!"
67 869:;<*
#$
>?6@AB8C B8@DEFDGB8HIJCAKBAL;BAMJNOM:N:PFDGB8 DEJ8@FQF<PRSNK8J:< CAKBALHIJFQB8NCABMJF FLBNK:@A FA ;A8BTUCRVB8CAKBAL ;<M:D :9F 9MA:9PRSNK8J FA VK8 B8:T FA ;A8CL:;ASC;KB8CAKBALM: PW<SF XJ 1 D K SF XAJ: FHLBCS JB8:;ASCB8DYA9CAKBAL;ASSXZF : FLBFA ;A8RS;ASF[P\8B8FDGB8DEJ8 \AB8@AHKC B8@
DEFDGB8@AJKB:DYA9CAKBALB K8T;8 CB8DYA9CAKBALKA:A8;JKSXZF : FH?>FLB:@AC @B8DEFDGB8 FLBFDGB8F@CB8DYA9CAKBALK<B T:
;ASKFH?>FLBS S@B8FDGB8KFH?> S SHJW9SXZF :K<B T: FLBRS FDGB8N:<FH?> :DYA9B8CAKBAL;ASSXZF :KFH?>;JKCB8DYA9 CAKBALKA:A8 CB8DYA9CAKBAL;ASSXZF :KFH?>FLBF[B8FDGB8K FH?>
%%$&: FDGB8DEJ8 M:D :9F 9MA:9 SF XAJ: B8NCABMJF
*B 9 RWFMMA FLB8A A FMMA BTJC C A FMMA HSBFA<
HSFCLB T8FH^ 10800 BFA9: [email protected]
The Effect of Surface Roughness to Elastohydrodynamic Lubrication in Spur Gear with non-Newtonian Lubricant
Khanittha Wongseedakaew*
Abstract
This paper presents the effect of surface roughness to performance characteristics of transient isothermal elastohydrodynamic lubrication in line contact of spur gear with non-Newtonian fluids. The time dependent Reynolds equation, elastic equation and viscosity equation were formulated for compressible fluid.
Newton-Raphson method and multigrid method were implemented to obtain the film pressure profiles, film thickness profiles and traction coefficient in the contact region at various loads and speeds. The simulation results show that roughness amplitude has a significant effect on the film pressure in the contact region. The film thickness decrease but traction coefficient increases when surface of gear teeth was rough surface. The film thickness reaches its minimum at approach point when the line of action increase film thickness was increase. The minimum traction coefficient was occurrence at pitch point. The increasing loads, film pressure and traction coefficient increase but film thickness decrease. The film thickness and traction coefficient increase when the speeds increase.
Keywords: Spur gear, Modified Reynolds equation, Multigrid method, non-Newtonian fluid.
*Lecturer, Department of Mechanical Engineering Technology, Collage of Industrial Technology,
