4.39 C H2S GHIJR\IEKR\ O3

O reflux column (90oC, 120 min) NTJFNTT (T = 45oC, P = 1.0 bar).. 82

4.40 C H2S GHIJR\IEKR\ O3 O reflux column (90oC, 180 min) NTJFNTT (T = 45oC, P = 1.0 bar).. 83

4.41 S\\ breakthrough times G H2S HIJR\IEK R\ O3 NTJFNTTWEGNJI(T = 10oC, P = 1.0 bar).. 83

4.42 S\\ breakthrough times G H2S HIJR\IEK R\ O3 NTJFNTTWEGNJI(T = 30oC, P = 1.0 bar). 84 4.43 S\\ breakthrough times G H2S HIJR\IEK R\ O3 NTJFNTTWEGNJI(T = 45oC, P = 1.0 bar).. 84

4.44 S\\RGGG H2S VF\HIJR\I EK R\FF NTJFNTTSvJR(10oC, P=1.0 bar).... 85

4.45 S\\RGGG H2S VF\HIJR\I EKR\FF NTJFNTTSvJR(30oC, P=1.0 bar)... 85

4.46 S\\RGGG H2S VF\HIJR\I EKR\FF NTJFNTTSvJR(45oC, P=1.0 bar)... 86

4.47 SGJ tetrahedral GSTU[Zn (H2S)4]2+... 87

4.48 KNG Zn2+... 87

4.49 KNG Zn2+ NTEzKN sp3... 87

4.50 KNGEU [Zn (H2S)4]2+ ... 88

4.51 S\\\NTGPST[PO H2S VHI JKSSOWEG JJI OU 10 iN\... 90

4.52 S\\\NTGPST[PO H2S VHI JKSSOWEG JJI OU 30 iN\... 91

( )

(14)

4.53 S\\\NTGPST[PO H2S VHI

JKSSOWEG JJI OU 45 iN\... 91

( )

(15)

4.1 !" #$%... 46 4.2 ()*+)+," FT-IR peak +," , FT-IR spectroscopy... 48 4.3 >?( !" #$%, FT-IR spectroscopy@.. 50 4.4 CD BoehmHs Titration... 51 4.5 ()K K+,," O3... 52 4.6 ()K K+,," HNO3 OD" ,"

O3... 53 4.7 ()K K+,," HNO3... 53 4.8 CD(""OK ODD !" OD)D+

, !" AAs... 55 4.9 )SDT "+) ... 56 4.10 >?CODUV ,,U,K+ ... 60 4.11 Breakthrough times K+,," HNO3 OD

DT YT,Y, )DUO,D"OZ H2S@@@ 62 4.12 Breakthrough times K+,," O3 OD

DT YT,Y, )DUO,D"OZ H2S@@@ 63

4.13 )\]Y, H2S Y))V

... 89

(16)

1.1

!"# $%& ! #

%&! '(! )(* # +# ,-%&# ." /&/'#

$.#/ 0,+ -1! # ,-*(%&

2&3,( &! # !(&./!/./4 !(&5 !(6

"5/! 5 (!, % 731! (!)- %&'+/ 81 6 !(91' /.03(&,-(# ,( # 91'&%( +/.

!(! $ % &&!3-&)(.!35%'&)!(91'

&'# 5!/)/!(/& 5)&(3 ),9( ),9(

2009 5!/,(%& !79,+/

)(5'*(# %&5)$($/ /% &

! /!(5%'&)# $&!(91',( ('(! =5%'&) % &,!(

/& !"# 1+ /&+&!

% &+ ! &(6/! &9&5!/,/!(5%'&) ,(! '*(# !%&>2&3(,?(3 %&! # )(/90

& !"#&@! )( ,&# 9//&A(

B)# % &/! &,((5!/+'.( ('(! > !7 1+&%&1 -% &! , 13) &/!(/&#

! $%&! /./4+ &+

&//&.96 ! (!(,& !79&'6&!3

&!3' ').')./ )(* ! %&>

')./ 5 &) (NH3) ,?)(8,2(3 (H2S) +/ 81 >' -1!0 $&/$+/&(,&9! (&

&&!(+&//&.96 /'/!(%&/&

(!,-15!/,((Chou, 2000) 1,(!((!7I3(

! > !7 % &(! !(# )(/%&! '(! )(

(17)

/-.3 %&(! $5%'&),2.J9

# %&$7# % &&9'/&5/%&&# ,& !"#

/&,

% &(,($%&&&(! =5%'&

)81 &( 2 %& 1. (! 2. -.=5%'&)(

! 81 +(! &(&%& 1.1 ((8)(

-/3 ,(. % & ! !"!6 ((8! +>' )./ )(&&8!,(3/!) 1.2 &&8!,(3 )()&)8(O3) +/

&&8!,(3 !/% &!()&)85!())(!53 1.3 (! =5%'&

) 5(%&' &' +-.=5%'&)(! ', % &

.# %&! 9&&&% /&(! =5%'&) 81 /&5 +(! & -.=5%'&(! # ', % &.# %&! 9&

&&% /&(! =5%'&) 81 /&5 +(!

)(-! (!7I3,5=5%'&)(! # !(>)./

5 2&3(,?(3 &) ,?)(8,2(3 &3 NN)(>)&)8 9,-..# % &!(&&8!,(3()&)80 20 O 30 '1 -..# #.# .( % &.!35!( /&5

&&8!(5!/.(!/!)/ &+/. # !(PQ&

! $ '1((! > !7 %&-&&8!,(39 (! &&&#!."!R! (&)(,/

.9&(!7I3 % & 5(! $ 5 # 5!/, /!&./!/./4+6 # PQ&! $)(5 (! -(! $,2.J9# %&$7

# % &&9'/&5/%&&# ,& !"# -

! (!7I3 +&&8!,(3()&)8,./35- /4 % &=

5%'&) 5 &&(5%'&) -,5(! &- + A( 5 && & 6-/3 &'-5-.=5%'& % &

(! &&($ %'& &,(+/

(18)

1.2 !" #$%&!

1.2.1 % &(! =5%'&))(&&!,(3(>)&)8 1.2.2 % &(! > !7)(5-/3!"!6 +/((8 1.2.3 % &=5%'&))((! =5%'&)((%&' 1.3 $& " ()"%

% &(! > !781 &,( &&!,(3(>

)&)8 ((8 5-/3!"!6 +/((8 (!

=5%'&)((%&'-=5%'&)-1(! # %&!

