ก
: ก
ก !
ก
"# ก$%ก& $&'%(ก)ก& A. H. Copeland (1945) ก
Posterity may regard this book as one of the major scientific achievements of the first half of the twentieth century. This will undoubtedly be the case if the authors have succeeded in establishing a new exact science -- the science of economics. The foundation which they have laid is extremely promising.
กก %%ก$%% ก % (players) %O P Q)ก&ก" (&RS) R #& ( Q)#R# )
% (กP$ก (strategies) (ก)กก
กTกUR%# &'#&VW (outcome) $ก
©YYZ กP #[#S 3
UQ& (&VW\'% &$ (#) ก$% กOOกก (payoff)
$% ( ]' &$Q^ ก&VW% (O(\'%Q)
กก_ก#Wก$%กQ P (rational player) ก)% (VกQ%\'%&VW$ กP'O(\\'%
%T Pก\'% Oกก)กPW#Wก &VW
$ก\\'%Tก &'#Oกก)กกQ_ก'$%V' &VWก#'Oกก$Pก UQ%ก#'$&'%()ก&
$&'%ก#'Oกก%\'%&VW ก& (ก)ก&ก#'Oก%
\'%(]Rก&
ก(%กQ P ก
V#O"ก)% I (% II
กก^% I ก 3 ก) A, B, C (% II ก 2 ก) 1, 2 '&&^กO(&VW&^Q' 6 \\'%
e_$'%#กe$' 3 × 2
กก)%&^$ก ก('U\% )&^$fOQ%
g'ก('$_^V%ก& OOกก\'%OกR%&^)ก
&$ &กOOกก$% I ( &$ &OOกก
$% II
II II
1 2
I A
I B
I C
[
5, 5 10,102,20, 0 3, 32,2]
ก
ก'&ก$OOกก ก) OU#% I \'%ก&
OU#% II (OU% II \'%ก& OU% I
'&&^O$&^O( $%ก& กก&ก"(^ ก (Zero-sum game)
ก^ก'T_$&'%ก#'$_^R&'O(Q%
กกUQ'OOกก VกUQ'OOกก$% I \'%กfVV V(OOกก$% I \'%กf)OOกก$ II
II II
1 2
I A
I B
I C
[
520 3102]
#'ก
# % #% I #กก
% I O##'$ %กOOกกP' Oก ) 10 e_T C (Q&ก B ]'Q&% II O()ก 2
O#T%% II % I O()ก C %% II O(R%ก 1 UQ%% II \'% 5 Q
ก"% I %% II )ก 1 % I O()ก A V)Q%\'%&VW 2
T%% II ^ $ 2
%% I กfO()ก C ^\\%O
&ก)
\'%)&ก) (movement diagram) ]'$กOก%T
\&กP'T ($กOกก\Q%P'Q&ก
ก'&กV ก) กO(\QP''Q_ ก)กQ%
Q PO(ก]e ก&\ e_กก'&ก%&^O(R%กPWก (mixed strategies)
II II
1 2
I A
I B
I C
[
520 3102]
ก\
%&^U\' &VW''P') (1, 1) e_ &)กU'&
$%&^
ก)T%% II %% I )ก A $T)ก 2 e_Q%O Oกก$_^
U'ก&T%% I %% II )ก 1 $T)ก B e_Q%OOกกก
T%&^R%Q P'&ก&VW\'%) (-5, -5) e_&VWP'$&^
II II
1 2
I A
I B
[
2,2 5,51, 1 2,2]
#'กก
ก"%&^T #' ก&\'% O#Q)\%&^O()ก (A, 1)
V#O"ก"%&^TV'P #' ก&\'% T%% II (ก$)ก 2 % % I U\? T%% I ]ก\'%)กกTก"
$$O('ก^\?