King Mongkutts University of Technology North Bangkok, Bangkok 10800, Email: [email protected]
1. #%
K8vK \A8J<B8BJ:;ASK8vK \A8 V8 w SPW<FDGB8FQBTU9CAPK8vK \A8 :8>\8B8FDGB8\FQJ<B8CAKBAL:
;ASV<v?8HIJCAKBAL ;JKA6USB8@DEFDGB8 B8:VF FLB :< A<B8 \A8V8HK
@B8DEFDGB8SA6USTSCLBC B8
@ x?8C B8@W>8:8AK@AB K8 JKBHIJCAKBAL;BAMJNOM:N:
FLB8C B8@@CB8DYA9 CAKBAL; @@BBKPA<F 8 FHLBA:F C SF:?>USPW<8 ?6 HIJ\8B8FDGB8?8\yFQB K8 8 FHLB\<BVAN:<NFSC9;AS?6 L:B T PW<8B8FDGB8PC<B TPW<8N:<T:
Dowson ;AS Higginson ?6HIJCAKB AL;BAMJNOM:N:@FQF<M: PW<X FW8JFA HKDYA9CAKBALF:?>8 Larsson ?6HIJCAKBALB8FDGB8DEJ8
\8PRSNK8J:< CAKBALBMJF CL:B8CAKBALFQJ Circular Viscosity Model HKCB8DYA9CAKBALKJ\T:
J\;CK8DEFDGB8F;ASKFH?>JS S B8DEFDGB8 Al-Samieh ?6CAKBAL;
DYA98PRSNK8J Mongkolwongrojn ?6
@AB8FA RSB K8P:JKBHIJ CAKBAL;FB9MBAMJNOM:N:P 8SB HKFA RSK8@APC<C B8DYA9CAKBALA:A8;JK:B8DYA9CAKB ALKFH?> Huseyin ?6HIJ?CBB8 FDGB8DEJ8\:< NAKB>8BB;A6USB8 FDGB8DEJ8FHLBA:FA ;A8RSDEFDGB8N:<
\PC<?CBA:A8
?6HIJCAKBAL;BAMJ NOM:N:FLBB8NCAFQB8NCA;BMJ F PW<NKNKFQFW8F<V8 :8>C
\JB TK8 ;ASPW<FA\U Lubrecht ;AS Francisco ?8N:<\FBXAJ:
SXRHFHLBA:S SFA\U Wang ?6 HIJCAKBAL;FB9MBAMJNOM:N:
PFDGB8DEJ8FLBCAKBALHIJFQB8NCA MJF HKCDYA9SKA:A8;JKBTUCRV CAKBALKFH?>FLBRSDEFDGB8N:<FH?>
Guangteng \:AB8:KCB8DYA9 CAKBALFLB@B8W>8FQ@C F F @A 8I6HKKN:<B:A<B8
>?6@AB8C @JKBHIJ CAKBAL;BAMJNOM:N:PFDGB8DEJ8
@FQF< x?8FQCAKBAL;DYA98:@A FA ;A8VK8B8DEFDGB8 FLB8 :B8DYA9CAKBAL ;ASCAKBALHIJFQ B8NCA;BMJF FQNJ Power Law Model M: CL:B8CAKBALFA ;A8J :B8DYA9CAKBAL;ASK Shear strain rate
>8CAKBALFQB8NCAB:JN:<
PTRS\8B8FDGB8DEJ8 FA ;A8RS F[ ;ASM<8 JAB:FADEFDGB8 :8>FHLBA:xx<B B8\AB8@A ?8NK:@AFA ;A8BTUCRV CAKBAL \AB8@A\C>PW<SF X
@AJK8LFLB8 (Finite Difference Method) K SF XJ-D (Newton-Raphson Method)
\CC\JBB8M:D :9F 9MA:9;ASPW<
SF XAJ: (Multigrid Method) FHLBA:
S SFA\U 2. #HIJ"
2.1 $IKL#MN
\8B8FDGB8;DEJ8;ASA6US8 RHB8DEFDGB8JV 1
OP#" 1
B8DEFDGB8S S S J\;CK8HJW9 B8FDGB8HJW9 ra ;AS rb T Pressure angle
ψ vBX N::< @B88SB
2 JF[PCT ωa ;AS ωb JA\:
:8>S SJK8w B8FDGB8SN:<
( )
1 bsin
R S =r ψ +S
( )
2 asin
R S =r ψ −S (1) F[@B8DEFDGB8
( ) ( )
1 b 1
u S =ω R S
( ) ( )