'*(# ! +>)./ 5 2&3(,?(3 &) ,?)(8,2(3

&3 NN,(

1.4 " ()"%

1.4.1 #179&&&!,(3(>)&)8 !/% &

!()&)85!())(!53

1.4.2 #17!"!6 9&>)&)8&&8!,(3,?)(8,2(3 81 +

> !7! $ )(5+/9&>')./

1.4.3 >,?)(8,2(3,)/)(>,)/+/

,(391' % &5#17&&8!,(3()&)8

1.4.4 !.-/3!"!6 % &./35

((8! > !7 ')./

1.4.5 #175% &(! > !7-.=5%'&

(! # 1.5 , #- ./#0

1.5.1 -! (!7I3 +&&8!,(3(>)&)8, ./35- /4 % &=5%'&) 5 &&(5%'&) -,5(! &- +A( 5 && &

6-/3+/ &'-5-.=5%'& % &(

! &&($ %'& &,(

(19)

1.5.2 -% &(! =5%'&)5-.=5%'&) (! # % &(! $5%'&),2.J 9# %&$7# % &&9'/&5/%&&#

,& !"#

1.5.3 -,(!"!/,((#

1.5.4 &,5!/(&./

1.6 "%2!

A = Surface area (m2g-1) cm-1 = Wavenunber

oC = Degree Celcius

BET = Brunauer-Emmett-Teller g = Gram

K = Kelvin L = Liter

M = Molar, concentration of solution (mol/dm3) min = Minute

mg = Milligram nm = Nanometer P = Pressure s = Second T = Temperature wt = Weight

µm = Micrometer

umf = Minimum fluidization velocity

(20)

2.1 (Adsorption)

!"##$

$#%&"'"###(")*" !$#%$$+

,))")- (,"##. (!

")- (,!. ,!"##

#% )") ')#/#("-&"%

$#("##) -2$)$# ((3 4%3*$$$+%

$# ')#/#- 4%3*( - (adsorbate or sorbate) "("2 - .( ( adsorbent) $)"2

#%')#/#- !4%3*$ ((desorption) '4%3@

. ")- (." % A4(physical adsorption) ((, # ) (chemical adsorption) )#GH4IG' J) 4)(')#/#$ - #4%3*$

2.1.1 $% (Physical Adsorption)

')#/#$&"- % 4%3* .%!

(')#/#$&" ')#/#% )$$+% 4!H!

$3")-!2 . 2 A% JL""!$

#" (van der Waals force) #.JJP"- (electrostatic force) A"

% ) $!!4)(')#/#&" )

$$$+$3)%)###+ (electron) %#+ ()(

"- #*$" 4) (chemical bonding) 2)

%$+( JL""

A4)$3 4%3*$$$+.)()$3(non-polar) ') 2A(4%3*$$$+#')#/#$ - (#"

"2 "("(S(! ."$$+/HA).)(")

!/%$"#(3 !3)(')#/#(intermolecular

(21)

attractive forces) )*#2")- "( #))((%

*(!%# (London dispersion forces) %)! #/() )#+ $ )(# A4.)(.V4

#.)()4'# $3( # - )H)-

##()$H )%2) 4 ( ()H)

! A4 (15-20 kcal/mol) !()H)!

) (20-30 kcal/mol) ( A4!!))H)##() 20 kcal/mol H )4/ ),(Noll et al., 1992)

2.1.2 , (Chemical Adsorption)

)")- $-()) !#+ "'!

"/ (valence electron) ).)( 8 )b (octet rule) !4)! )

%')#/#%, ( !I% ) (,(" 3 /

!($ ) )%,#4)$+) )($ $#) -()) ")- ) !/HA) 400-500 I#"##"A4.)%/HA)"$3 !3")-"

4$+ )$.d'!!.)(#/)!/HA)"- 1,000 I

#" 3")- ).' !!')#/#)') (NH3) )#J

!')#/#.d'!#.J (H2S) %&".$(( /#)+#

)#/()d'#! (halogen) !')#/#$d'#!3("A4&"%$#

+. 2)(Jg (, *$-())

)))$ $4)(')#/#$

- # )$$$+'###+ %#+ ()$3

" ) 3!)$+( A4 4V3 )!$3.V4 '')#/#$ - )+-! .V4(

4#()) (activated energy)4#"/!2h$3. 3 )%/HA)"$3+!2 )4#!#"$3h)!$3.+ 4V3 ) )/HA) 2!$3..)(( )/HA)"

(22)

2.2 %01234567,89: (Surface Area and Capacity of the Adsorbent)

"" /HA) (adsorption isotherm) ( -)")4(

)$)$$ - #)H$ - H /HA)2 ! 2-")/# 4%3*$ ($.') ( Langmuir isotherm

# Freundlich isotherm )))")#)2.4(# %!3) 2.')%4%. -()) .( BET isotherm # Dubinin-Radushkevich isotherm (Spengler et al., 2000)

2.2.1 ?25?9 @$4,?A@Langmuir Isotherm

!2#) (+% Langmuir Isotherm )%

4!H() Langmuirps derivation $"" 4 (

$')#/#&" - 3.)! 3(unimolecular layer) (3 (Karl and Charles, 2002) () Langmuir $ Langmuir adsorption isotherm "2

&" .$"G@3

1. &"- )4s )&"/) )%("-&"

2. &".-!2( 3(monomolecular layer) 3. 4%3*4(homogeneous surface) 4 (( affinity $ H -! *"2 ')#/#&")()%

4. .)() (interaction)' $(')#/#$ -

"2 #$ Langmuir adsorption isotherm ."")(2.1) #(2.2) (V/Vm) = [bP/(1+bP)] (2.1)

") (2.1) ")-"$J" 3

(P/V) = (1/bVm) + (P/Vm) (2.2) )% V = )H$&"-

Vm = )H$ monolayer coverage b = ( affinity %( Langmuir

P = )")/#$

( P # V '4# P/V P.( slope 1/Vm #.!/ % 1/(bVm)

" 2.1

(23)

P/V

2.1 "" /HA)"2 Langmuir adsorption isotherm 2.2.2 ?25?9 @$4,?A@Freundlich Isotherm

"2 Freundlich isotherm #GHV4$ -()) '"())32# 2 32" (Tchobanoglous et al., 2003) !32.

