( i t!fl. t,I
m·nnmnai~.n,,u~vuii
' 1iJm1fimn
2561,, ..
'tltHTtl1J1,i1 MTH 330 Abstract Algebra I o u u . e t ,Q, d,:.,
tfU'ij1JUflflfl1fl tTl'tll flWVlftUT9Jj l'Yll\!'U
.
., d .... <!I ..,
tTtl1J1U ~flj 'YI 5 l~tlU ~ 2561
6"1~,,,~
rnn 9.00 - 12.00 u.9' a,, .J'e1f 91 gJ JI
1. 'IJ€Jtlt1'1J'il'I.J1.J'U J.JVM11J.J11 11 11m (nJ.JlmJ::11'U1) nJ.J s 'IJO fl::H'U'UnJ.J 7 4 fl::U'U'U 2. 1irvi1 l'U'1fotlt1'1Jlvi1l!'U
~· 'I"•• , ,,,,
3. tlJ'tl1'i)Jl1i 111'U111n11m::mnm1 11 '7 t'IJ-mt1~tlt1'1J 4. 1J.iti1'i)Jlfl 1iru11f11€J~tll'U1W 111 '7 l'Ultt'tl~tltl'IJ
5. 1 'Um
w
~'U'tl tltiu 1J.ii11rn'U 1110 ii-ut1 tl ~ ifo 1,r
i11 ff'U 1 'lU n11qJ 111vt! o mf ~t1imvm~Nll ~i11 ff'U 1 '1.,
Vll!'lf'U'U'U
I
,!( .., .., ~
'V6 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1'rHY'Uflflfnfl _ _ _ _ _ _ _ _ _
...
.flUl1'til _ _ _
Q.I c/ t Q.I ,I
111'. €11'1~'U 11~1i'U1~'UtlfJ'1
(1
• Narrie ... I.D ... ,. .. .
Midterm Exam (Total 74 Points)
MTH 330 Abstract Algebra I
1. (6 Points, 2 each) Provide the definition of the followings.
1.1) A group
(G,*)
1.2) A group homomorphism from the group (G,*) to the group (H,®)
1.3) A cyclic group G
Name ... I.D ... .
2. (10 Points, 2.5 each) Provide a simple example of the group in each problem below. If there is no such example exist, provide your reason why it does not exist.
2.1) A non-cyclic group of order 4
2.2) A non-abelian group of order 24
2.3) A cyclic subgroup of order 8 of the cyclic group ( Z36 ,
+)
:? .. .4) An abelian group of order 8 which is not cyclic
Name ... I.D ... .
3. (Total 10 Points) Let
c-{[~ ; ]
n E Z }·3.1) (6 Points) Assume that the matrix multiplication is associative. Show that G is a group under matrix multiplication.
Name ... I.D ... .
3.2) (4 Points) Show that G is isomorphic to
(Z,+).
• Name ... I.D ... .
4. (9 Points) If G is any group, define a function <p: G ~ G by q7(g)
=
g-1• Show that G is abelian if and only if <p is a homomorphism...
Name ... I.D ... , ... .
5. (Total 8 Points) Let S, T be subgroups of a group G . 5. I) (5 Points) Show that S nT is a subgroup of G.
5.2) (3 Points) Is it also true that SuT is always a subgroup of G? (Provide a proof if it is true, or provide a counterexample if it is false.)
•
Name ... B • • • • • • • • • • , . . . 1.0 ... .6. (Total 10 Points, S each) Let (O,•) and {H,ISJ>) be two groups, Let 00 be a subgroup of G and HO be a subgroup of H. Suppose that ; : G -+ H be a group homomorphism.
6.1) Show that ¢(G0 ) := { ¢(x)
Ix
e G0 } is a subgroup of H.•
Name ... 1.0 ... .
6.2) Show that ¢-1
(H
0) := { x E GI ¢(x) E H0 } is a subgroup of G.•
Name ... 1.0 ... .
7. (Total 10 Points, 5 each) Let G be a group with identity e and let g e G be any element of the group G.
7 .1) Show that if o(g) = k and m is another integer such that gm
=
e, then kI
m.7.2) Suppose further that G is cyclic of order n. Show that o(g)J n. ( Hint: To prove 7.2), you may refer to the result of 7.1) even if you are not able to
prove 7.1))
Name ... I.D ... ..
8. (11 Points) How many subgroups does ( Z 54,