ก_กก'&ก O(V#O"ก&\ (Two-person general sum game) ก)(\)ก& ]'Oก #' )ก (arbitrator) (U$% กP #WUQ& &^kl ()%กก ก#ก)ก&กP% ก N N > 2 O(\%ก' %ก)ก&$กP% (ก
#\'%Q%R#กกP
# !$ก
!$ก (normal form) Q) กPW (strategic form)
$ก กUQ']'#&'& (X, Y, A) )
X e \$กPW$% I
Y e \$กPW$% II
A opกR&OUO## X ×Y
ก^ก%)กกPWกV%ก& % I )ก x ∈ X
(% II )ก y ∈ Y ]'&^\ ก)ก$กklQ_ Q&Oก
%&^)กกPWก% %ก\'%) A(x, y)
e_QR%&ก# กQT_%ก\'% |A(x, y)| Q QT_%ก |A(x, y)| Q
ก'
V#O"ก
$%&ก P ก)กก 3 $% II \O V(ก 2 Q%OOกก%กPกก" กก 2 $% II 'ก (dominate) ก 3 $% II Q)ก 3 '%กก 2 (Is dominated by 2)
ก #กก %Q PO(\)กก'%ก
II II II II
1 2 3 4
I A I B I C
I D
[
161253 1120 1704 201603]
Q&กก'
# ก ก S 'กก T T%Pก s $&VW S OOกก'กQ)ก& $&VW T (%Q_ S 'ก T
Q&กก' %Q P\)กก'%กก) (T%% %)กO()กก'ก&^)
Q&กก'&กTR%กUO&'ก$ก#กe\'%
&ก)
'&ก)$ก\'%
$%&ก P ก)กก 3 $% II \O V(ก 2 Q%OOกก%กPกก" กก 2 $% II 'ก (dominate) ก 3 $% II Q)ก 3 '%กก 2 (Is dominated by 2)
ก #กก %Q PO(\)กก'%ก
II II II II
1 2 3 4
I A I B I C
I D
[
161253 1120 1704 201603]
ก #กe
กUQ'ก ! (X, Y, A) Q% X = {x1, ..., xm} ( Y = {y1, ..., yn} )ก$% I ก& % II U'&
$ A $#กe
'&ก % I )กก T $"(% II )ก ก Q&ก
&$ก#กe)OOกก$% I
A=
[
aaam 1112 1 aaam 21 22 2 aaam n1 n2 n]
, ai j=Axi, yjOP'%
กUQ'ก ! (X, Y, A) Q%กOP' aij OP'%
(saddle point) T%
aijก& UP'T i
aijก& P'Q&ก j
Q&กกOP'% T%ก#กeOP'% %%&^O()กก U\$กก& OP'%'&ก
# $ก v )% I & (ก&$R(\%ก v (UQ&
% II ก(ก&% I R(\ก# v
Oก &$ก#กeOP'%)OP' (3, 2) ]'OOกก 2
[
161253 1120 1074 201603]
& #$OP'%
PกOP'%$#กeกO(ก& กOก^T%% I )ก กTOP'%Q)% II )กกQ&กOP'%
%%&^O(%OP'%
$&^ #WQOP'%
UQ& T i %Q&ก Row min($%P'T i
UQ& Q&ก j %T Column max ($กP'Q&ก j
QP'Q&ก Row min ( UP'T Column maxT%&^
ก& %ก^OP'%'&ก (\'%OกTQ&ก Row min ก& Q&กT Column max
&กQOP'%
Oก %P'T Column max ) 2 (กP'Q&ก Row min ) 2
'&&^ก^OP'% = 2 e_ UQ (C, 2) II II II II
1 2 3 4
Row min I A
I B I C
I D
[
161253 1120 1740 201603]
201612Column max 12 2 7 16
OP' ก$%ก& OP'%
T% aij $OP'%ก#กe% T i $ aij O(TQ%
maximin (Q&ก j $ aij O(Q&กQ% minimax (
