Op Amp Circuit
2102-487
Industrial Electronics
Amplifier Fundamentals
Vi Ri VL
-
+ +- AV
i
Ro + +- V -
S
RS + -
RL
Source Amplifier Load
Vi +- AV
i
Ri
Ro
Vo
-
+ +
-
Amplifier is a two-port device that accepts an external applied signal, referred to as input, an in turn produces a signal, referred to as output, that is proportional to the input: output = A x input
Voltage amplifier model Voltage amplifier with source and load
S s i
i i V
R R V R
= + i
L o
L L AV
R R V R
= +
s i
i L
o L S
L
R R A R R R
R V
V
+
= +
|
|
| /
|VL VS < A
This shows that due to the loading effect
Loading effect complicates life because each time we change the source or the load , we need to recompute the overall gain, and we also have signal loss.
Amplifier Fundamentals
Vi +- AV
i Vo
-
+ +
-
Vi VL
-
+ +- AV
i
+ +- V -
S
Rs + -
RL
Source Amplifier Load
Ideal voltage amplifier model Ideal Voltage amplifier with source and load
To eliminate loading effect, the voltage across RsandRomust be zero regardless of Rs and RL. The only way to achieve this goal is b imposing Ri = ∞ and Ro =0
V A V
S
L = regardless of Rs and RL.
In practice, the loading effect can be eliminated by the conditions of Ri >> Rs and and Ro << RL
Operational Amplifier (Op Amp)
The operational amplifier (op amp) is a voltage amplifier having extremely high gain. By combining with external components, op amp could be configured to perform a variety of operations such as addition, subtraction, multiplication, integration, and differentiation etc.
Op amp symbol Simple practical Op amp model
For the popular 741 op amp, Rd = 2 MΩ, a ~ 200,000, and Ro = 75 Ω
Vp = Non-inverting input voltage, Vn = Inverting input voltage and Vo = output voltage a = unloaded voltage gain.
d n
p V V
V − = Vo = aVd = a(Vp −Vn) V
+
n- +
V
-
p+
V
-
o+
-
+VCC
-VCC
Vn Rd
+-
aVd+ -
Vd
+ + -
- +
V
-
p+
V
-
o+VCC
-VCC Ro
Ideal Op Amp
We define ideal op amp as being an ideal voltage amplifier with infinite gain.
For the ideal op amp, a → ∞, imply Vp = Vn, Rd = ∞, imply In = Ip = 0 Ro = 0
Ip = Non-inverting input current, In = Inverting input current
Ideal practical Op amp model
Ideal Op Amp Rules:
1. No current flows in to either input terminal
2. There is no voltage difference between the two input terminals
aVd
+- +
-
Vd
+ -
V+n -
+
V-p
+
V-o
+VCC
-VCC
CC o
CC V V
V ≤ ≤
−
The output voltages are constrained by the following relationship
Operational Amplifier (Op Amp)
Op Amp Characteristic Property Values
∞
∞ 0
0 (virtual short) 0 (virtual short)
|Vo| ≤ VCC
>200,000
>2 MΩ
<75Ω
<0.1 mV
<50 pA
|Vo| < VCC Gain, a
Input Resistance, Ri Output Resistance, Ro
Input voltage difference, Vp-Vn Input current, i1 or i2
Output voltage limits
Ideal Op Amp Typical Op Amp
Property
Analysis of Op Amp Circuit:
-
Vp
+
Vn
Vo
+ -
Vi
i
R
inR
outVn Ri +- aVd +
- Vd + + -
- + V-p
+ V-o Ro