/ ("-&")4%3*4(heterogeneous surface)')() .)(. ")3!)4s ).)(. )bd(Henry law)) 2 # .)()$!2)%)"), (Do, 1998) "")(2.3)

x/m = KfCe(1/n) (2.3) )% x/m = )H$ - - ((32$ (carbon) Kf,n = ()4#

Ce = )$)$")/#$ - #!*(

!") (2.3) ")-"$J" ")(2.4)

e

C log n 1 K log m

x log

f +

=

(2.4)

( Freundlich isotherm ")-.'4# ( (x/m) Ce " 2.2

!") Freundlich isotherm )H$ - 4)$3.)(!2)%4))$)$%

)

(24)

2.2 "" "2 Freundlich isotherm

2.2.3 ?25?9 @$4,?A@ Brunauer-Emmett-Teller (BET) Isotherm

"2 BET isotherm "" /HA))') $&"')#/# 'V4(HA) 2, ( /HA)$

.' !# (77K) ".')#("(") (2.5) #4# J"

2.3 (Spengler et al., 2000)

C m V

1 C m V

1)X (C X) V(1

X +

= (2.5) X = )")4 (P/Po)

Po = ).$ -

V = ) $&"- ")/#

Vm = ) $&"- ! *$ 3monolayer C = (

BET isotherm ))"2S)4")-2.2H4%3*$

. -2$)#$") (2.5) )4# x .J" "

2.3 "( slope .% (C-1)/VmC #.!/ (intercept) 1/(VmC) 3( Vm #4%3*$

!")-2H.'")(2.6) A = Vm NAV

2 N

σ (2.6) )% A = 4%3* (m2g-1)

Vm = ) $&"- 4%3*$')#/# 3monolayer (molg-1)

N

AV

= #$'' (6.02 x 1023 mol-1)

Slope= 1/n Int ercept = log K

f

Log C

e

Log (x/m)

(25)

2 N

σ = 4%3- #/)'')#/#$.' ! (0.162 nm2)

2.3 "" /HA)"2 BET isotherm 2.2.4?25?9 @$4,?A@Dubinin-Radushkevich Isotherm (DR)

"( Dubinin-Radushkevich isotherm "")(2.7)3 4 (2.

.*# ")')#/#$S( ( " ( (Spengl er et al., 2000) %3 $")3.$"))/ (-()) )4/.)'(A")- 2" ($#. (Spengler et al., 2000)

2

0 0

E A )

ln(w ln(w)

= β (2.7)

!")(2.7)")-$")(2.8).3





=

2 2

A E

1 )

ln(w ln(w)

0

0 β (2.8)

w

o

= ) )$4/.)' (cm3g-1)

A = ')#/4 %##4#"$ " Gibbs free energy (∆G, kJ mol-1) %(I {A= -RT (P/Po), kJ mol-1}

Eo = 4# #GHV4 (kJ mol-1)

β = (affinity coefficient (NH3 = 0.315, H2S = 0.484) w = ) $&"-

-4# ( (A/β)2 # ln(w) !") (2.8) !.")" "

2.4 . slope (1/Eo)2 #!/ ( intercept) % ln(wo) (V#$$4/.)' (L) Slope= (C-1)/VmC

Intercept = 1/VmC

X/V(1-X)

X

(26)

")-2H.!( L=K/Eo )% K -2 17.25 kJ nm mol-1 3 Dubinin- Radushkevich isotherm !")-( Eo # wo. (Lee Reucroft, 1999b)

P 2.4 "" /HA)"2 Dubinin-Radushkevich (DR) isotherm

2.2.5 7R2(Fixed-Bed Adsorption Systems)

2 )/ /))#4GI))

$ .)" .2) (fixed-bed)4% I)

"„…*($. 3 )$4!H#% 33$3(()$)$$

"„…( 2# )% %!##(3)%A /$

J„…"A4 (regeneration) )(.') 3"A4$ "2 2 )#4G'V4 (+.)(")-$)#4%2H#")*"(contact time)

%)H$ #)$)$$"„… 2($!2 .(Cheremisinoff, 1993) *#$ .)"")-")$)!/.)"

(dynamic capacity) %)!/ (breakthrough capacity) .!%.$ (,.()

$)$$) /HA) # .#$ )-$$ ""2S"2 ! ))("/( )$ mass transfer zone (MTZ) "2S)*# (- 3!))!2(! )#

$ mass transfer zone 3

Int ercept = ln(w

o

)

Slope = -(1/E

o

)

2

(A/β)

2

ln(w)

(27)

2.2.5.1 T, ( Breakthrough Curve)

)")- $ #!)"A4)"/-)

!3$" % ##I„…)#4G.#*(3 # $H I„…")#4G.#*( #.! $3I"!.#

!#) 2.5 $ 2($#)" H3!")*"

I")")#4G„…(32,!2 H#( ")#4G!) (#$H$ ) %.!I$#%.I!#)

"( #"+) ($" 3" 3 () ("$))

!.)() #("$) "($" 3( mass transfer zone (MTZ))%

#) !## MTZ !#%. )I.# #"/

I!#/!3$" !+.!)")4()$)$

! # #(J breakthrough curve (4A4 4#H. 2547) &"!2)*($. # +.2 (.'

) +#% (.!-!/( breakthrough point #)$)$

)! )"$3(+ (.+ )$!24"%")#4G

!$.#. ""/ -)*($.#( (% (. )$)$)+

!4)$3%,!))$)$( )$)$ $ J4# "(

#($ 2.5 3")$)$)! Jg$) $$.#

)%#2 J4# 3(J (breakthrough curve) ( 34 ()$)$$"„…)!4)$3%,!"/!

( )$)$$"„…$) (Cooper and Alley, 2002) !2.5 )I4

$ 4) )(4A4 4#H. 2547) .(

1. Breakthrough Capacity )-)")-""/$ # ."„…((3."„…!#/! #

2. Saturation Capacity )-)H"." ")- .)"/ ((32 ((.!J Adsorption Isotherm

(28)

2.5J " (Cooper and Al ley, 2002)

2.2.5.2 ,89R2UV2 (Carbon Adsorption Capacity)

)!/ $-(2H.!$)#.')4#

J 2.6 ")-2H.'# (" 3!!/ (.- )$)$) C

o ## (".'). " #(.( qe = (x/m)Co !/

")-(.! 3 "2 ((qe)Co3"-)H$ - ((32

$ )% ("A")/# )$)$) $ - 3!

"- .""/$ "2 $"V4 (Tchobanoglous et al., 2003)

(29)

1 10 100

0.01 0.1 1 10

Residual concentr ation, C

Amountadsorbed per gram of carbon, x/m

C

0

C

0

m x

2.6 .') $-()) (Tchobanoglous et al., 2003)

2.2.5.3 ,89, (Breakthrough Adsorption Capacity)

)!/$ (x/m)b$-()) )+ !/ +)

#) + $)!/$ )sGb.!.') ((x/m)b $

#)) .3)H# 25 - 50 $)!/ )sGb #(3")- .'" #))"##+, #!- (tb) ")-)H(.

