• Tidak ada hasil yang ditemukan

Unified Classes of Starlike and Convex Functions Associated with Touchard

N/A
N/A
Protected

Academic year: 2024

Membagikan "Unified Classes of Starlike and Convex Functions Associated with Touchard"

Copied!
8
0
0

Teks penuh

(1)

Homepage :https://tci-thaijo.org/index.php/SciTechAsia Science & Technology Asia

Vol.27 No.4 October - December 2022 Page: [207-214]

Original research article

Unified Classes of Starlike and Convex Functions Associated with Touchard

Polynomials

Saurabh Porwal1,*, Gangadharan Murugusundaramoorthy2

1Department of Mathematics, Ram Sahai Government Degree College, Bairi Shivrajpur Kanpur 209205, India

2Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamilnadu 632014, India

Received 29 July 2020ΝΎ Received in revised form 16 May 2022 Accepted 24 May 2022ΝΎ Available online 31 December 2022

ABSTRACT

The aim of the present paper is to further explore some description of Touchard poly- nomials associated with the unified subclasses of analytic functions and investigate inclusion relations for such subclasses in the open unit diskD.Further, we discuss geometric properties of an integral operator related Touchard polynomials.

Keywords: AnalyticΝΎ ConvexΝΎ Hadamard (convolution) productΝΎ StarlikeΝΎ Touchard poly- nomialsΝΎ Univalent functions

1. Introduction

LetArepresent the class of functions 𝑓 of the form

𝑓(𝜁) =𝑧+Γ•βˆž

𝑛=2

π‘Žπ‘›πœπ‘›, (1.1) which are analytic in the open unit disk D = {𝜁 : 𝜁 ∈ C and |𝜁| < 1} and gratify the normalization condition 𝑓(0) = 𝑓′(0) βˆ’1 =0. Further, we represent byS the subclass ofA comprising functions of

the form Eq. (1.1) which are also univalent inD.

Designate by T the subclass of A comprising functions whose non zero coef- ficients from second on, is given by

𝑓(𝜁) =πœβˆ’Γ•βˆž

𝑛=2

|π‘Žπ‘›|πœπ‘›. (1.2) We recall the well-known subclasses ofA are starlike and convex functions due to

(2)

Robertson [21]. A function 𝑓 ∈ A is said to be in the classSβˆ—(πœ‰)if

β„œ

𝜁 𝑓′(𝜁) 𝑓(𝜁)

> πœ‰, 𝜁 ∈D holds.

A function 𝑓 ∈ Ais said to be in the classK(πœ‰) if the condition

β„œ

(𝜁 𝑓′(𝜁))β€² 𝑓′(𝜁)

> πœ‰, 𝜁 ∈D, is satisfied.

A function 𝑓 ∈ A is said to be in the class P𝜚(πœ‰) if it satisfies the following condition

β„œ

𝜁 𝑓′(𝜁) + 𝜚𝜁2𝑓′′(𝜁) (1βˆ’ 𝜚)𝑓(𝜁) +𝜚𝜁 𝑓′(𝜁)

> πœ‰, 𝜁 ∈D and the function 𝑓 ∈ Ais said to be in the classπ”‡πœš(πœ‰) if it satisfies the follow- ing condition

β„œ

𝜚𝜁3𝑓′′′(𝜁) + (1+2𝜚)𝜁2𝑓′′(𝜁) +𝜁 𝑓′(𝜁) (1βˆ’πœš)𝑓(𝜁) +𝜚𝜁 𝑓′(𝜁)

> πœ‰,

and𝜁 ∈D.Further, we denote byPβˆ—πœš(πœ‰) ≑ P𝜚(πœ‰) ∩ T andπ”‡βˆ—πœš(πœ‰) β‰‘π”‡πœš(πœ‰) ∩ T.

The classes P𝜚(πœ‰), π”‡πœš(πœ‰), Pβˆ—πœš(πœ‰) and π”‡βˆ—πœš(πœ‰) were studied earlier by Altin- tas et al. [4]. It is worthy to note that for 𝜚 =0the classesP𝜚(πœ‰) andπ”‡πœš(πœ‰)reduce to the classesSβˆ—(πœ‰)andK(πœ‰), respectively, and for 𝜚 = 1 the class P𝜚(πœ‰) reduces to the class K(πœ‰), studied earlier by Robert- son [21] and Silverman [23].