maximin = aij = minimax
T% maximin = minimax %OP' &'$TQ% maximin ก& Q&กQ%
minimax O(OP'%
\กf' ก กT$ maximin ก& Q&ก$ minimax \ก& &) ก\OP'% e_ %กQกPW'P'ก^'%
©YYZ กP #[#S 19
kuกQ&' 2.1
1.OQก'$ก#กe
2. T(Pก ก'\ Q&กกก'&'&
(Principle of Higher Order Dominance) #Wก)Q&Oก &'ก '%ก ก% ก#กe\'%O($'fก TR%Q&กก ก'ก& กP$กfก (กUO&'ก'%'&กก U^\) s Oก(&\T'ก#กe\'%ก
Oกก$% %OQก#กe\'%Oกก(Pก ก'&'&
[
432 613 520 414]
©YYZ กP #[#S 20
kuกQ&' 2.1
3.O'&ก)(OP'%$ก#กe \^ T%
4. OV#O T%ก i $% I 'กก j $% I
(ก j OP'% aij % $ akj Q&ก'ก&
O(OP'%'%
5. Oก&ก) &ก PกQ%Q P&กO($%OP'% \O(#
Q%Q POก UQ'กf ก#กe O#Q)\PกกOP'%O(
'%ก& T(ก"^
3.1
[
322 212 432 2420]
, 3.2[
223 101 243]
, 3.3[
492 357 186]
#'ก
V#O"ก#กe \^
ก'&ก\OP'% %&^Q PO(\)กก'ก Q_]'vV( V(%kl $%O(กPWกUQ%ก' s '
\Q' #WกO_UQ%kl $%\TO& Q&ก ก\'% ก)% %กP e_TU"O(
ก)กก\'% ก ก (Mixed strategy)
$"(ก\กPก ก #PW#x (Pure strategy)
II II 1 2
Row min I 1
I 2
I 3
[
205 3102]
305Column max 2 10
กR%'(("OOกก
# '( (expected value) $OOกก a1, a2, ..., an
'%O( p1, p2, ..., pn U'& )
a1p1 + a2p2 + ... + an pn
ก)'($กP$OOกก)$T^UQ&ก"ก&
OOกก )T^UQ&ก)O(%O()กก&^
T%% II R%ก]QS กก#กe $)กก 1 '%O( ½ (ก 2 '%O( ½
'($% I ก)กก 1 ) 2 × ½ + (-3)× ½ = -½ '($% I ก)กก 2 ) 0 × ½ + 2 × ½ = 2 '($% I ก)กก 3 ) -5 × ½ + 10× ½ = 2½ '&&^% I )ก 3 e_Q%'(OOกกกP'
Q&กกR%'(
Q&กกR%'( T%% %กklR%ก (O(R%
ก'&ก\O(ก#'(\$_^กf %Q PO()กกQ%
'(P'
)V#O"ก$% II $ T%$R%กPก'&
O(ก&) ½ % I O()ก 3 UQ%% II %O 2½
'&&^V)Q%ก$% II %P' % II %ก)กก UQ%'(ก)กก$% I UP'O(\\'%
Q)O)กQ%% I \\'% Q) ก)กก
ก-Q)-
V#O"ก-Q)- T%% I ( II (ก$ & Q_Q) % I )
%\'% $ &$T%OU Oก&
T%OU $"(% II )%\'% ก&
T%OU Oก& T%OU
ก ก #$\'% X = {1, 2}, Y = {1, 2} (#กe A
ก^%Q_\'% %&^)
II II
1 2
I 1
I 2
[
23 34]
©YYZ กP #[#S 25
%&^\ %ก)ก(ก &$ 1Q) 2UQ& กPก
'&&^Q&กกQ P)กP T%% I P]'กQ_
3/5 &^]'v(ก 2/5 &^]'v
T%% II กQ_ P$% I 2Q 3/5 &^(\'% 3Q 2/5 &^ '&&^'(% I \'% -2(3/5) + 3(2/5) = 0 ก))\
Q s ก% I O(\\'% Q) (break even)
T%% II ก P$% I \'% 3Q 3/5&^( 4Q 2/5&^ '&&^'(% I \'% 3(3/5) - 4(2/5) = 1/5ก))\