'") (2.9) )4!H(Tchobanoglous et al., 2003) (x/m) = xb/mGAC = Q( C

o ‹ C

b/2 ) tb/mGAC (2.9) )% (x/m)b = )!/$ g/g

xb = )#$"- GAC column g mGAC = )#$ #) g

Q = .# m3/d

Co = )$)$) $ g/m3 Cb = )$)$ g/m3 tb = #!- d

(30)

2.2.5.4 ,6W(Adsorbent Bed Depth)

)#$ )*# ( )-(')#("%

)"2S ))#()$'-('.)()

"4))#$ 2"/)()(""(4)$3$)!/ ' $ 2$$ .))"/ 4!H!( pressure drop 2H)$ MTZ %)#$ .)() !.#'

") (2.10) 4%2.2H(Cheremisinoff, 1993)

MTZ = D1/(1-X) [1- (C1/Cs) ] (2.10) )% D1 = )#$

C1 = )!/ $ D1 Cs = )!/$) X = $) MTZ

( Cs !")#(.!)!/ $3" '") (2.11) Cs = (C2D2 ‹ C1D1)/( D2 ‹ D1) (2.11) )% C1 = )!/ "2 ) $ D1

C2 = )!/ "2 ) $ D2 2.4 UV22:X (Activated Carbon)

-()) ))4IG")-'."44)4%3*

) )'"4/.)' ))!/ " #))(.h" ! 2./ 2 " # " #".)(4"))#4G"

!32%) '" )32')#/#)( 45 !- . !3 2 32"/) 32"/ ") %") 2##%

)! *# (,/ ")))")( (*# %3 4# *# /Œ# /))#4GI # *# "

%,/ ") !-()) % #!# #))) #'.#

/H") $" (#$3( /H") ) )) $ -/

*# 4%3*$ ('"4/A ) $'44/

#$$" -()) 3*# $3! -/ , )

(31)

#)- ( #)4 .) -( -(4 #*# AHL' #) "(#

-/ #% # *# !.#($ (.

2.4.1 5P7$UV22:X (Classification of Activated Carbons)

-()) *# AH)) (A 4%3@$

4s ) #GHV4$4%3* #") $-()) 34%)"

A!4!H #GH)+.A.( $$/A( particle size) #($/A (particle shapes) ' (-()) .* )+ %

#+

2.4.1.1 UV22:XY243 (Powdered Activated Carbons)

-()) *!)#GH$)))+#)"*(

I#$)+-(( 100 µ m (.)) 'V#)"*(I#( 15 -

25 µ m 3!4%3*AS(#4(! 4 ( "

) (-(')#$3) ")-! 23. (.)(")-2# ) )(. "(S(-()) **# !$3#% '2."##%$#

4 4(! 2) !)2./ ")$ "##%

$# .(/ ")*# 23 # 'J" #223 # "/Ž$3 / ")*# 23)4%"2 'A J" #2)"$3 / ") J" ##/ ")%%)#d#d# ( "3 . 23#) # #2" $3 / ")223 "/Ž ( 23%) 23

2.4.1.2 UV22:XY24[ (Granulated Activated Carbons)

-()) )+)$$/A )+-(S((-(

*)%2) #)4%3*A(-()) )+ -())

)+%#+ !")-2# )4%3 (.. '-()) 3)$

4×8 mesh size "2 -(2) "„…"-&")$((

4×6 - 4×10 mesh size ")-2)' (.#/ ")

")-!2.3 / ")% I4% &" (, ((

/ ")2P&"4G3',.# 4%

&"4G#.$"4G / ") 2.$ 2##

##2# ))( 4% .#(3/HA) #)$

(32)

. 2, ( / ") / ")" / ")4)4

!32. / ")*# / 4%&" ).

#23)(tar) '2-()) ).

2.4.2 %92]^,567%01234 (Micropores and Surface Area)

'"$-()) )#GH)% J32) )'$(*(

$.3$ -/3 3J32) !)"*(I#$4/$

(, -( 2 nm ( micropores 4/$( 2 # 50 nm ( mesopores

#$S(( 50 nm ( macropores 4//$.)(")-)+ #(

.'I!#!/#I 4/)$#+( 5 nm -)!/

)H)"/ 4%3*A$-()) /HA4% 1100 to 1200 m2/g )H

$ ) ( 4%3*A$4/# "„…

(Spengler et al., 2000) 2.7 "#%$')#/#"„…4/ "2 4/$S(")-! ')#/#$ - .4#+ ).$ - 4/$S()(). 2))*#2 2 )#4G. (Mycock, McKenna, and Theodore) 2.8 "*A4"( $/A-()) )% macropores )

$"*(I#)( 50 - 1000 nm # micropores )$4 1 - 2 nm (3

2.7 "3')#/#4/$-()) (M yco ck et al., 1995)

Molecule blocking pore

Area una vailable for adsorption

Macropore

(33)

2.8 "*A4$"( $/A-()) (Noll et al., 1992)

2.5 PP9%01234UV2^4]?X(Carbon Surface Modification by Oxidation) )(Jg$3 4%3*$ ")-2. /.'I .. %! )H$.$3 4%3*J) ! 2. /!3 $3( ) %$ -/ 4%3

*#/HA) / h$3( !3..

# $3( /HA)$. 3

C + O C(O) (2.12) C + O CO + CO2 (2.13) C (O) CO + CO2 (2.14)

/HA) 2( 400I#" )$!#J)

" - ! $3 4%3*'($3) "") (2.12) /HA)"( 400 I#" "# $" 4%3*#&"$

)h"") (2.13) # (2.14) H$ /' .""##h#%J)" 4%3* )("#

&"!$3.")$3( )$." /#%.$%, 2 (Bansal et al., 1988)

h$ -()) /(activated carbon impregnation) %h ( redox reaction) h-3 )%,.(h h#(!)###+ "2 #/()$ )%')#/# "

Micropores Micropores

Graphitic plant Adjection region

(34)

#+ .(-."% (reducing agent) "(#/() #+ . (-% ."(oxidizing agegent) )%4!H) $#) . (CaO) !h(#) !"") (2.15)

2Ca(s) + O2 (g) 2CaO(s) (2.15)

#). " .!.$ Ca2+ # O2- h32 )$ Ca!)-('#+ !2 4 /A. 2 ) O ')#/# O2 ("-&" )%4!H (.3")-"$3 %$3 )$#)."S"#+ !2 4 /A #$3 #+

.! )$#)'')#/#$&"!") (2.16) # (2.17) 2Ca 2Ca2+ + 4e- (2.16) O2 + 4e- 2O2- (2.17) (#$3 (h(half-reaction) ."#+ $(!

