<:!I ,=t
'
~ · <:!Ifll'HH)'UflilHfllrlfll'JfHl1fl'YI 1 ufll'Jflfl'ifl 2561
ii .,.
,rnmnn,n PHY 205 Mathematical Physics
I
<V <V r! -=!
11-Hn>'U 11-Aflfl'fYI 5 gialfl'JJ 'ff.fl. 2561
q qna1 13:00-16:00 1-A.
V "' V Y ') _I Y
'llt11rn1.n.J 7 'lltl 9 1'11-!1 (11ii 11.Ju::::'t'IUl)
0 :I/ 'I :I/ "' 0 I.II I 'I :I,/ ,:j I :I,/ ..,
2. 'fll'lltliH)'Utl-:J !U'lltltl'tl'U (&'ll£JUr11Vltl'U !tl'Wtl !'t'l&'ll£11-!Vltl'UH't'ltl-:J) 3. tlUt\.llVI q u
1-.Tiif m
1t1-:Jrl1U1WVI UJth::::mrt'lltl-:Jil't'lll't1£1Til£1"''
~ Q.I d Q.I
6b'tl-'UllJ'fffJrl ... '.i'Hff ... .!rl"ll'Vl'U-:Jff01J ... .
'J) d d
fi~t!'W'Wl~
'lJtl'Vl fi~t!'W'W!\9ll.l
'J) d d
fi~t!'W'Wl~
'Utl'Vl fi~t!'W'Wt\911J
1 10
6
102 11
7
133
14 'j 'Jl.l 804 10
5
129,1 .J'tqv, ti/ ~ 'ii
'UtltHl'U'lj~'W !~f-.ll'W fll'ifH'l'W fl'.rn<l 'illfl'fltl-l~fl'J 'rnfll'i "1 'UeM.f11'fl1'll'lltft'J
~
---
··· ... ;··"
Nrl'.~'i .l.l '1110Jblfll'WtY'iW ... q q
1
Name ... lD ... .
1. Use the divergence theorem to calculate the flux of the vector field F =
<
xy, yz, xz > through the surface bounded by 4- x2 -y2 = z and the planes z = 3. (10 points)2
Name ... 10 ... .
2.1
Show that F(x,y) is irrotational and incompressible. (6 points)[(
x2 -y2
)
A 2xy A]F(x,y)
=
A1 - (xz+y2)2
i - (xz+y2)2l2.2 Wii game video stick thing work with accelerometers. Accelerometer data give us
a=
-3cos(t) i -
3sin(t) J + 2k
standing initially at (3, 0, O) and initial velocity isv =
3i.Find the position vector
r(t).
(5 points)3
Name ... 10 ... ..
3. The acceleration vector of a spaceship is a(t) = (2t, 0, -sin(t)) for all t
~0 and the specific initial velocity and position are v (0) = (0, 0, 1) and r(O) = (1, 2, 300).
a) Find the velocity function
v(t)of the spaceship (2 points)
b) Find the tangential component aT and the normal component aN of the acceleration (8 points) c) Compute the position of the space ship at time t = n/2
(4points)
4
Name ... lD ... .
4. Use Green's theorem to calculate the line integral
p(v'l +
x3)dx+
(2xy)dy where C is the triangle with vertices (O, O), (1, O) and (1, 3) oriented clockwise. (10 points)5
Name ... 10 ... .
5. Calculate
f F.
dr, F(a:, Y, ,z)=
(2:cy;,:!+ w·'"!I,
;z:2 i:i+
xerfl, ;b·2yz:2+
co:; .:)where and C is the arc of a helix parametrizedby
c(t)=(cost,sint,t) for O ~ t ~n/2. (12
points)6
Name ... I0 ... .
6. Use Stokes' Theorem to evaluate
J F. dr
,where F(x, y, z) = (e-x, e', ez) and C is the boundary of the part of the plane 2x + y + 2z = 2 in the first octant. (C is oriented counterclockwise when viewed from above.) (10 points)7
Name ... lD ... .
Consider the periodic function f(x) defined
by
f(x)
=
1 - x, 0 ~ x<
2 and f(x+2)=
f(x).7.1 Sketch the graph of the function f(x)
=
1 - x on the interval -4 ~ x ~ 4. (3 points)7.2Calculate Fourier series for the function f(x) (10 points)
8
Name ... 10 ... .
Differentf at ion Formulas:
l.-(x1=l d
dx
2.
-(ax)=d
,ldx
l
-,-(x")d =
nx"-1dx
. d. . .
't. -(cosx)
= -smx
dx
), -d d
(sin x)=
LOS XX
d . '
7. -kot
x)= -csc- ,\
dx
8 d .
._. -(sec
x)= .:..ec
xcan
xdx
d .
9.
-(CS(' x)=
-cs\:xkot
xldx
,I
I
10. -(In x) = -
dx .,·
11. -(,•") J = c·
dx
12.
-(11')d = (In "k.
dx
I ' d ' .
-1 •. ,. -1
!Sltl X)= I ,< X
v 1 - x·
, d
-IH.
-(tan x)= - -
dx I +x
1d 1
15. -(sec-• x) =
-:--'.-:--'.;:::;:==dx lxl J.\
2 -I
Integration Formulas:
l .. / ld.1 =x + C
2. /
tldx =
,1.\+ C
3 .. l x" dx = ;: ~ : + C, 11 :/= - 1
·I.
/:,;inxd.,= -cosx+(·
~ .. l
en\.\dx= :-in x + C
( I•
).~
,;J'\, \,,,._ ::. \•
-d \' --
""' l'\(1 \. .. , V+ (''
• , .. /7 . . / cs(
2 xdx = - ,:•
11x + (:
8 . . / S<.'C X(t:lll .\)
d.\ =
'.">{'( x+ C 9 .. /
,::_sc x(,:.otx} dx =
-cs..:x + C
10.f .!.dx=lnlxl + C
.
.\11 .. / t''dx=
t>'+ C
I 2. 1· ,r' dx = ~ In
,.1+ C a ·.- 0,
<1:/= I
/
, I , .
-1c·
13.
.i(l.\'= $1()x+ .
. ./1-x
! I i -1 c·
1,L - - ,
t.,=
t,u1 x+ .
• l +.r
15. ;· 1
, dx = sec-
1x + C
. lxl ,./
x~ -I
9