• Tidak ada hasil yang ditemukan

Op Amp Circuit

N/A
N/A
Protected

Academic year: 2024

Membagikan "Op Amp Circuit"

Copied!
25
0
0

Teks penuh

(1)

Op Amp Circuit

2102-487

Industrial Electronics

(2)

Amplifier Fundamentals

Vi Ri VL

-

+ +- AV

i

Ro + +- V -

S

RS + -

RL

Source Amplifier Load

Vi +- AV

i

Ri

Ro

Vo

-

+ +

-

Amplifier is a two-port device that accepts an external applied signal, referred to as input, an in turn produces a signal, referred to as output, that is proportional to the input: output = A x input

Voltage amplifier model Voltage amplifier with source and load

S s i

i i V

R R V R

= + i

L o

L L AV

R R V R

= +

s i

i L

o L S

L

R R A R R R

R V

V

+

= +

|

|

| /

|VL VS < A

This shows that due to the loading effect

Loading effect complicates life because each time we change the source or the load , we need to recompute the overall gain, and we also have signal loss.

(3)

Amplifier Fundamentals

Vi +- AV

i Vo

-

+ +

-

Vi VL

-

+ +- AV

i

+ +- V -

S

Rs + -

RL

Source Amplifier Load

Ideal voltage amplifier model Ideal Voltage amplifier with source and load

To eliminate loading effect, the voltage across RsandRomust be zero regardless of Rs and RL. The only way to achieve this goal is b imposing Ri = and Ro =0

V A V

S

L = regardless of Rs and RL.

In practice, the loading effect can be eliminated by the conditions of Ri >> Rs and and Ro << RL

(4)

Operational Amplifier (Op Amp)

The operational amplifier (op amp) is a voltage amplifier having extremely high gain. By combining with external components, op amp could be configured to perform a variety of operations such as addition, subtraction, multiplication, integration, and differentiation etc.

Op amp symbol Simple practical Op amp model

For the popular 741 op amp, Rd = 2 M, a ~ 200,000, and Ro = 75

Vp = Non-inverting input voltage, Vn = Inverting input voltage and Vo = output voltage a = unloaded voltage gain.

d n

p V V

V − = Vo = aVd = a(VpVn) V

+

n

- +

V

-

p

+

V

-

o

+

-

+VCC

-VCC

Vn Rd

+-

aVd

+ -

Vd

+ + -

- +

V

-

p

+

V

-

o

+VCC

-VCC Ro

(5)

Ideal Op Amp

We define ideal op amp as being an ideal voltage amplifier with infinite gain.

For the ideal op amp, a → ∞, imply Vp = Vn, Rd = , imply In = Ip = 0 Ro = 0

Ip = Non-inverting input current, In = Inverting input current

Ideal practical Op amp model

Ideal Op Amp Rules:

1. No current flows in to either input terminal

2. There is no voltage difference between the two input terminals

aVd

+- +

-

Vd

+ -

V+n -

+

V-p

+

V-o

+VCC

-VCC

CC o

CC V V

V ≤ ≤

The output voltages are constrained by the following relationship

(6)

Operational Amplifier (Op Amp)

Op Amp Characteristic Property Values

0

0 (virtual short) 0 (virtual short)

|Vo| VCC

>200,000

>2 M

<75

<0.1 mV

<50 pA

|Vo| < VCC Gain, a

Input Resistance, Ri Output Resistance, Ro

Input voltage difference, Vp-Vn Input current, i1 or i2

Output voltage limits

Ideal Op Amp Typical Op Amp

Property

(7)

Analysis of Op Amp Circuit:

-

Vp

+

Vn

Vo

+ -

Vi

i

R

in

R

out

Vn Ri +- aVd +

- Vd + + -

- + V-p

+ V-o Ro

Apply KVL:Vi +i(Ri + Ro)+a(VpVn) = 0

i n p

R V i VBut: =

And we have: Vo =Vn

+ -

+ -

Ri 2 M

75 Ro

a(Vp-Vn) Vn

Vp Vi

+ -

Vo

i o

i i

o

R a R

R V

V

) 1 1 (

+

− +

=

Voltage gain for the voltage follower

p

i V

V = and

Find Vo/Vi

(8)