")(2.18)-(2.19) .)hh)3

2Ca + O2 + 4e- 2Ca2+ + 2O2- + 4e- (2.18) 2!#+ 3"$$")!.

2Ca+O2 2Ca2+ + 2O2- (2.19)

$3 "/. Ca2+ # O2- ) CaO ") (2.20)

2Ca2+ + 2O2- 2CaO (2.20)

'..)()"!/" ')#/#$" . (()"

#). CaO )( 2Ca2 + O2- h"#+ (h #h #+ (h (3#) -."%( (reducing agent) "(! -%

( ."(oxidizing agent) 2.6 ^^2(Ozone)

&"''% )$! 3 )) 1 ')#/#$'' (O3) ) !! #GH 2 ) 1 ')#/# (O2) )/H") ()% O2 !")-"A4(.#"A %#(.())"- (

&"''!.)( %.)("- %!g!! (, ( /HA) ) )#

")*" ")4#I 2(!h(+ (h

(35)

$3( 2h"##)') 2h"#4G ).

( G '' # !2. 2552)

&"'' "/Ž!)"32( )###!, -)$.),!

IG ''##32.)(&"! )%("A&" "/Ž)!"-A4 4") (-)"(32#''!"# !.( -*")(

I!(,#! )%/HA)- 300 I#" !"# (+

#( )) !) $')#/#$&"! ')"/#

.'# ))#%( 242 ') (h24#!

')#/#$&"! )$! 2 ) #)% )$

! 1 )4 ')#/#$&"!!) #''

''$33")-#%"# .'# # #&"!

#) )$! #''. ')"# .'# ( h!(3..%,'.)()"3"/ h#'( !3''

")-.I!4/‘JP%!JP# . h

#(3($ 'J' )# (Photochamical process) h2

&"''#"# 4) #"/h$&"''+!(A")/#

' #"# ( (Yahoo I.. 2552) 2.6.1 ?:4]P^^2(General Properties of Ozone)

J) $'"'')#/#''")-"+.

2.9

") A4:

32')#/# (Molecular weight ) = 48.00

!/#)# (Melting point ) = -193 I#"

!/% (Boiling Point) = -111.9 I#"

)( (Density at 0oC, gas) = 2.14 g/L

## (Solubility) = 0.1-0.3% '32 2##

.d' /HA) - 80 - ‹ 100 I#"

(36)

2.9 '"'')#/#''(Langlais et al.,1991)

") ):

'' ."")-.".3'##'#.

( 4# ) )) #'# 3("-"##%&"

( '# (.3

'')2(#$ (oxidation number) $.4)$3") ( .". ...' !.. ") (2.21)

NO + O3→ NO2 + O2 (2.21)

h32$3'#(")( chemiluminescence) NO2 ")-!

#. ")(2.2)

NO2 + O3→ NO3 + O2 (2.22)

NO3 ")-2h NO2 #J) N2O5 ")(2.23) NO2 + NO3→ N2O5 (2.23)

''2h .. /HA) ")(2.24) C + 2 O3→ CO2 + 2 O2 (2.24)

''.)(2h #%)')) (2h )'))')).

")(2.25)

2 NH3 + 4 O3→ NH4NO3 + 4 O2 + H2O (2.25)

''2h #.J.#J ( ( lead(II) sulfide -."

lead(II) sulfate ")(2.26)

PbS + 4 O3→ PbSO4 + 4 O2 (2.26) #JL")-*# .!'' ")(2.27) #(2.28)

S + H2O + O3→ H2SO4 (2.27)

(37)

3 SO2 + 3 H2O + O3→ 3 H2SO4 (2.28)

3" )$''")-2h.")(h$ tin(II) chloride hydrochloric acid ")(2.29)

3 SnCl2 + 6 HCl + O3→ 3 SnCl4 + 3 H2O (2.29)

)%(hA&"''!2h .d'!#.J.#J.

.")(2.30)

H2S + O3→ SO2 + H2O (2.30)

"-"## !)$($$"h$34) '.

*# AH /#J#*# AH#JL ")(2.31) #(2.32) H2S + O3→ S + O2 + H2O (2.31)

3 H2S + 4 O3→ 3 H2SO4 (2.32)

.'# ")-"$3.!h$"##.' anhydrous perchloric acid '' ")(2.33)

I2 + 6 HClO4 + O3→ 2 I(ClO4)3 + 3 H2O (2.33) 2.6.2 ,0A24^^2 (Ozone Generator)

)''h .2.'*(I%

&"!.$3.JJP(electrodes) 2 $3 ( .JJP""# )#4'#

)%*(I$.%2+!.''))$)$ 1-2%, # 3-4% )%

&"!*($. '$3 ')#/#$&"! )

") (2.34) )$!)) #')#/#$&"!

") (2.35) 4#)4!J) ''-)'')#/#

$&"'' (M) 3!2')#/#$'')"-(Parker, 1993) O2 2O (2.34) O + O2 + M O3+M (2.35)

%2''''"!( corona discharge) ))$

.JJP""# "(high‹voltage alternating current) ($3.JJP 2 $3- '3$.#+ #( &"!%I*( ( 2.10)

(38)

2.10 *A4$''"! (Parker, 1993)

%2'' Lowther-type air-cooled plate %2)(

$"2 *# &"'' %2''3').#+ "(

$%) $3.JJP2!#+#!$3.JJP"'#

).4%(((!/ " 2.11 (#$3.JJP!-%) ($

% I#)) )4%#(+&"''I' )I)H 1 %2''3".JJP 9 kV )- 2000 Hz.

2.11 %2'' Lowther‹type air‹cooled plate (Langlais et al., 1991) 2.6.3 4,7@X@^^2 (Ozone Analysis)

)H$''*# $3).")-2H.!h$.' -##(!"##'4").'. (KI) "(")(2.36) ) . .'#J 4%2H)H.' "") (2.37) !3

Aluminum heat Dissipator

High Voltage Sleel

Electrode

Silicone Rubber Separator Ground Sleel Electrode

Silicone Rubber Separator Cera mic Dielectric Coated Steel Electrode Cera mic

Dielectric

Section A-A Dischar ge Gap

O

2

O

2

A

A

(39)

'J' ) "2H)$)$$''.#

$&" (Burke and Danheiser, 1999).

O3 + 2I + H2O I2 + O2 +2OH (2.36) I2 + 2S2

O

32 2I + S4

O

26 (2.37) ''))4G")%)$)$))( 0.1 ppm ') )#V4")- !.)$)$ 2-$ 0.01 ppm "2 ! ''"()

"##.'#J 4%#''" #J "") (2.38) 2Na+ + S2O32- + O3 Na2SO4 + O2 + S (2.38)

(40)

3

3.1 3.1.1 2

1. !"#$

2. !% &'( $ 3.1.2 )*%+ &'( ! #,$-.!