Definition 1.1. A function 𝑓 ∈ Sis said to be in the classR𝜏(πœ—, 𝛿), (𝜏 ∈C\{0}, 0 <

πœ—β‰€ 1;𝛿 < 1), if it satisfies the inequality

(1βˆ’πœ—)𝑓(𝜁𝜁 ) +πœ— 𝑓′(𝜁) βˆ’1 2𝜏(1βˆ’π›Ώ) + (1βˆ’πœ—)𝑓(𝜁𝜁 ) +πœ— 𝑓′(𝜁) βˆ’1

<1 and𝜁 ∈D.

The class R𝜏(πœ—, 𝛿) was introduced earlier by Swaminathan [26](for special cases see the references cited therein).

The Touchard polynomials, studied by Jacques Touchard [25] also named the exponential generating polynomials (see [8, 22,24]) and also called the Bell polynomials (see [3]) comprise a polynomial sequence of binomial type

for 𝑋 is a random variable with a Poisson distribution with expected valueβ„“, then its π‘›π‘‘β„Ž moment is 𝐸(π‘‹πœ…) = T (πœ…, β„“), leading to the form:

T (πœ…, β„“) =π‘’πœ…Γ•βˆž

𝑛=0

πœ…π‘›π‘›β„“

𝑛! πœπ‘› (1.3) This is a new algorithm for answering linear and nonlinear integral equations.

These polynomials were studied by Jacques Touchard and he generalized the Bell poly- nomials in order to inspect various prob- lems of inventory of the permutations when the cycles possess certain properties. Be- sides, he introduced and studied a class of related polynomials. An exponential gener- ating function(see [8,22,24]), recurrence re- lations and connections related to the other known polynomials were also examined.

For some special cases, relations with the Stifling number of the first and second kind, as well as with other numbers recently ex- amined, are derived. In general, the integral equations are problematic to be solved an- alytically, consequently in many equations we need to obtain the approximate solu- tions, and for this case, the β€œTouchard Poly- nomials method” for the solution of the lin- ear β€œVolterra integro-differential equation”

is implemented. The Touchard polynomi- als method has been applied to solve lin- ear and nonlinear Volterra (Fredholm) inte- gral equations. Further, Abdullah and Ali [2] provide some efficient numerical meth- ods to solve linear Volterra integral equa- tions and Volterra Integro differential equa- tions of the first and second types, with

(3)

exponential, singular, regular and convo- lution kernels. These methods are based on Touchard and Laguerre polynomials that convert these equations into a system of lin- ear algebraic equations. On the other hand, there have been various papers on inter- esting applications of the Touchard poly- nomials in nonlinear Fredholm–Volterra in- tegral equations comprising relations be- tween bilinear and trilinear forms of non- linear differential equations which hold soliton- wave solutions.

Lately,in [12] we consider Touchard polynomials coefficients after the second force as following

Ξ¦β„“π‘š(𝜁) = 𝜁+Γ•βˆž

𝑛=2

(π‘›βˆ’1)β„“π‘šπ‘›βˆ’1 (π‘›βˆ’1)! π‘’βˆ’π‘šπœπ‘›,

(1.4) where 𝜁 ∈ D, β„“ β‰₯ 0;π‘š > 0 and we note that, by ratio test the radius of convergence of above series is infinity. We further define

Ξ›β„“π‘š(𝜁) = 2πœβˆ’Ξ¦β„“π‘š(𝜁)

= πœβˆ’Γ•βˆž

𝑛=2

(π‘›βˆ’1)β„“π‘šπ‘›βˆ’1 (π‘›βˆ’1)! π‘’βˆ’π‘šπœπ‘›,

(1.5) 𝜁 ∈ D. It is worthy to note that for β„“ = 0 the series given by Eq. (1.4) reduce to the Poisson distribution series introduced and studied by Porwal [15]. For functions 𝑓 ∈ A given by Eq. (1.1) and 𝑔 ∈ A given by𝑔(𝜁) =𝜁+Í∞

𝑛=2π‘π‘›πœπ‘›,we define the Hadamard product (or convolution) of

𝑓 and𝑔by

(𝑓 βˆ—π‘”)(𝜁) =𝜁+Γ•βˆž

𝑛=2

π‘Žπ‘›π‘π‘›πœπ‘›, 𝜁 ∈D.