Analysis of Op Amp Circuit:

i

Apply KVL:Vi +i(Ri + Ro)+a(VpVn) =0 But:

And we have: in i a Ri Ro i

R = V = (1+ ) + Rin

+ -

+ -

Ri 2 M

75 Ro

a(Vp-Vn) Vn

Vp Vi

+ -

Vo

Find Input resistance: Rin = Vii

n p

i V V

iR = −

Find output resistance:

=0

=

Vi

t t

out i

R V

+ -

Ri 2 M

75 Ro

a(Vp-Vn) Vn

Vp

+ -

Vt

Simple equivalent circuit for finding Rout Equivalent circuit for finding Rin

i

t

A

Apply KCL at A:

i

t

) 0

( − =

+ − + −

o n p t

i p n

t R

V V A V R

V i V

But: Vn = 0 and Vp =Vt

t i

o

i

t o V

R R

R a

i = R +( +1)

And we have:

i o

i o t

t

out R a R

R R i

R V

) 1 ( +

= +

=

(9)

Analysis of Op Amp Circuit: Ideal Op Amp

aVd

+- +

-

Vd

+ -

Vn

+ -

+

V-p

+

V-o

Using Rule 2: (no voltage difference between inverting and non-inverting inputs) Using Rule 1: (no current flows into the op Amp inputs)

i

p

=0

= n

p i

i Vp =Vi

o n

p V V

V = = Vo =Vi

R

in

Input Impedance and Output Impedance 0

and

=

= out

in R

R

-

Vp

+

Vn

Vo

+ -

Vi

R

out
(10)

Analysis of Op Amp Circuit:

Using the parameters of 741 op amp, Ri = 2 M, a ~ 200,000, and Ro = 75 Ω 1

10 5

1− × 6

=

i o

V Voltage gain: V

×

= 400 109 Rin

Input resistance:

=375µ Rout

Output resistance:

Comparison between Ideal and Practical Voltage Follower

Voltage Gain Input Resistance Output Resistance

Ideal Op Amp Typical Op Amp

Property

) 1 1

1 (

+

+

i o

i

R a R

R 1

GΩ 400 )

1

( +a Ri +Ro =

+ =

+ 375µ

) 1

( i

o

i o

R a R

R R

0

(11)

Inverting Amplifier

KCL

A

Use KCL at point A and apply Rule 1:

1

0

A in A out

f

v v v v

R R

− + − =

(no current flows into the inverting input)

Rearrange

1 1

1 1

0

in out A

f f

v v

v R R R R

   

+ − + =

   

   

   

Apply Rule 2:(no voltage difference between inverting and non-inverting inputs) Since V+ at zero volts, therefore V- is also at zero volts too. v

A

= 0

1

0

in out f

v v

R + R =

1 out f

in

v R

v = − R

Input Impedance and Output Impedance R

i

= R

1

and R

o

= 0

-

+ Vout

+ -

+

-

R1

Rf

Vin

(12)

Non-inverting Amplifier

KCL

A

Use KCL at point A and apply Rule 1:

1

0

A out

A

f

v v v

R R

+ − =

Apply Rule 2: v

in

= v

A

1

1

f

out in

v R

v = + R

Input Impedance and Output Impedance R

i

= R

and R

o

= 0

-

+

Vout

+ -

+

-

R1

Rf

Vin

(13)

Basic Application of the Op Amp

-

+ Vo

+ -

+

-

R1

R2

Vi

-

+ Vo

+ -

+

-

R1

R2

Vi

Inverting amplifier Non-Inverting amplifier

= 0 R

o

R

1

R

i

=

1 2

R A

v

= − R

= 0 R

o

i

= R

1

1

2

R

A

v

= + R

(14)

Summing Amplifier: Mathematic Operation

Use KCL and apply Rule 1:

3

1 2 A A out

0

A A

f

v v v v v v v v

R R R R

− −

− + − + + =

_ +

R

f

i

1

R

v

out

+ v

1

-

v

2

v

3

i

2

i

3

R R

i

v

A

v

B

1 2 3

i i = + + i i

Since v

A

= 0 (Rule 2)