2 a 2
u S =ω R S (2) S S>8C:B8DEFDGB8
( ) ( )
( ) ( )
2 2
2 2
cos sin
cos sin
a a a a
b b b b
s r a r r
r a r r
ψ ψ
ψ ψ
= + − − +
+ − − (3) FLB aa,abK;B:F::B8FDGB8;ASFDGB8J r ra, b 8AHJW9B8FDGB8;ASFDGB8J
ψ K Pressure angle 2.2 QQQ
M:D :9F 9MA:9PRSNK8J;N<
J@FQF< SN:<K
( )
( )
0 0
1
2 1 2
UT
e UT
e
P KC H
X X X
KC S H K H
X T
ε ρ
ρ µ ρ
µ
∂ ∂ = ∂
∂ ∂ ∂
∂ ∂
+ ∂ − + ∂
(4)
FLB K =u0µ0R02 b P3 H (5)
( )
3 2
2 0 1
1 e e e
ε ρ= H µ −µ µ (6)
UT 0
C =u u (7) M: F8LBNB\CF 9MA:9
( IN, ) 0, ( OUT, ) ( )OUT 0
P X T = P X T = ∂ ∂P X = (8)
( )
0 IN OUT
P≥ X <X <X (9) 2.3 SQ
CDYA9?>B VKA6US RH B8DEFDGB8;ASFA ;A8VK8B8DEFDGB8 :B8CAKBAL
( ) ( )
( ) ( )
2
0 2 1 2
1 OUT , ln
IN RT X X
H H X C D X D X
P X T X X dX π
= + + +
′ ′
− ∫ − (10)
FLBD X1( ),D2( )X FQC B8@B8FDGB8
;ASFDGB8J JA\:
Surface Topography [Hamrock] SN:<K VK88FUJB8HL>@ SSB:<
@:HA:B8VK8 (Error of form) AL (Waviness)
;ASC (Roughness) :8>?8v<8
;\AB8C B8@DEFDGB8N:<:8
1( ) 1
11
2
12 13
cos 2
2 2
sin cos
M
M
M
M M
D X Z X
X X
Z
π λ
π π
λ λ
=
+ +
2( ) 1
21
2
22 23
sin 2
2 2
sin cos
M
M
M
M M
D X Z X
X X
Z
π λ
π π
λ λ
=
+ +
2.4
C;KB8CAKBAL?>B VK:
DYA9CAKBALN:< [Dowson]
( )
9 9
1 0.6 10 p 1 1.7 10 p
ρ = + × − + × − (11) 2.5
CL:B8CAKBAL?>B VK:;AS F :FLBDYA9CAKBALN:<
0 R s
µ µ µ µ= ∗ ∗ (12) CL:B8>\CAKBALFA ;A8J :CAKBALN:<PV;N<J[Roelands]
( ( ) )
( )
(
0 9)
ln 9.67
exp 1 1. 5.1 10 Z
R p
µ µ∗
−
+
= × − + + ×
(13)
CL:B8>\CAKBALFA ;A8J F :FLBCAKBALN:<FQNJ Power Law Model J 14 ;ASPV;N<J:8 (15)
( ) 1
0
n
S m u y
µ = ∂ ∂ − (14)
1 1 1
0 0 0
2 0
1 n
n n
S
m u R u
H Y
µ b µ
− − ∗ −
∗ ∂
= ∂ (15)
2.6 W
RSDEFDGB8N:<SFK@AB8;8 S\@KDYA9B8CAKBAL
( 2)
OUT IN X
X PdX =CWT π
∫ (16) 2.7 $ PL#YZ "#
SXZF :F:?>P\8 B8FDGB8DEJ8;N<J
( 0 0 0 ) ( )( ) 0
OUT
IN
X
WT X Y
f = ηu R C w b′ ∫ µ H ∂U ∂Y = dX (17) 3. %K
TUJB8DEFDGB8 CAKBAL;:8:8J8 1 ;AS J8 2 H:PW< P\AB8@A ;:8:8V 2 A6USB8C @B8DEFDGB8 RS DEFDGB8N:< RS\8B8DEFDGB8S S JK8w N:<;KBJKB8RSS\(CWT) , BJKF[B8@DEFDGB8(CUT) ,BJK M<8B8@DEFDGB8(CRT) ;ASBJKB8
;JJK8B8F[@DEFDGB8 (Slip/Slider Ratio) ;AS A6USC @DEFDGB8;:8:8V 3
#" 1
TUJB8DEFDGB8 PINION GEAR
\DEFDGB8 50 100
M:VA ( m ) 2 2
Pressure Angle (ϕ) 20 B8
<8B8DEFDGB8 35 mm.