(1.6) Now, we define the linear operator

I(𝑙, π‘š, 𝜁) :A β†’ A

defined by the convolution or Hadamard product

I(𝑙, π‘š, 𝜁)𝑓 =Ξ¦β„“π‘š(𝜁) βˆ— 𝑓(𝜁)

=𝜁+Γ•βˆž

𝑛=2

(π‘›βˆ’1)π‘™π‘šπ‘›βˆ’1

(π‘›βˆ’1)! π‘’βˆ’π‘šπ‘Žπ‘›πœπ‘›. (1.7) In our investigation, we shall require the following definition and lemmas.

Definition 1.2. Theπ‘™π‘‘β„Žmoment of the Pois- son distribution about origin is defined as

πœ‡β€²π‘™= Γ•βˆž 𝑛=0

π‘›π‘™π‘šπ‘› 𝑛! π‘’βˆ’π‘š.

Lemma 1.3. [26] If𝑓 ∈ R𝜏(πœ—, 𝛿)is of form Eq.(1.1)then

|π‘Žπ‘›| ≀ 2|𝜏| (1βˆ’π›Ώ)

1+πœ—(π‘›βˆ’1), π‘›βˆˆN\{1}. (1.8) The bounds given in Eq.(1.8)are sharp.

Lemma 1.4. ([23]) Let 𝑓 ∈ A be of the form Eq.(1.1), then and satisfy the inequal- ity

Γ•βˆž 𝑛=2

(π‘›πœšβˆ’πœš+1)(π‘›βˆ’πœ‰)|π‘Žπ‘›| ≀1βˆ’πœ‰, (1.9) then 𝑓 ∈ P𝜚(πœ‰), if

Lemma 1.5. ([23]) Let 𝑓 ∈ A be of the form Eq.(1.1), then and satisfy the inequal- ity

Γ•βˆž 𝑛=2

𝑛(π‘›πœšβˆ’πœš+1)(π‘›βˆ’πœ‰)|π‘Žπ‘›| ≀ 1βˆ’πœ‰, (1.10) then 𝑓 βˆˆπ”‡πœš(πœ‰).

Remark 1.6. Let 𝑓 ∈ A be of the form Eq. (1.2), then 𝑓 ∈ Pβˆ—πœš(πœ‰), if and only if Eq.(1.9)is satisfied.

(4)

Remark 1.7. Let 𝑓 ∈ A be of the form Eq. (1.2), then 𝑓 ∈ π”‡βˆ—πœš(πœ‰), if and only if Eq.(1.10)is satisfied.

By specializing the parameter 𝜚 = 0 and 𝜚 = 1in the Lemmas 1.4 and 1.5, we obtain the results of Silverman [23].

The application of special functions in geometric function theory is a current and interesting topic of research. It is often used in areas such as mathematics, physics, and engineering. As a result of De Branges’ study [6], the classic Bieber- bach problem is successfully solved by ap- plying a generalized hypergeometric func- tion. Several types of special functions, in- cluding generalized hypergeometric Gaus- sian functions[11, 26] and references are cited therein. The study of distribution se- ries is fascinating topic of research in geo- metric function theory and unlocks a new path of research. In fact, after the appear- ance of the paper of Porwal [15] several re- searchers familiarize Hypergeometric dis- tribution series [1], confluent hypergeomet- ric distribution series [17], hypergeometric distribution type series [19], Pascal distri- bution series [9, 10], binomial distribution series [14], generalized distribution series [16] and Mittag-Leffler type Poisson dis- tribution series [18] and give nice solicita- tions on certain classes of univalent func- tions. Inspired by the work of Murugusun- daramoorthy and Porwal [12], Murugusun- daramoorthy et al. [13], Porwal and Ku- mar [20] , in this paper we investigated some sufficient conditions for the function Ξ¦β„“π‘š(𝜁) belonging to the classesP𝜚(πœ‰) and π”‡πœš(πœ‰) and influences of these subclasses withπ‘…πœ(𝐴, 𝐡).