(

1 2 3

)

f out

v R v v v

= − R + +

Sum of v

1

, v

2

and v

3
(15)

_ +

Difference Amplifier: Mathematic Operation

Use KCL and apply Rule 1:

R

1

v

out

+ v

1

-

v

2

R

3

v

A

v

B

Since v

A

= v

B

(Rule 2) and

Substitute eq. (2) into eq. (1), we get R

4

R

2

(1)

(2)

If R

1

= R

2

= R and R

3

= R

4

= R

f

(

2 1

)

f out

v R v v

= R −

Difference of v

1

and v

2

0

2 1

1

+ − =

R v v R

v

v

A A out

2 4 3

4

v

R R v R

v

A B



 

= +

=

1 1 2 2

1 2 4 3

4

1 v

R v R R

R R R

v

out

R   −

 

 +

= +

(16)

Differentiator and Integrator: Mathematic Operation

_ +

_ +

Differentiator

Integrator R

v

in

C

C R

v

in

i

v

out

+ -

v

out

+ - i

i

i

v

c

+ -

v

out

= − iR But i C dv

C

= dt and v

in

= v

C

in out

v RC dv

= − dt

out C

v = − v

But

0

( ) 1 (0)

t

C C

v t idt v

= C ∫ + and v

in

= iR

0

1 (0)

t

out in C

v v dt v

= − RC ∫ +

(17)

Difference Amplifier: Superposition

-

+ Vo

+ -

R3

+ -

+

-

R1 R2

R4 V1

V2

-

+ Vo

+ -

R3

+

-

R1 R2

R4

V1

-

+ Vo

R3

+ -

+

-

R1 R2

R4 V2

1 1 2V R Vo = − R

2 1 2 4

3

4 1 V

R R R

R

Vo R 

 

 +

= +

2 1 2 4

3 4 1

1

2 1 V

R R R

R V R R

Vo R 

 

 + + +

=

0

and

1

1

=

o

=

i

R R

R R

i2

= R

3

+ R

4

and R

o

= 0

(18)

Commode and Differential Mode

Differential mode input: V

dm

= V

2

− V

1

Common mode input: V

cm

= V

2

2 + V

1

-

+ Vo

+ -

R3(=R1)

+ -

+

-

R1 R2

R4(=R2) V1

V2

-

+ Vo

- +

R3(=R1)

- +

+

-

R1 R2

R4(=R2) Vcm

+ -

Vdm/2

Vdm/2

Difference amplifier, in terms of the common and differential-mode inputs

Rearrange: V

1

= V

cm

− V

dm

/ 2 V

2

= V

cm

+ V

dm

/ 2

(19)

Commode and Differential Mode

Output for difference amplifier:

-

+ Vo

+ -

R3(=R1)

+ -

+

-

R1 R2

R4(=R2) V1

V2

Using superposition, the output from difference amp can be expressed as

cm cm dm

dm

o

A V A V

V = +

Adm = amplification of differential input Acm = amplification of common mode input

2 2 1

1

V A V

A V

o

= +

Difference amplifier

(

1 2

) (

12 2 1

)

2

1 1

V V V V

V = + − −

(

1 2

) (

12 2 1

)

12

2

V V V V

V = + + −

(

2 1

)(

2 1

) (

2 1

) (

21 2 1

)

12

A A V V A A V V

V

o

= − − + + +

We have

Therefore in this case,

(

2 1

)

2

1

A A

A

dm

= −

and

A

cm

= ( A

1

+ A

2

)

Commode mode rejection ratio:

cm dm

A A log

10

20

CMRR =

Quality index
(20)

Commode and Differential Mode

-

+ Vo

+ -

R3(=R1)

+ -

+

-

R1 R2

R4(=R2) V1

V2

The design gain of this amplifier is

Ex The difference amplifier is constructed with an ideal Op Amp and 1% tolerance resistors of nominal values 2.2 kand 5.1 k. The resistors were measured and fond to have the following resistance values:

318 . kΩ 2 2 . 2

kΩ 1 . 5

1

2

= =

= R A R

Difference amplifier

4 3 2

1

R R R

R =

However, this value is based on the assumption of equal resistor ratios:

