• Tidak ada hasil yang ditemukan

Chapter 5 Plane Kinematics of Rigid Bodies

N/A
N/A
Protected

Academic year: 2024

Membagikan "Chapter 5 Plane Kinematics of Rigid Bodies"

Copied!
15
0
0

Teks penuh

(1)

Chapter 5

Plane Kinematics of

Rigid Bodies

(2)

2103212 Dynamics, NAV, 2012 2

Introduction

5.1 Rotation

5.2 Absolute Motion

5.3 Relative Velocity

5.4 Relative Acceleration

5.5 Instantaneous Center of Zero Velocity

5.6 Motion Relative to Rotating Axes

5. Plane Kinematics

(3)

1.1 Introduction

5. Plane Kinematics

Particle Rigid Body

Size Small & Not important in analysis

Big & Important in analysis

Motion Translation only

Can be

Translation or Rotation or both

Rigid body

= a body with negligible deformation

= distance between any two points in a rigid body is constant

(4)

2103212 Dynamics, NAV, 2012 4

1.2 Motions of a Rigid Body

5. Plane Kinematics

1. In space = three dimensions

2. In plane = two dimensions (our course)

Translation

Rectilinear

Curvilinear

Rotation

(5)

1.3 Plane Motions of a Rigid Body (Type of Motion)

5. Plane Kinematics

Translation

(6)

2103212 Dynamics, NAV, 2012 6

1.3 Plane Motions of a Rigid Body

Rotation

General Plane Motion = Translation + Rotation

5. Plane Kinematics

(7)

1.3 Plane Motions of a Rigid Body

5. Plane Kinematics

(8)

2103212 Dynamics, NAV, 2012 8

5-1 Rotation

(9)

5-1 Rotation

ω as well as α is the same for every point

(10)

2103212 Dynamics, NAV, 2012 10

5-1 Rotation

(11)

1. Rotation about a Fixed Axis

Any point in the body moves in circular motion

For Point A

Note: v and a of other points are different because of different r (ω and α are the same)

5-1 Rotation

(12)

2103212 Dynamics, NAV, 2012 12

1. Rotation about a Fixed Axis Velocity

The equations can be rewritten in a vector form (for plane

motion)

Direction of ω is given using the right-hand rule.

5-1 Rotation

(13)

1. Rotation about a Fixed Axis Acceleration

Direction of α is given using the right-hand rule.

5-1 Rotation

(14)

2103212 Dynamics, NAV, 2012 14

Example 1: L-shaped bar

5-1 Rotation

(15)

Example 2:

Starting from rest when s = 0, pulley A is given a constant angular acceleration of 6 rad/s2. Determine the speed of block B when it has risen 6 m.

5-1 Rotation

Referensi

Dokumen terkait

single plane and, furthermore, any couple moments acting on the body are directed perpendicular to this plane.. two-dimensional or coplanar

Inclusion of rigid-body rotation in the undular mode reduces the growth rate as well as the wave- length of the most unstable mode dashed line because lateral motion alongthe Ðeld lines

xiv Ĉ1, Ĉ2, Ĉ3 Inertia Frame of Coordinate System of RW t0 Initial Time Tdi Kinetic Energy Due To Flexible Motion Ti Kinetic Energy Due To Rotation TR Kinetic Energy of The Rigid

17.8 Principle of Impulse and Momentum • Principle of impulse and momentum for the plane motion of a rigid slab or of a rigid body symmetrical with respect to the reference plane

The result of this research is the HOTS-based test instrument in a computer-based test that is feasible on the material of rotational dynamics and rigid body balance that meets the

Comparison of Discretization Methods_Revisited  FVM Finite Volume Method cont’d  Purely local analysis without assuming any grid structure or the shape of computational cell 