1. #$ -* 5 -#!0*1-

2. #$ 230-4556 5 -#!0*1-

3. #$ 230-%! 5!8 -#!0*1- 3.2 "#$%&(Materials and Methods)

#- )-- ( (code No.CGC-11A) *%"3$"0C&1D

& C. Gigantic Carbon Co.Ltd., # 3*- )-- ( CGC-11A 3 -, %4$ (commercial grade) +!-P$!-* 12 8 x 16 mesh (1800-3600 µm) V* !*%"3$"0C&- )4 $ 4*

1)-- ("#$-*!&WP0&D X 3! -D!#P%"3$"

. X4YD X!45 ( (H2S) !&WD$-*)-- ( \!*%

X4 ( $DDX (O3) ! 4 (HNO3) XC%+ D "3$ FT-IR spectroscopy elements analyzer (CHNS/O) !Boehmgs titration #-$-$

D!#**%4 $1-31- (impregnated) )-- ( " -D!#

-) $%-#(*%* atomic absorption spectroscopy (AAs)

*P*%\!- .P1)-- ( -)#(#4 $D "3$%- BET analysis +# . X"+ i4YD X!45 (*%- *%"3$ . X+4 $D "3$%-*%* electrochemical sensor V* !#- ". 3.1, 3.2 ! 3.3

(41)

.*% 3.1 V* ++# )D

.*% 3.2 V* ++# )*%).X4 ( $ HNO3

The Ori ginal Sample CHNS/O Anal ysis

Analysis

Oxidation (HNO

3

)

FT-IR Analysis BET

Fixed-Bed Adsorption of H

2

S

AAs Analysis Metal Addition

(IE Method) Fixed-Bed Adsorption of H2S

BET Analysis Boehm’s Titration The Ori ginal

Sample

FT-IR aaaannaAnal BET

Fixed-Bed Adsorption of H

2

S

AAs Analysis Metal Addition

(IE Method)

Fixed-Bed Adsorption of H

2

S

BET Analysis CHNS/O Anal ysis Boehm’s Titration

Titration

(42)

.*% 3.3 V* ++# )*%).X4 ( $ O3 3.2.1 55#&6789 (Surface Modification Methods)

3.2.1.1 >?@A (Air Oxidation)

+)-- ( + 90 - -+X4 ( $0*%

1W#2.-# 150-300 0X!X*! 120 *"W(5!.4 ( (fluidized-bed reactor)*%1." -$ #! (Carbolite, model: RKC CB 400) XC%

fluidized-bed reactor *%"3$+ !$\0.(!2" 5.0 X - !-*- 55.0 X - D -*\i. $!W( $ 4#!4#!

-W 1.1-1.3 ! * (umf ≈ 0.87-1.04 m/s) XC%"3$-, %+1 5!.4 ( (umf) 0.79 - * -%"#$-$%1 -.W( !$C+"#$

) *%.2"W(,!)C1W#2.-#$D "#$0\$4 % 3.2.1.2 >?@?" (Nitric acid Oxidation)

-$-$!! 4 (HNO3) *%"3$" !*.

# 2.0 ! 10.0 D-!( (2.0, 4.0, 6.0, 8.0, !10.0 D-!() D "3$ 70% HNO3 $" *-!! ! + 20 -)-- ( D"

$4"!! HNO3 !$ %D "#$-$! 2 3%D-*%1W#2.-

CHNS/O Anal ysis Analysis

O

3

Oxidation (gas or liquid)

FT-IR Analysis BET

Analysis

Fixed-Bed Adsorption of H

2

S

AAs Metal Addition

(IE Method)

Fixed-Bed Adsorption of H

2

S

BET Analysis Boehm’s Titration The Ori ginal Sample

(43)

90-105 0X!X* ("!$*1 +) " reflux column .".*%3.4 D reflux column +#$*%"6.r* HNO3 *%#4 #!C+) 4!$ $+!%!+"#$#$" *%1W#2.-1030X!X*! 12 3%D-

.*% 3.4 4 -X4 () $ HNO3 " reflux column 3.2.1.3 >?@FF>(Ozone Oxidation)

+#X4 ("2i D +)-- ( *%4 $D

-W 3.7 -"$4" fluidized-bed column XC%!-(+ ! (type 304)

$\0.(!2" 1.2 X - . 50 X - *-*\ .

#!!-( 15 X - P%+#$*%i *% fluidized-bed 8 4 $-$ #! !iDDX%+ DDX).\$4"

!-( ".*% 3.5 %+ DDX (model OZ-7501) 3 DD 3(

-)\! iDDX4 $ 1 - 3%D- $ 4#!0.1 *%"3$"

! 6 ! * ".*% 3.6 D\.$\! P-$-$

DDX*%4 $-W 1-3% D +#-%"3$0\$4"% !"2 i*4 $-*+# 1W#2.-*% # 90 ! 250 0X!X* 3!*%"3$"

Condenser

Thermo meter Cooling

wat er in

Cooling wat er out

Reactor inlet

Reaction vessel Nitric acid

Water bath

Carbon Stirrer

Ther mo coil Temper ature controlling unit Nitric acid fumes

(44)

X4 ( 30 )C 90 * ! 4#!0 (O2) *%*% 5.5 ! * D -*

superficial velocity 0.79 - * -, %+1 fluidization +W 4 $0.79 - *

+#X4 () "2i "3$)-- ( D-W 20 -\-$4"+!% 0.6 ! " reflux column ! %*%

1W#2.- 90 0X!X* ".*% 3.7 "3$iDDX%+ *%-* 4#!