2. Main Results

Theorem 2.1. If π‘š > 0, β„“ ∈ N0 and the inequality





πœšπœ‡β€²π‘™+2+ (1+πœšβˆ’πœ‰ 𝜚)πœ‡β€²π‘™+1+ (1βˆ’πœ‰)πœ‡β€²π‘™, 𝑙 β‰₯1

πœšπ‘š2+ (1+ πœšβˆ’πœ‰ 𝜚)π‘š+ (1βˆ’πœ‰)(1βˆ’π‘’βˆ’π‘š), 𝑙 =0

(2.1)

≀ 1βˆ’πœ‰, thenΞ¦β„“π‘š(𝜁) ∈ P𝜚(πœ‰). Proof. Since

Ξ¦β„“π‘š(𝜁) =𝜁+Γ•βˆž

𝑛=2

(π‘›βˆ’1)β„“π‘šπ‘›βˆ’1 (π‘›βˆ’1)! π‘’βˆ’π‘šπœπ‘›. By Lemma 1.4, it suffices to show that

𝑃1 =Í∞

𝑛=2(π‘›πœšβˆ’ 𝜚+1)(π‘›βˆ’πœ‰)(π‘›βˆ’(π‘›βˆ’1)β„“1π‘š)π‘›βˆ’! 1π‘’βˆ’π‘š

≀1βˆ’πœ‰.

Now 𝑃1 =

Γ•βˆž 𝑛=2

(π‘›πœšβˆ’πœš+1)(π‘›βˆ’πœ‰)(π‘›βˆ’1)β„“π‘šπ‘›βˆ’1 (π‘›βˆ’1)! π‘’βˆ’π‘š

=π‘’βˆ’π‘š

"Γ•βˆž

𝑛=2

𝜚(π‘›βˆ’1)2+ (1+πœšβˆ’πœ‰ 𝜚)(π‘›βˆ’1)

+ (1βˆ’πœ‰)] (π‘›βˆ’1)β„“π‘šπ‘›βˆ’1 (π‘›βˆ’1)!

=π‘’βˆ’π‘š

"

πœšΓ•βˆž

𝑛=1

𝑛ℓ+2π‘šπ‘› 𝑛!

+ (1+ πœšβˆ’πœ‰ 𝜚)Γ•βˆž

𝑛=1

𝑛ℓ+1π‘šπ‘› 𝑛! + (1βˆ’πœ‰)Γ•βˆž

𝑛=1

π‘›β„“π‘šπ‘› 𝑛!

#

=





ο£³

πœšπœ‡β€²π‘™+2+ (1+πœšβˆ’πœ‰ 𝜚)πœ‡β€²π‘™+1 + (1βˆ’πœ‰)πœ‡β€²π‘™, 𝑙 β‰₯1 πœšπ‘š2+ (1+πœšβˆ’πœ‰ 𝜚)π‘š

+(1βˆ’πœ‰)(1βˆ’π‘’βˆ’π‘š), 𝑙=0.

(5)

But, this last expression is bounded above by1βˆ’πœ‰, if Eq. (2.1) holds. This completes

the proof of Theorem 2.1. β–‘

Theorem 2.2. If π‘š > 0, β„“ ∈ N0 then Ξ›β„“π‘š(𝜁) ∈ Pβˆ—πœš(πœ‰), if and only if Eq.(2.1)is satisfied.

Proof. The proof of Theorem 2.2 is similar to that of Theorem 2.1. Therefore, we omit

the details involved. β–‘

Theorem 2.3. If π‘š > 0, β„“ ∈ N0 and the inequality







ο£³

πœšπœ‡β€²π‘™+3+ (1+2πœšβˆ’πœ‰ 𝜚)πœ‡β€²π‘™+2

+(2+πœšβˆ’πœ‰βˆ’πœ‰ 𝜚)πœ‡β€²π‘™+1+ (1βˆ’πœ‰)πœ‡β€²π‘™, 𝑙 β‰₯1 πœšπ‘š3+ (1+5πœšβˆ’πœ‰ 𝜚)π‘š2

+(3+4πœšβˆ’πœ‰βˆ’2πœ‰ 𝜚)π‘š +(1βˆ’πœ‰)(1βˆ’π‘’βˆ’π‘š), 𝑙=0

(2.2)

≀1βˆ’πœ‰ thenΞ¦β„“π‘š(𝜁) βˆˆπ”‡πœš(πœ‰).