Q s ก (ก% I \'%(" 1/5
'&&^% I %กQกQ%'(กP'
#'ก#(Q #'กPWกUQ%ก&
Q% p O(% I กQ_( 1 - p O(% I
ก
T%% II กQ_ '(% I \'%) -2p + 3(1 – p) = 3 - 5p
T%% II ก '(% I \'%) 3p – 4(1 – p) = 7p - 4
V)Q%% II \ก#' ก (QกกQ_Q) % I %กQ p
UQ% 3 – 5p = 7p – 4 \'% p = 7/12
ก)T%% I กQ_'%O( 7/12O(\'%\% II O(ก Q_Q) '(% I O(\'%) 3 – 5×7/12 = 1/12 ( 7×
7/12 – 4 = (49 – 48)/12 = 1/12O(
#''&กก กPWกUQ%ก& (equalizing strategy)
#'กPWกUQ%ก&P%กkl
\\'%Q)\% I กกQ%'(กก^ U )
\\\'%T%% II #'ก&ก"('ก&
Q% q O( II กQ_( 1 - q O( II ก
T%% I กQ_ '(% II \'%) -2q + 3(1 – q) = 3 - 5q
T%% I ก '(% II \'%) 3q – 4(1 – q) = 7q - 4
V)Q%% I \ก#' ก (QกกQ_Q) % II %กQ q
UQ% 3 – 5q = 7q – 4 \'% q = 7/12
ก)T%% II กQ_'%O( 7/12O(\'%\% I O(ก Q_Q) '(% II O(\'%) 3 – 5×7/12 = 1/12 ( 7×
7/12 – 4 = (49 – 48)/12 = 1/12
#''&กก กPWQ(P' (optimal strategy or minimax strategy) Q)กPW##กe (minimax strategy)
กPW #PW#(กPW
กUQ'Q% X, Y )e $ก #PW#$% I (% II U'&
กกPWกPOกกP$ก #PW# ก
'&&^ก- $% I )ก'%O( 7/12, 5/12
TV#O"ก #PW#ก'%
O(กO) 1
กOก^ #%O(OV'(\'% ]'Q'('P'
&^)%กO(\T ก ก (Qก\'% 5 % ]'\ % P ก& ]กก\'% 10 % ½ (\\'%(\ ½ e_กV#O"'&ก
$_^ก& ก\'%e_OOกก$## (utility theory) ก ก)ก$%O('%ก& opกR&## (% &'#&VW v$## กUQ'
##กe
ก (X, Y, A) ก& (T%e X ( Y
e & (
##กe UQ& ก & (
O( V ก$ก
O(กPW$% I (% II e_% I O(\'%%v V
\% II O(\กf
O(กPW$% II (% I e_% II O(v\ก\ก V
\% I O(\กf
T% V กก^P #W T% V > 0 กก^% I
\'% T% V < 0 กก^% II \'%
©YYZ กP #[#S 30
kuกQ&' 2.2
1. V#O"ก-Q)- T%OOกกกU &$&^"ก&
O#(Qก'&ก (Pก\'%QกP #WQ)\
2. % I T) 'U('' % II T) '('UOf' %&^)ก\VQ_
)V%ก&('Q%\Vก T%\V'Q)ก& % I R(
(\'%OOกกก& \V%R(T) (% II Oก& '&ก) (T%\V' ก&% II R(ก& \V%R(T) (% I O) OQ$ก(กPWQ(P'
3. “I know a good game,” says Alex. “We point fingers at each other;
either one finger or two fingers. If we match with one finger, you buy me one Daiquiri. If we match with two fingers, you buy me two Daiquiris. If we don't match I let you off with a payment of a dime. It'll help pass the time.”