MATERIAL UNB C61300
#" 2 !"#
TUJB8CAKBAL Mineral Oil Inlet Density ( )ρ0 ,kg/m3 892. 0 Inlet Viscosity ( )µ0 ,Pa-s 0.20 Power Law Index ( )n 0.975 Viscosity-Pressure Index ( )Z 0.511
OP#" 2 $#%& %()*
OP#" 3 +$)$#
!, - *$#%&
\AB8CAKBAL;BAMJNOM:N:
B8FDGB8DEJ8 FLBFDGB8RS 15 kW ;AS
\8F[B 500 rpm :< CAKBAL Mineral Oil FQ Psuedoplastic Fluid HKFLB:@A C B8@DEFDGB8S JB8:
SFA ;A8B K8T;8C B8@
DEFDGB8J\;CK8DEFDGB8F (J\;CK8 I) CDYA9CAKBALK<B T: (FLB@B8DEFDGB8NK C KFK 0.32 NMFJ FLB:
C B8@DEFDGB8 KFK 0.24 NMFJ) FHS:SFKBJ:B:B8@DEFDGB8 FLBDEFDGB8F >:;ASDYA9CAKB ALFKBJN:<FH?> J\;CK8HJx9 (J\;CK8 P) FQ J\;CK8DEFDGB8RSV8T:\PC<:DYA9 KV8T:;ASJ\;CK8DEFDGB8F (J\;CK8 E) CDYA9SKT: FLB8F[B8@
DEFDGB8KT: ;:8:8V 4
OP#" 4 ( . !"#$#) !/!,
"# *
RSFDGB8N:<FH?>K8@APC<:DYA9 :;K8B8:DYA9;AS<8B8@
KFH?>;JKCB8DYA9CAKBALKA:A8 :DYA9V8T:(Pmax) J\;CK8HJW9 FLBFDGB8 RS 22.5 kW SK Pmax= 0.81 GPa FDGB8 RS 15.0 kW SK Pmax = 0.56 GPa ;AS Pmax = 0.47 GPa FLBFDGB8RS 7.5 kW FLB:@A C B8@DEFDGB8FDGB8RS 22.5 kW SK Pmax= 0.98 GPa FDGB8RS 15.0 kW SK
Pmax = 0.81 GPa ;AS Pmax = 0.49 GPa FLBFDGB8 RS 7.5 kW ;:8:8V 5
OP#" 5 ( . !"#$#) !0 $#+!, "#
*
CDYA9CAKBAL<B T:F:?>J\;CK8 DEFDGB8FCA8>?8KFH?>B K8:F[
FLB8DEFDGB8<8DYA9CAKBALN:<FH?>;ASF KA:A8:DYA9CAKBALA:A8 >
?8FH?>FLBDEFDGB8FA RSS\FHS CL:B8CAKBALB8FH?>B K8:F[FLB8 :B8DYA9CAKBALFH?> CA8>RS DEFDGB8N:<A:FLB@KFUJ\;CK8HJx9\PC<
CB8DYA9CAKBALKFH?>;ASA:A8 B K8:F[FHSCL:B8CAKBAL;AS FA ;A8VK8B8@DEFDGB8A:A8:
DYA9CAKBALA:A8 >?8KFH?>FLB8 F[B8DEFDGB8FH?> ;ASCDYA9<B T:KA:A8FLBRSFDGB8N:<FH?>>8U:@A C B8@DEFDGB8;ASNK:@A C B8@DEFDGB8;:8:8V 6
KSXZF :KFH?>B K8 :F[FLB@KJ\;CK8DEFDGB8FFQFHS CL:B8CAKBALFH?>:DYA9 CAKBALFH?> >SKA:A8F : FLBS\JKBDYA9CAKBALKA:A8FHS
;JJK8B8F[@B8FDGB8;ASFDGB8JA:A8 CA8>SKFHB K8:F[FLBRSS\
DEFDGB8FH?> ;A<KA:A8B>8F : FLBS\JKBDYA9CAKBALKA:A8 K SXZF :KJ\T:J\;CK8HJx9 FLB8J\;CK8:8AKF :FLBK<B T:>KSXZF :KFH?>FLB
@KJ\;CK8HJx9FLB8F :FLBFH?>
;ASA:A8B K8:F[FLBRSDEFDGB8N:<A:A8
>?8FH?>B>8FLB8F :FLB FH?>;ASKSXZF :KFH?>FLB RSFDGB8N:<FH?>>8U:@AC B8@DEFDGB8;ASNK:@AC B8@
DEFDGB8;:8:8V 7
OP#" 6 . !"#&$#
!, $#+!, "#
*
OP#" 7 1$23$$#
!, $#+!, "#
*
FH?>B8F[B8FDGB8K8@APC<C B8DYA9CAKBALJ\;CK8HJx9KFH?>FLB8 BJNCAB8CAKBALFH?> ;JK:DYA9 CAKBAL;AS:;K8B8:DYA9CAKB ALNKFA ;A8 ;:8:8V 8