Apply KVL: −Vi +i(Ri + Ro)+a(Vp −Vn) = 0
i n p
R V i V − But: =
And we have: Vo =Vn
+ -
+ -
Ri 2 MΩ
75 Ω Ro
a(Vp-Vn) Vn
Vp Vi
+ -
Vo
i o
i i
o
R a R
R V
V
) 1 1 (
+
− +
=
Voltage gain for the voltage follower
p
i V
V = and
Find Vo/Vi
Analysis of Op Amp Circuit:
i
Apply KVL: −Vi +i(Ri + Ro)+a(Vp −Vn) =0 But:
And we have: in i a Ri Ro i
R = V = (1+ ) + Rin
+ -
+ -
Ri 2 MΩ
75 Ω Ro
a(Vp-Vn) Vn
Vp Vi
+ -
Vo
Find Input resistance: Rin = Vii
n p
i V V
iR = −
Find output resistance:
=0
=
Vi
t t
out i
R V
+ -
Ri 2 MΩ
75 Ω Ro
a(Vp-Vn) Vn
Vp
+ -
VtSimple equivalent circuit for finding Rout Equivalent circuit for finding Rin
i
tA
Apply KCL at A:
i
t) 0
( − =
+ − + −
−
o n p t
i p n
t R
V V A V R
V i V
But: Vn = 0 and Vp =Vt
t i
o
i
t o V
R R
R a
i = R +( +1)
And we have:
i o
i o t
t
out R a R
R R i
R V
) 1 ( +
= +
=
Analysis of Op Amp Circuit: Ideal Op Amp
aVd
+- +
-
Vd
+ -
Vn
+ -
+
V-p
+
V-o
Using Rule 2: (no voltage difference between inverting and non-inverting inputs) Using Rule 1: (no current flows into the op Amp inputs)
i
p=0
= n
p i
i Vp =Vi
o n
p V V
V = = Vo =Vi
R
inInput Impedance and Output Impedance 0
and
=
∞
= out
in R
R
-
Vp
+
Vn
Vo
+ -
Vi
R
outAnalysis of Op Amp Circuit:
Using the parameters of 741 op amp, Ri = 2 MΩ, a ~ 200,000, and Ro = 75 Ω 1
10 5
1− × 6 ≈
= −
i o
V Voltage gain: V
Ω
×
= 400 109 Rin
Input resistance:
Ω
=375µ Rout
Output resistance:
Comparison between Ideal and Practical Voltage Follower
Voltage Gain Input Resistance Output Resistance
Ideal Op Amp Typical Op Amp
Property
) 1 1
1 ( ≈
+
− +
i o
i
R a R
R 1
GΩ 400 )
1
( +a Ri +Ro = ∞
Ω + =
+ 375µ
) 1
( i
o
i o
R a R
R R
0
Inverting Amplifier
KCL
A
Use KCL at point A and apply Rule 1:
1
0
A in A out
f
v v v v
R R
− + − =
(no current flows into the inverting input)
Rearrange
1 1
1 1
0
in out A
f f
v v
v R R R R
+ − + =
Apply Rule 2:(no voltage difference between inverting and non-inverting inputs) Since V+ at zero volts, therefore V- is also at zero volts too. v
A= 0
1
0
in out f
v v
R + R =
1 out f
in
v R
v = − R
Input Impedance and Output Impedance R
i= R
1and R
o= 0
-
+ Vout
+ -
+-
R1
Rf
Vin
Non-inverting Amplifier
KCL
A
Use KCL at point A and apply Rule 1:
1
0
A out
A
f
v v v
R R
+ − =
Apply Rule 2: v
in= v
A1
1
fout in
v R
v = + R
Input Impedance and Output Impedance R
i= R
∞and R
o= 0
-
+
Vout+ -
+
-
R1
Rf
Vin
Basic Application of the Op Amp
-
+ Vo
+ -
+-
R1
R2
Vi
-
+ Vo
+ -
+
-
R1
R2
Vi
Inverting amplifier Non-Inverting amplifier
= 0 R
oR
1R
i=
1 2
R A
v= − R
= 0 R
o∞
i
= R
1
1
2R
A
v= + R
Summing Amplifier: Mathematic Operation
Use KCL and apply Rule 1:
3
1 2 A A out
0
A A
f
v v v v v v v v
R R R R
− −
− + − + + =
_ +
R
fi
1R
v
out+ v
1-
v
2v
3i
2i
3R R
i
v
Av
B1 2 3
i i = + + i i
Since v
A= 0 (Rule 2)
(
1 2 3)
f out
v R v v v
= − R + +
Sum of v
1, v
2and v
3_ +
Difference Amplifier: Mathematic Operation