*% 1.5 ! *\$4"!!*%." reflux column D "3$!*%

60, 120 ! 180 * C+) 4!+"#$#$" *%1W#2.- 103 0X!X*! 12 3%D-

.*% 3.5 \4 - X4 () $DDX" fluidized-bed reactor

.*% 3.6 %+ DDX (Model OZ-7501) 3 DD 3(

1 5

3

6 7 2

4

Thermocouple

7. Temperature control 6. Fluidized-bed reactor 1. Air or O

2

tank 2. Regulator 3. Air flow meter

4. Ozone generator 5. Tube furnace

(45)

.*% 3.7 X4 (DDX" reflux column 3.2.1.4 ?FF " (Iodometric Method)

4DD - V*+W#-$-$DDX"4#!*%

i D -$-$DDX*%!-%+ !$$4+

"!!*% *-4$ +#V**+4 $D "#$iDDX\$4"!!DP X*-4D4 (*%-P -(3.1) +"#$ !).DDXX4 (!4D 4 ( -(3.2)

I +2e I

2

2 (3.1)

4D * \! \!).4 $!!- 'DX *-4DX!5 D -*6 (

+

+ 2 2

6 4 3

2 2

O S 2I O

2S

I (3.2)

*-!!DX *-4DX!5 (Na2S2O3.5H2O) D !!"+$ 1 ! -W 15 * - Na2S2O3.5H2O + 25 - ! Na2CO3+ 0.1 -

%*%,!! +!!*%4 $""23$,4$"*%- *- KIO3 XC%!!- ''-2.- $+ KIO3 -W 0.3579 -4*%

1W#2.- 110 0X!X*$ 1 3%D-!$+"#$," X ( C+*%

#$!$+ 0.3562 -!!" - 100 !.0(X - + KI + 10 - !!" - 100 !.0(X - *-+6 ( D "3$6-W 1 -!!"+ 15 !.0(X - !$"+

-W 500 !.0(X - %!!*"+"#$,!$," *%-*vw

(46)

*!!- '#DX *-4DX!5 DPX*-4D D +# "#$"#$!!- 'DPX*-4D !!- ''-2.-

!$4 4 $4D * " $!

IO3- + 5I- + 6H+ 3I2 + 3H2O

-W-PV(-"-%-*4 !!4DX!5 -* * 1 mol IO3- = 3 mol I2 = 6 mol S2O32-

!D 4 !!- '4D + 25 !.0(X -

!" conical flask 250 !.0(X - 4 DPX*-4D4 ((10% KI) + 10 !.0(X - !!!*%." flask , !$C - - 1.0 D-!( H2SO4 + 5 !.0(X - !4 * $!!- ' DX *-4DX!5 %!!!*#!P*!,$ !$ -+6*%

(+ 2 !.0(X - -%)C1 1 !!!*%*+

C+W#-$-$D-!(!!4D *

"3$!!- ''-2.-+##-$-$!!DX *-4 DX!5 *%"3$-4 $ DPX*-4D (KIO3)D !! KIO3 +0.3562 - (molecular weight = 214.00 g) "+D - KI -P !$+"#$ $ - 1.0 M H2SO4 + 5 !.0(X - 4D *+P *D "3$!!DX *-4 DX!5 + 24.6 !.0(X - !!!*%*+ -)+W#

-$-$D-!( Na2S2O3

-W Na2S2O3 = 0.3562 g 3

3 2 2 3

3 3

m mol KIO

O S Na mol 6m KIO

0.21400g KIO mol

KIO

x

1m

x = 9.9869 m mol Na2S2O3 -$-$ Na2S2O3 = 9.9869 x 10-3 mol Na2S2O3 x

3 3

cm 24.6

cm 1000

= 0.4060 M #-$-$DDX%+ D 4 DPX*-4D4 (

(10% KI) + 30 !.0(X - !" conical flask 250 !.0(X - i X $ (commercial grade) ).\$4"%+ DDX3 DD 3( $ 4#!X 200 !.0(X - * -%iDDX

%+ \$4"!! 10% KI 4#! 200 !.0(X - *

! 1 * !$ - 4YD !-$-$ 2.0 M + 5 !.0(X - !

(47)

4 * $!!- 'DX *-4DX!5 %!!!*

#!P*!,$ !$ -+6*% (+ 2 !.0(X - -%

)C1 1 !!!*%*+

+W: 4D * -% $"3$!!- 'DX *-4DX!5 + 4.7 !.0(X - !!!*%*+-%!4D *D -.W(

+ Na2S2O3 = 0.4060 mol Na2S2O3

3 2 2 3

3 2 2 3

O S Na cm 1000

O S Na cm x 4.7

= 1.9082 x 10-3 mol Na2S2O3 + O3 = 1.0 mol O3

3 2 2

3 2 2 3

-

O S Na mol 6.0

O S Na mol 10 x 1.9082 x

= 3.1803 x 10-3 mol O3 mg O3/ L(O2) = 48 x 103 mg O3 x

3 4 3 -

O mol 1.0

O mol 10 x

3.1803

x

3 3

cm cm

200 1000

= 76.3272 mg O3 / L (O2)

3.2.1.5 "FMF 5?(Metal Addition by Ion Exchange :IE) + )-- (*%4 $D X4 ( $ HNO3 ! X4 ( $ O3 3 !-W 10-20 - -\-!!*X*

[Zn(C2H3O2)2] 4**%4 $!!*X* -) P\

(D !!*%4"!! (Cal, et al.,2000) -$-$

!!\.# 0.05 ! 0.40 D-!( (0.05, 0.10, 0.20, 0.30 ! 0.40 D-!() C\- % $!*% *% 30, 60, 90,! 120 **%1W#2.-#$

#! C-.W( !$!$)-- ( $+!% 4 1 $+ 4!+"#$#$" *%1W#2.-1030X!X*!12 3%D-

3.2.2 RRMST U6(Characterization Techniques)

3.2.2.1 RM@F$% Fourier Transform Infrared Spectroscopy (FT-IR)

#-.5~(3P\)-- ( ).P.(!&W(

\ -5 *%4 $ FT-IR (Perkin Elmer, model spectrum GX) .

".*% 3.8 #(+4 $D *-)-- (*% !* \+ 1.0 -!!-

(48)

\-DPX*-4D4 (:KBr(Merck; for spectroscopy) + 300 -!!- "#$$

"D !$+-+\ ( !,$\0.(! 1 X - -# 1-2 -!!- D % .*% 15,000 ( (.*% 3.9) XC% (-*- D" \* IR !-)#(##-.5~(34 $D * FT-IR - ) ).C"3# 4000 !800 cm-1 D "3$ 4*

1) )-- ( D

2) )-- ( X4 ( $ O3 3) )-- ( X4 ( $ HNO3

4) )-- ( X4 ( $ O3 ! -D!#*

5) )-- ( X4 ( $ HNO3! -D!#*

.*% 3.8 %-#( Fourier transform infrared spectroscopy

.*% 3.9 % ." *-\ KBr

(49)

3.2.2.2 M5T> (Determination of Oxygen)

%-#( elements analyzer (CHNS/O) ,*#C%"V*

#(3-W*%-*-+r*%1 " . !5 P%#$!

V 1( 4YD 4D X !X!5("3 XC%"

0C&*4 $"3$%-#( CHNS/O (LECO model, CHNS-932) P%"3$#$!