OP#" 8 ( . !"#$#) !0 $#4!,
CDYA9<B T:;ASSXZF : S SJK8w B8DEFDGB8KFH?>FLB F[B8FDGB8FH?>;:8:8V 9 ;ASV 10
OP#" 9 . !"#&$#
!, $#4!,
OP#" 10 1$23$$#
!, $#4!,
4. WP
\AB8@AC @JKBCAKBAL
;BAMJNOM:N:B8FDGB8DE@FQF<
FLBNK:@AB8BTUCRVHK
4.1 CDYA9<B T:F:?>J\;CK8DEFDGB8 F
4.2 SXZF :J\T:F:J\;CK8 HW9
4.3 C @B8@DEFDGB8@AB K8T;8 :DYA9CAKBAL ;ASFA ;A8B8 :DYA9CAKBAL?>A6USB8C
@
4.4 CB8DYA9CAKBALKA:A8;JK :DYA9;ASSXZF :KFH B K8:F[FLB@B8DEFDGB8FQ@C
4.5 SXZF :KFH?>;JK CDYA9<B T:KA:A8FLBFDGB8RSFH?>
4.6 SXZF :;ASCDYA9
<B T:KFH?>FLBF[B8FDGB8KFH?>
5. PL^
8 >N:<TT TKPCK S\ 2553 \ J9;ASFMMA C A FMMA HSBFA<HSFCLB 6. $&$IKQ
b <8?8C?8B8@ , m ( )1 2
0 8 0
b=R W′π
CRT :KM<8J\;CK8P:wF J\;CK8 HJx9, CRT =RX R0
CUT :KF[J\;CK8P:w F J\;CK8 HJx9, CUT =u u0
CWT :KRSJ\;CK8P:w F J\;CK8 HJx9,CWT =w w′ 0
1( )
D X C B8@DEFDGB8;N<J
2( )
D X C B8@DEFDGB8J;N<J
E M:VA L:C TKB8DEFDGB8, Pa
E′ M:VA L:C TKFA B8DEFDGB8, Pa
( 2) ( 2)
1E′ =1 2 1 −υP EP + −1 υG EG
f SXZF :
h CDYA9J\;CK8P:w, m
h0 CDYA9J\;CK8?8A8, m
H CDYA9N<J, H =h R b( 0 2)
H0 CDYA9J\;CK8?8A8N<J, ( 2)
0 0 0
H =h R b
m0 HFB9AB9;DFJB9BTUCRVB<8B8, Pa⋅s
n :WFHFB9AB9
p :, Pa
P :N<J, P= p PH
PH :V8T:P@B8 Hertz, Pa ( 0 2 )1 2
PH =E W′ ′ π
R0 M<8FA J\;CK8 Pitch, m
( ) ( )
0
1 1 1
sin sin
a b
R =r ψ +r ψ
RX M<8FA J\;CK8HJx9, m
1 2
1 RX =1R +1R
ra B88AHJW9B8FDGB8, m
rb B88AHJW9B8FDGB8J, m
R2 M<8B8@FDGB8, m
R1 M<8B8@FDGB8J, m
S S SB8DEFDGB8J; Line of action
S0 BJKALNvA, S0=(u1−u2) u t FA, s
T FAN<J, T =(u b t0 )
u2 F[@@B8FDGB8J, m
u1 F[@@B8FDGB8, m
u F[FA B8@DEFDGB8J\;CK8P:w, m u =(u1+u2) 2
u0 F[FA @DEFDGB8J\;CK8HJx9, m
w′ >\CJ\;CK8P:wPB8FDGB8, N/m
w0 >\CJ\;CK8HJx9PB8FDGB8, N/m
W0′ >\CN<JJ\;CK8HJx9, W0′=w0 E R′ 02
x MBB9:FJ x J;@, m
X MBB9:FJ X N<J, X =x b
y MBB9:FJ y, m
Y MBB9:FJ y N<J, Y = y h
Z :WCL:-:
1
zM : Waviness B8FDGB8;ASFDGB8J, m
1
zM : Roughness B8FDGB8;ASFDGB8J, m
1
ZM : Waviness B8FDGB8;ASFDGB8J;
N<J, ZM1=zM1 (b R2 0)
2
ZM : Roughness B8FDGB8;ASFDGB8J
;N<J, ZM2 =zM2 (b R2 0)
11
λM : ALB8 Waviness FDGB8
12
λM : ALB8 Roughness FDGB8
M13
λ : ALB8 Roughness FDGB8
21
λM : ALB8 Waviness FDGB8J
22
λM : ALB8 Roughness FDGB8J
23
λM : AL B8 Roughness FDGB8J