Use KCL and apply Rule 1:
R
1v
out+ v
1-
v
2R
3v
Av
BSince v
A= v
B(Rule 2) and
Substitute eq. (2) into eq. (1), we get R
4R
2(1)
(2)
If R
1= R
2= R and R
3= R
4= R
f(
2 1)
f out
v R v v
= R −
Difference of v
1and v
20
2 1
1
+ − =
−
R v v R
v
v
A A out2 4 3
4
v
R R v R
v
A B
= +
=
1 1 2 2
1 2 4 3
4
1 v
R v R R
R R R
v
outR −
+
= +
Differentiator and Integrator: Mathematic Operation
_ +
_ +
Differentiator
Integrator R
v
inC
C R
v
ini
v
out+ -
v
out+ - i
i
i
v
c+ -
v
out= − iR But i C dv
C= dt and v
in= v
Cin out
v RC dv
= − dt
out C
v = − v
But
0
( ) 1 (0)
t
C C
v t idt v
= C ∫ + and v
in= iR
0
1 (0)
t
out in C
v v dt v
= − RC ∫ +
Difference Amplifier: Superposition
-
+ Vo
+ -
R3
+ -
+
-
R1 R2
R4 V1
V2
-
+ Vo
+ -
R3
+
-
R1 R2
R4
V1
-
+ Vo
R3
+ -
+
-
R1 R2
R4 V2
1 1 2V R Vo = − R
2 1 2 4
3
4 1 V
R R R
R
Vo R
+
= +
2 1 2 4
3 4 1
1
2 1 V
R R R
R V R R
Vo R
+ + +
−
=
0
and
1
1
=
o=
i
R R
R R
i2= R
3+ R
4and R
o= 0
Commode and Differential Mode
Differential mode input: V
dm= V
2− V
1Common mode input: V
cm= V
22 + V
1-
+ Vo
+ -
R3(=R1)
+ -
+
-
R1 R2
R4(=R2) V1
V2
-
+ Vo
- +
R3(=R1)
- +
+-
R1 R2
R4(=R2) Vcm
+ -
Vdm/2Vdm/2
Difference amplifier, in terms of the common and differential-mode inputs
Rearrange: V
1= V
cm− V
dm/ 2 V
2= V
cm+ V
dm/ 2
Commode and Differential Mode
Output for difference amplifier:
-
+ Vo
+ -
R3(=R1)
+ -
+
-
R1 R2
R4(=R2) V1
V2
Using superposition, the output from difference amp can be expressed as
cm cm dm
dm
o
A V A V
V = +
Adm = amplification of differential input Acm = amplification of common mode input
2 2 1
1
V A V
A V
o= +
Difference amplifier
(
1 2) (
12 2 1)
2
1 1
V V V V
V = + − −
(
1 2) (
12 2 1)
12
2
V V V V
V = + + −
(
2 1)(
2 1) (
2 1) (
21 2 1)
12
A A V V A A V V
V
o= − − + + +
We have
Therefore in this case,
(
2 1)
2
1
A A
A
dm= −
andA
cm= ( A
1+ A
2)
Commode mode rejection ratio:
cm dm
A A log
1020
CMRR =
Quality indexCommode and Differential Mode
-
+ Vo
+ -
R3(=R1)
+ -
+
-
R1 R2
R4(=R2) V1
V2
The design gain of this amplifier is
Ex The difference amplifier is constructed with an ideal Op Amp and 1% tolerance resistors of nominal values 2.2 kΩ and 5.1 kΩ. The resistors were measured and fond to have the following resistance values:
318 . kΩ 2 2 . 2
kΩ 1 . 5
1
2
= =
= R A R
Difference amplifier
4 3 2
1
R R R
R =
However, this value is based on the assumption of equal resistor ratios:
R1 = 2.195 kΩ, R3 = 2.215 kΩ, R2 = 5.145 kΩ, R4 = 5.085 kΩ
Determine the gain of the differential amplifier and its CMRR
The more exaction expression for the output voltage
1 1 2 2
1 2 4 3
4
1 V
R V R
R R R R
V
oR −
+
= +
Commode and Differential Mode
+
= + 1
1 2 4 3
4
2
R
R R R A R
2 2 1
1
V A V
A
V
o= +
Here and1 2
1
R
A = − R
329 . 2 195 1
. 2
145 . 5 085 . 5 215 . 2
085 . 5
2
=
+
= + A
344 . 195 2
. 2
145 . 5
1
= − = −
A
Therefore
01464 .