Proof. To prove thatΞ¦β„“π‘š(𝜁) ∈ π”‡πœš(πœ‰). In virtue of Lemma 1.5, it is sufficient to 𝑃2 =Í∞

𝑛=2𝑛(π‘›πœšβˆ’πœš+1)(π‘›βˆ’πœ‰)(π‘›βˆ’(π‘›βˆ’1)β„“1π‘š)!π‘›βˆ’1π‘’βˆ’π‘š

≀1βˆ’πœ‰.

Now 𝑃2=

Γ•βˆž 𝑛=2

𝑛(π‘›πœšβˆ’πœš+1)(π‘›βˆ’πœ‰)(π‘›βˆ’1)β„“π‘šπ‘›βˆ’1 (π‘›βˆ’1)! π‘’βˆ’π‘š

=π‘’βˆ’π‘š

"Γ•βˆž

𝑛=2

𝜚(π‘›βˆ’1)3

+ (1+2πœšβˆ’πœ‰ 𝜚)(π‘›βˆ’1)2(2+πœšβˆ’πœ‰βˆ’πœ‰ 𝜚)

Γ— (π‘›βˆ’1)(1βˆ’πœ‰)] (π‘›βˆ’1)β„“π‘šπ‘›βˆ’1 (π‘›βˆ’1)!

=π‘’βˆ’π‘š

"Γ•βˆž

𝑛=1

πœšπ‘›3+ (1+2πœšβˆ’πœ‰ 𝜚)𝑛2

+ (2+πœšβˆ’πœ‰βˆ’πœ‰ 𝜚)𝑛+ (1βˆ’πœ‰)]π‘›β„“π‘šπ‘› 𝑛!

=π‘’βˆ’π‘š

"

πœšΓ•βˆž

𝑛=1

𝑛ℓ+3π‘šπ‘›

𝑛! + (1+2πœšβˆ’πœ‰ 𝜚)𝑛ℓ+2π‘šπ‘› 𝑛! + (2+πœšβˆ’πœ‰βˆ’πœ‰ 𝜚)Γ•βˆž

𝑛=1

𝑛ℓ+1π‘šπ‘›

𝑛! + (1βˆ’πœ‰)Γ•βˆž

𝑛=1

π‘›β„“π‘šπ‘› 𝑛!

#

=







ο£³

πœšπœ‡β€²π‘™+3+ (1+2πœšβˆ’πœ‰ 𝜚)πœ‡β€²π‘™+2

+(2+πœšβˆ’πœ‰βˆ’πœ‰ 𝜚)πœ‡β€²π‘™+1+ (1βˆ’πœ‰)πœ‡β€²π‘™, 𝑙β‰₯1 πœšπ‘š3+ (1+5πœšβˆ’πœ‰ 𝜚)π‘š2

+(3+4πœšβˆ’πœ‰βˆ’2πœ‰ 𝜚)π‘š +(1βˆ’πœ‰)(1βˆ’π‘’βˆ’π‘š), 𝑙=0

But, this last expression is bounded above by1βˆ’πœ‰, if Eq. (2.2) holds. This completes

the proof of Theorem 2.3. β–‘

Theorem 2.4. If π‘š > 0, β„“ ∈ N0 then Ξ›β„“π‘š(𝜁) ∈ π”‡βˆ—πœš(πœ‰), if and only if Eq.(2.2)is satisfied.

Proof. The proof of Theorem 2.4 is similar to that of Theorem 2.3 therefore we omit the

details involved. β–‘

Theorem 2.5. If π‘š > 0, β„“ ∈ N0, 𝑓 ∈ R𝜏(πœ—, 𝛿)and the inequality

2|𝜏| (1βˆ’π›Ώ) πœ—

Γ—





ο£³

πœšπœ‡β€²π‘™+2+ (1+ πœšβˆ’πœ‰ 𝜚)πœ‡β€²π‘™+1 + (1βˆ’πœ‰)πœ‡β€²π‘™, 𝑙 β‰₯ 1

πœšπ‘š2+ (1+πœšβˆ’πœ‰ 𝜚)π‘š +(1βˆ’πœ‰)(1βˆ’π‘’βˆ’π‘š), 𝑙=0

≀1βˆ’πœ‰, (2.3)

is satisfied, thenI(𝑙, π‘š, 𝜁)𝑓 βˆˆπ”‡πœš(πœ‰). Proof. Let 𝑓 be of the form Eq. (1.1) be- long to the class R𝜏(πœ—, 𝛿). To show that I(𝑙, π‘š, 𝜁)𝑓 βˆˆπ”‡πœš(πœ‰), enough to show that