µ CL:VU9 (Absolute viscosity), Pa-s
µ CL:PVN<J, µ µ µ= 0
µ0 CL:B8>\CAKBAL:
;ASBTUCRVB<8B8, Pa-s
ρ C;KB8>\CAKBAL, kg/m3
ρ0 C;KB8>\CAKBAL:
;ASBTUCRVB<8B8, kg/m3
ρ C;KB8>\CAKBAL;N<J,
ρ ρ ρ= 0
ψ Pressure angle, degree 7. !
Al-Samieh, M. and Rahnejat, H., Ultra-Thin Lubricating Films Under Transient Conditions, 2001, Journal Physics D:Applied Physics, vol.34, pp. 2610-2621.
Dowson,D. and Higginson,G.R., Elastohydro- dynamic Lubrication:The Fundamental of Roller and Gear Lubrication, 1996, Pergamon , Oxford.
Francisco, A., Frene, J. and Blouin, A., Multilevel Solution to Elastohydrodynamic Contact for the Water Lubricated 3D Line Contact, 2002, STLE Tribology Transactions, vol.45, pp. 110- 116.
Guangteng G., Cann P.M., Olver A.V. and Spikes H.A.. An experimental study of film thickness between rough surfaces in EHD contacts , 2000, Tribology International, Vol 33 pp 183- 189.
Hamrock,B.J., Fundamentals of Fluid Film Lubrication, 1994 , McGraw-Hill.
Huseyin Imrek, Hayrettin Duzcukoglu, Relation between wear and tooth width modification in spur gears, 2007, Wear, Vol. 262, pp.3901 394.
Huseyin Imrek, Performance improvement method for Nylon 6 spur gears, 2009, Tribology International, Vol. 42, pp.5031510.
Larsson, R., (1997), Transient non-Newtonion elastohydrodynamic lubrication analysis of an involute spur gear, 1997, Wear, Vol. 207, pp 67-73.
Lubrecht, A.A., ten Napel, W.E. and Bosma, R.,
Multigrid, an Alternative Method for Calculating Film Thickness and Pressure Profiles in Elastohydrodynamically Lubricated Line Contacts, 1986,ASME J. Tribology, vol.108, pp.
551-556.
Mongkolwongrojn M., Aiumpornsin C. and Thammakosol K., Theoretical Investigation in Thermoelastohydrodynamic Lubrication With Non-Newtonian Lubricants Under Sudden Load Change, 2006, Journal of Tribology, Vol. 128, pp. 7711777.
Roelands,C.J.A., Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils, 1969 Druk , V.R.B.,Groingen , Netherland.
Youqiang Wang, Hongqi Li, Jingwei Tong, Peiran Yang, Transient thermoelastohydro-dynamic lubrication analysis of and involute spur gear, 2004, Tribology International Vol. 37, pp 773- 782.