0 337 . 2
−
=
=
cm dm
A A
The CMRR is
CMRR = 20 log
10= 20 log − 159 . 6 = 44 . 06 dB
cm dm
A A
This is only a moderately good differential amplifier. If physical resistors used for R1 and R3 were exchanged, the resistor ratios in each gain path would be more nearly exact:
321 . 2 215 1
. 2
145 . 5 085 . 5 195 . 2
085 . 5
2
=
+
= + A
323 . 215 2
. 2
145 . 5
1
= − = −
A
Therefore
00186 .
0 322 . 2
−
=
=
cm dm
A A
dB 92 . 61 0
. 1248 log
20 log
20
CMRR =
10= − =
cm dm
A
A
Non-Ideal Op Amp
aVd
+- -
Ro
+
rd VOS
- +
1/2IOS Ibias
Ibias
Non-ideal characteristics
•Finite input resistance
•Finite voltage gain
•Nonzero output resistance
•Output Saturation
•Maximum output current
•Input offset voltage, VOS
•Input bias current, Ibias
•Input offset current, IOS
Vos - the difference in voltage between the Op Amp input terminals when the output voltage is zero
Ibias - the average of the two input currents when the output voltage is zero
IOS - the difference between the input currents
(
p n)
bias
I I
I =
21+
p n
OS
I I
I = −
Non-Ideal Op Amp
Apply KCL at the inverting input:
p p
p
I R
V = − -
+ Eo
+
-
R1 R2
Rp
In
Ip
V
pV
n0 0
2 1
=
− +
− +
o n n
n
I
R E V
R V
From Ohm’s Law:
By Op Amp action Vn = Vp , Eliminating Vn and Vp
( )
[
n p p]
o
R R I R I
R
E R −
+
=
1 21
2
//
1
Rp can be specified to cancel the two terms in the brackets Estimating the output error caused by the
input bias currents
2 1 // R R
Rp = In this case, this reduces the output error to
( )
[
OS]
o
R R I
R
E R
1 21
2
//
1
+
=
Non-Ideal Op Amp
VSAT + +
- Vd
+ -
+ V-o Vo VSAT
+ +
- Vd
+ -
+ -
aVd +- +
- Vd
+ -
+ V-o
V
o(V)
V
d(µV) V
SATH/a
V
SATL/a
V
SATLV
SATLinear region:
Upper saturation region:
Lower saturation region:
a
Non-Ideal Op Amp
Ex The 741 inverting amplifier is driven by a ±10 V peak to peak triangular wave.
Sketch and label Vi, Vo and Vn. If 741 is supplied with ±15 V and this maximum output ±13 V.
-
+ Vo
+ -
+
-
R1 R2
Vi 10 kΩ 20 kΩ
-6.5V < Vi < 6.5V: the op amp is in the linear region Vo =- 2Vi
Vi > 6.5V: the op amp is Saturation Vo = -13 V
Vi < -6.5V: the op amp is Saturation Vo = 13 V
V
nSATL i
n V
R R V R R R V R
2 1
1 2
1 2
+ +
= +
SATH i
n V
R R V R R R V R
2 1
1 2
1 2
+ +
= +
10 V 6.5V
Vi
-10 V -6.5V
t
Vo
t 13 V
-13 V
Vn
2.33 V
-2.33 V