11 o,,"·"
I ••
"' ~ 1'"'.f"~ .,_ QI
il'M11fl u,a U Lflfl L '14UI UT1'1":::-;J Bil Lna1ff'l4lJ'1"
... ~ .,I
•
'!IBilfillJTia1'11l1flfl1'1"i'lfl1!t1fl 1/2561
... ,..i
1\1,flfflYI 5 91~1fl2J 2561 L1~1 13.00 -16.00 'U..
• •
1'21'1 CPE 223 Digital Electronics and Logic Design \Ii.fl. 1fl.f1Ell1Vf1Lfltl'l
... ..
A1i" '
... . . . ::. .., 0 I I ,,f
1. 'llElffEl1JllYl-:l'V\2J~ 8 'llrl ,11\1,1\1, 10 LL~\I, {'l1llLL~\l,\I,) fl::LL'U.Wl1ll 30 fl::LL'U.\I, 2.
l
~ltn fin~n1,i ElffEIUYln,i m'l-:1l
"U.'lit1-:ii1-:1rf Lfl7tllll-n ~ L
'U.i111i' r)ff£11J'!l't1d• •
3. 'W El'U.ll!1fl L'V11-iLfl~El~t°i1'U.1tu.
i
4. 'Wmtll!1fll-iii.1LE1nff1'"IL~6J Li1-ie-:ia-eu
.. • "'ti ... "ti .,
... .r5. L'lltl'U.'!l'EI LL~:: 'l'V\ff "I::,11911 ~-:I ~\I, nVi'U.1,l,1J1J'U.
..: .,
~fl.ffWU. ff"I::LLn1
~E1£1nimi£11J
..
0-24 70-9083
. . . AA. ' -
"Ifl.fl"I.
vnvrn
fl"IVHfl1~m•
1. Use 16-bit 2's complement binary to represent the following decimal numbers: (3 points) a) 14,320
b) -12,035
c) 0.12
2
2. Perform binary additions or subtractions and determine whether the overflow occurs.
a) 1001 1011
+
10110110c) 1000 0001 1011 0110
b) 0110 1010 10101111
d) 0110 1010 + 0100 0101
(2 points)
3. Simplify the following Boolean functions:
a) F(A,B,C,D)
=
1: (0,l,4,5,12,13)b) F(W,X,Y,Z) = I: (1,7,11,13) + d(0,5,10,15)
c) F(A,B, C,D) =ABC+ BCD+ ACD
+
ABD(3 points)
4
4. Given the following function in sum of products form F(A,B,C,D) =ABC+ AD+ AC
a)
Determine F in minimized sum of products form.b)
Implement Fusing NAND gates only.(4 points)
5. Implement the following Boolean function using two 4-to-1 multiplexers. (4 points) F(A,B,C,D)
=
:E (2,4,6,9,10,11,15)E
Do I I
Di 4-fo.1 1'l MUX DJ
It
E Do
D1 4-to-l D2 MUX
~
Io It
6
6. A combinational circuit is specified by the following three Boolean functions:
F1(A,B,C)
=
l: (0,3,4) F2(A,B,C)=
L (1,2, 7)FJ(A,B,C) == TI (0, 1,2,4)
1mp1ement the circuit with two 2-to-4 decoders.
I
4
B l-to-4 f1
- G 4ec:oc1er· ~
f3
4 Yo
B l-to-4 Y1 G dcood« Y2 f3
(4 points)
7. Given the circuit shown below(Assume flip-flops are initially in reset state): (6 points)
x _ _ ....,. D Q --- .---D Q y
Q ~---
Clk - - - ~
a) Determine the output (y) waveform
X
Clk
y ---
b) Sketch the state diagram
8
8. Given the circuit below(Similar to the one in the Laboratory section):
CLK INIT=LOW START=O COUNT=-1 CLOCK=256
JUl
~
r+
U2
•CKA QA
CKB QB
QC OD R0(1)
R0(2) 7493U
4
ANO
[D© -- - -
-+
R11
3
-
1R . .,,,
-- - -
U3
1 A YO 15
? t.t
3 B Y1
C Y2 13 Y3 17
11
.t Y4
t±
s:: E1 Y5
6 E2 Y6
E3 Y7
74HC238
U1
N) 00 !
A1 01
A2. D2
A3 D3
A,4 D4
A5 05 15
N; 06 16
~
A7 07
NJ A9 A10 A11
CE OE/VPP 2732
Specify the ROM contents so that the dot-matrix displays the letter "B" as shown:
Address ROM contents (in binarv) (in binarv)
0000 0001
RowO
" II 0-..,
Row1
eoooe
Row2
eoooe
Row3
••••o
Row4
roooe
Row5
•oooe
Row6 I 0
RowEi
KOW(
(4 points)
Supplemental Table 2.1
Postulates and Theorems of Boolean Algebra
Postulate 2 (a) x+O=x
Postulate 5 (a) X + x'
=
1Theorem l (a) X + X
=
XTheorem 2 (a) X + 1
= }
Theorem 3. involution (x')'
=
XPostulate 3. commutative (a) x+y=y+x Theorem 4. associative (a) X + (y + Z)
=
(X + J') + .::(b) x-1 =x
(b) x·x' =O (b) x·x =x (b) x ·O = 0
(b) xy
=
yx(b) x(yz)
=
(xy)zPostulate 4. distributive (a) x(y+.::)=xy+xz (b) x + y.::
=
(x + y)(x + .::)Theorem 5. DeMorgan (a) (x + y)'
=
x'y' (b) (xy)'=
x' + y'Theorem 6. absorption (a) X + xy
=
X (b) x(x + y)=
xTable 5.1
Flip-Flop Characteristic Tables
JK Flip-Flop
I K Q(t + 1)
0 0 Q(I) No change
0 1
()Reset
l 0 l Set
I l Q'(t) Complement
D Fllp-Flop T Fllp-Flop
D Q(t + 1) T Q(t + 1)
0 0 Reset 0 Q(l) No change
'-·
1 1 Set 1 Q'(f) Complement
10