X")-- ( *% ".*% 3.10 D 3%+# -W 2.0 -!!-,4$"X.! P%#!*!*%X4 ( + "!4

" W(1W#2.-)C 1300 0X!X* ,-)#-WXD +W

!-W(4 4X (

.*% 3.10 %-#( elements analyzer CHNS/O 3.2.2.3 RM@F (Boehm_s Titration)

4 $V* Boehm XC%V."*%*%$

Moreno-Castilla, et al., 1998 D V**-)+W#-$-$#-.5~(3 *%.

P\)-- ( 2" $$-1 4* DX *-4Y 4X( (NaOH) + P *#-.5~(3 (X! 5‚!! !D D *%DX *-(

(Na2CO3) +P *#-.5~(3 X!! 5‚! +#

DX *-4( (NaHCO3) +P *#-.5~(3 (X!

V* + +)-- ( + 1.0 - \-!!! 50

!.0(X - 4* NaOH, NaHCO3 ! Na2CO3 *%-*-$-$! 1 D-!(D -*

%! 24 3%D- C+,!!

D !$+!!*%4 $ !3 44 4YD ! 0.1 D-!(

(50)

*%#-.5~(3 5‚!\)-- (+W#4 $-W 0.1 M NaHCO3 *%) "3$4 +#*%#-.5~(3!D\)-- ( +W#4 $- #-W 0.1 M Na2CO3 ! 0.1 M NaHCO3*%) "3$4 *#-.5~(3(X!#4 $D !-W 0.1 M Na2CO3 *%

) "3$4-W 0.1 M NaOH *%)."3$4 DX *-4Y 4X ( (NaOH))

*%"3$%4"#$ 4, -,%*%4 $DX *-4Y 4X (*%

,1VƒP NaOH -) . -304 $ !!C+

(4 4X( (Chang, 2002) *C# 1\!*% $+DX *-4Y 4X (4*!!'-2.- P%"#$-$-$*%). $!-+

+# *%!"3$!!'-2.- potassium hydrogen phthalate (KHP) -*.

D-!1! KHC8H4O4 !&W KHP ,*-*-1Vƒ. * Na2CO3, NaHCO3 ! HCl , $+4*!!- '"3$"#(

3.2.2.4 RM@F$% R7&7(Atomic Absorption Spectroscopy :AAs) D!#**%"3$"1-31- (impregnated) )-- ( D !!*%4 -) -W*D %-#(*%*

atomic absorption spectrophotometer (Varian model spectrAA-250 plus) *% ".*% 3.11 D )-- ( ).+4!!" hydrochloric acid aqua regia XC%!! aqua regia *\- 4 $-$ 1 4YD !$-$ 3 -

* atomizer ). . !*%-!% 213.9 D- C4 $+

#(3-W $%-#( atomic absorption spectrophotometer P%

"3$"#( 4*

1) )-- ( X4 ( $ O3 ! -D!#*

2) )-- ( X4 ( $ HNO3 ! -D!#*

(51)

.*% 3.11 %-#( atomic absorption spectrophotometer 3.2.2.5 RM@M6789 6#?FR(BET Surface Area and Micropores Analysis)

P\†P!- .P1)-- ( #4 $4DX- . X4D *%1W#2.- 77 ! D "3$%- automatic surface analyzer instrument (Micromeritrics, model : ASAP2010) *% ".*% 3.12 ‡&ˆ* BET (Brunauer- Emmett-Teller) !- DR (Dubinin-Radushkevich) "3$+##P\†P!

- .P1 -!+ - .P1-#4 $+4D i*%). . X W - -PV( 0.98 D +W!- 4D ")#!XC%

"3$+W# 4*

1) )-- ( D

2) )-- ( X4 ( $ O3 3) )-- ( X4 ( $ HNO3

4) )-- ( X4 ( $ O3 ! -D!#*

5) )-- ( X4 ( $ HNO3 ! -D!#*

(52)

.*% 3.12 %-#( automatic surface analyzer

3.2.2.6 &#A@ "a&(Scanning Electron Microscope :SEM)

!$1!0(!, (JEOL model, JSM 6400)

".*% 3.13 "3$+# .2PD$)-- ( "0C&* SEM ).+-"3$

P% .D$2")-- ( †P*%4 $-D

.*% 3.13 !$1!0(!, 3.2.3 > (Adsorption tests)

. XP%+ H2S D . X" fixed-bed column*%+

!$\0.(!2" 1.2 X - $"3$)-- ( + 3 -

"$4" *%-*-. 5.5 X - !$C\ 1.01wt% i H2S *%\- N2 $ 4"!-(*%-*)-- ( . X +# "#$ 4#!*%*% 150 !.0(

(53)

X - * (contact time ≈ 9.9 seconds) -$-$ H2S *%- ).

%1‹ 5 * $ electrochemical sensor (Q-RAE PLUS, model PGM 2000) ".*% 3.14 \\ ! . X)-- ( 5 .-)"3$+W# breakthrough time -W H2S 4 $ 0C&\!*%-*

--)" . X-%-*!*%!1W#2.-*% 10, 30, ! 45 0X!X*D 0C& )-- ( 4*

1) )-- ( D

2) )-- ( X4 ( $ O3 3) )-- ( X4 ( $ HNO3

4) )-- ( X4 ( $ O3 ! -D!#*

5) )-- ( X4 ( $ HNO3 ! -D!#*

.*% 3.14 \\ ! . X)-- ( 3.2.3.1 R7&7 RM@ electrochemical sensors

3 XX( $ sensing electrode ! counter electrode D 3‹!D4! ( (.*% 3.15) XC%i*%$--\XX(

\!1#! w!*!,‹*%w .!-%P\*%4YD D5!1 $*%

P\!,D -%iP\*%)CP\!,D *%XX( ,

1 5

3

6 4

2

1. Mixed-ga s tank 3. Air flo w meter 5. Water bath 2. Regula tor 4. Fixed-bed adsorber

6. Electroche mical se nsor

(54)

*%$!4X 3#* 3 !,). ! (D

!,D †P+#i*% $

.*% 3.15 \\!,D *%"3$XX(i

+#XX(*%"3$" ! Q-RAE PLUS (.*% 3.16) *%-*D-"

i#!3 !-) i4 $ %4 $iX iP&

!i*% \4#-$+#\.$ "% !$-*%

.*% 3.16 %-*%"3$ iQ-RAE PLUS monitor

H ydrophobic me mbra ne

Electrolyte Counter electrode Refere nce electrode Sensing electrode Capillary diffusion

barrier

Referensi

Dokumen terkait

Adsorption Kinetics The equilibrium time and rate of phenol adsorption onto the surface of the AC and charcoal samples with different particle sizes were obtained from an adsorption