Course Syllabus
1. Course No. 2102-671 2. Credit 3 credits
3. Course Name INFORMATION THEORY & CODING 4. Faculty/Department Electrical Engineering
5. Semester Second semester 6. Academic Year 2005
7. Instructors Assoc. Prof. Dr.Prasit Teekaput (PTP)
Suvit Nakpeerayuth (SNP) [email protected] 8. Condition -
9. Course Type Required course
10. Study Program Master of Engineering (Electrical Engineering) 11. Course Level Graduate program
12. Hours per Week Lecture 3 hours 13. Course Description
Communication sytems and principles of information theory; measure of information; coding for discrete;
discrete memoryless channels and channels capacity; noisy channels; coding theorem; techniques for coding and decoding memoryless channel with discrete time; waveform channels; source coding with a fidelity criterion.
14. Course Outline Objectives
• To deeply understand the mathematics of Information Theory and its physical meaning
• To understand various channel coding techniques
• Can apply the knowledge to real problems in communication applications Detail Course Schedule See the table below
Instruction Method Lecture and Seminar Instruction Media Transparency and Blackboard Evaluations
Part I: Information Theory
Midterm Exam 50%
Part II: Channel Coding
Homework 10%
Research & Presentation 10%
Final Exam 30%
15. Schedules
Week Topics Instructor Assignment/Due Part I: Information Theory
Nov 3 Ch.1: Introduction to Information Theory SNP Nov 10 Ch.2: Probability, Entropy, and Inference SNP Nov 17 Ch.4: The Source Coding Theorem
Ch.5: Symbol Codes SNP
Nov 24 No classes SNP
Dec 1 Optimal Symbol Codes
Ch.6: Stream Codes SNP
Dec 8 Ch.8: Correlated Random Variables
Ch.9: Communication over a Noisy Channel SNP Dec 15 Ch.10: The Noisy-Channel Coding Theorem
Ch.11: Error-Correcting Codes & Real Channels SNP
Dec 22 Midterm Exam SNP
Dec 29 No classes SNP
Part II: Channel Coding
Jan 5 Linear Block Codes PTP
Jan 12 Cyclic Codes PTP
Jan 19 Bose - Chaudhuri Hocquenenghem (BCH) PTP
Jan 26 Convolutional Codes PTP
Feb 2 Trellis Coded Modulation PTP
Feb 9 Turbo Codes & Cryptography PTP
Feb 16 Research & Presentation PTP
Feb 23 Research & Presentation (Continue) PTP
Mar 2 Final Exam PTP
16 References Text Books
Part I: Information Theory
- Information Theory, Inference, and Learning Algorithms: David J.C. MacKay, Cambridge Chapter 1-2, 4-6, 8-11 (available for viewing only at http://pioneer.chula.ac.th/~nsuvit)
Part II: Channel Coding - Additional Lecture notes for 2102-671
- Information Theory Coding and Cryptography : Ranjan Bose, McGraw-Hill Additional Readings
- หลักการสื่อสาร : ประสิทธิ์ ประพิณมงคลการ, สํานักพิมพซีเอ็ดยูเคชั่นจากัด (มหาชน) - Principle of Communication Engineering : W. Jacobs, John Wiley.
- Synchronization of Digital Telecommunication Networks: S. Bregni, Wiley.
- Information Theory and Reliable Communication : R. Gallager, John Wiley - Turbo Code : C. Heegard & S. Wicker, Kluwer Acadamic Publishers.