R1 = 2.195 kΩ, R3 = 2.215 k, R2 = 5.145 k, R4 = 5.085 k

Determine the gain of the differential amplifier and its CMRR

The more exaction expression for the output voltage

1 1 2 2

1 2 4 3

4

1 V

R V R

R R R R

V

o

R   −

 

 +

= +

(21)

Commode and Differential Mode

 

 

 +

= + 1

1 2 4 3

4

2

R

R R R A R

2 2 1

1

V A V

A

V

o

= +

Here and

1 2

1

R

A = − R

329 . 2 195 1

. 2

145 . 5 085 . 5 215 . 2

085 . 5

2

 =

 

 +

= + A

344 . 195 2

. 2

145 . 5

1

= − = −

A

Therefore

01464 .

0 337 . 2

=

=

cm dm

A A

The CMRR is

CMRR = 20 log

10

= 20 log − 159 . 6 = 44 . 06 dB

cm dm

A A

This is only a moderately good differential amplifier. If physical resistors used for R1 and R3 were exchanged, the resistor ratios in each gain path would be more nearly exact:

321 . 2 215 1

. 2

145 . 5 085 . 5 195 . 2

085 . 5

2

 =

 

 +

= + A

323 . 215 2

. 2

145 . 5

1

= − = −

A

Therefore

00186 .

0 322 . 2

=

=

cm dm

A A

dB 92 . 61 0

. 1248 log

20 log

20

CMRR =

10

= − =

cm dm

A

A

(22)

Non-Ideal Op Amp

aVd

+- -

Ro

+

rd VOS

- +

1/2IOS Ibias

Ibias

Non-ideal characteristics

Finite input resistance

Finite voltage gain

Nonzero output resistance

Output Saturation

Maximum output current

Input offset voltage, VOS

Input bias current, Ibias

Input offset current, IOS

Vos - the difference in voltage between the Op Amp input terminals when the output voltage is zero

Ibias - the average of the two input currents when the output voltage is zero

IOS - the difference between the input currents

(

p n

)

bias

I I

I =

21

+

p n

OS

I I

I = −

(23)

Non-Ideal Op Amp

Apply KCL at the inverting input:

p p

p

I R

V = − -

+ Eo

+

-

R1 R2

Rp

In

Ip

V

p

V

n

0 0

2 1

=

− +

− +

o n n

n

I

R E V

R V

From Ohm’s Law:

By Op Amp action Vn = Vp , Eliminating Vn and Vp

( )

[

n p p

]

o

R R I R I

R

E R   −

 

 +

=

1 2

1

2

//

1

Rp can be specified to cancel the two terms in the brackets Estimating the output error caused by the

input bias currents

2 1 // R R

Rp = In this case, this reduces the output error to

( )

[

OS

]

o

R R I

R

E R

1 2

1

2

//

1  

 

 +

=

(24)

Non-Ideal Op Amp

VSAT + +

- Vd

+ -

+ V-o Vo VSAT

+ +

- Vd

+ -

+ -

aVd +- +

- Vd

+ -

+ V-o

V

o

(V)

V

d

(µV) V

SATH

/a

V

SATL

/a

V

SATL

V

SAT

Linear region:

Upper saturation region:

Lower saturation region:

a

(25)

Non-Ideal Op Amp

Ex The 741 inverting amplifier is driven by a ±10 V peak to peak triangular wave.

Sketch and label Vi, Vo and Vn. If 741 is supplied with ±15 V and this maximum output ±13 V.

-

+ Vo

+ -

+

-

R1 R2

Vi 10 k 20 k

-6.5V < Vi < 6.5V: the op amp is in the linear region Vo =- 2Vi

Vi > 6.5V: the op amp is Saturation Vo = -13 V

Vi < -6.5V: the op amp is Saturation Vo = 13 V

V

n

SATL i

n V

R R V R R R V R

2 1

1 2

1 2

+ +

= +

SATH i

n V

R R V R R R V R

2 1

1 2

1 2

+ +

= +

10 V 6.5V

Vi

-10 V -6.5V

t

Vo

t 13 V

-13 V

Vn

2.33 V

-2.33 V

Referensi

Dokumen terkait