𝑃3 = Γ•βˆž 𝑛=2

𝑛(π‘›πœšβˆ’ 𝜚+1)(π‘›βˆ’πœ‰)

(6)

Γ— (π‘›βˆ’1)π‘™π‘šπ‘›βˆ’1

(π‘›βˆ’1)! π‘’βˆ’π‘š|π‘Žπ‘›|

≀ 1βˆ’πœ‰.

Since 𝑓 ∈ π‘…πœ(𝐴, 𝐡), then by Lemma 1.3, we have

|π‘Žπ‘›| ≀ 2|𝜏| (1βˆ’π›Ώ)

1+πœ—(π‘›βˆ’1), π‘›βˆˆN\ {1} and1+πœ—(π‘›βˆ’1) β‰₯πœ—π‘›.Hence

𝑃3= Γ•βˆž 𝑛=2

𝑛(π‘›πœšβˆ’ 𝜚+1)(π‘›βˆ’πœ‰)

Γ— (π‘›βˆ’1)π‘™π‘šπ‘›βˆ’1

(π‘›βˆ’1)! π‘’βˆ’π‘š|π‘Žπ‘›|

β‰€Γ•βˆž

𝑛=2

𝑛(π‘›πœšβˆ’ 𝜚+1)(π‘›βˆ’πœ‰)

Γ— (π‘›βˆ’1)π‘™π‘šπ‘›βˆ’1

(π‘›βˆ’1)! π‘’βˆ’π‘š2|𝜏| (1βˆ’π›Ώ) 1+πœ—(π‘›βˆ’1)

= 2|𝜏| (1βˆ’π›Ώ)

πœ— π‘’βˆ’π‘š

"Γ•βˆž

𝑛=2

𝜚(π‘›βˆ’1)2 + (1+πœšβˆ’πœ‰ 𝜚)(π‘›βˆ’1) + (1βˆ’πœ‰)]

Γ— (π‘›βˆ’1)β„“π‘šπ‘›βˆ’1 (π‘›βˆ’1)!

= 2|𝜏| (1βˆ’π›Ώ)

πœ— π‘’βˆ’π‘š

" ∞ Γ•

𝑛=1

πœšπ‘›2

+ (1+πœšβˆ’πœ‰ 𝜚)𝑛+ (1βˆ’πœ‰)]π‘›β„“π‘šπ‘› 𝑛!

= 2|𝜏| (1βˆ’π›Ώ)

πœ— π‘’βˆ’π‘š

"

πœšΓ•βˆž

𝑛=1

𝑛ℓ+2π‘šπ‘› 𝑛!

+ (1+πœšβˆ’πœ‰ 𝜚)Γ•βˆž

𝑛=1

𝑛ℓ+1π‘šπ‘› 𝑛! + (1βˆ’πœ‰)Γ•βˆž

𝑛=1

π‘›β„“π‘šπ‘› 𝑛!

#

= 2|𝜏| (1βˆ’π›Ώ) πœ—





ο£³

πœšπœ‡β€²π‘™+2+ (1+πœšβˆ’πœ‰ 𝜚)πœ‡β€²π‘™+1 + (1βˆ’πœ‰)πœ‡β€²π‘™, 𝑙 β‰₯ 1

πœšπ‘š2+ (1+ πœšβˆ’πœ‰ 𝜚)π‘š +(1βˆ’πœ‰)(1βˆ’π‘’βˆ’π‘š), 𝑙=0

≀1βˆ’πœ‰,

by the given hypothesis. This completes the

proof of Theorem 2.5. β–‘

Theorem 2.6. If π‘š > 0, β„“ ∈ N0

then 𝐿(π‘š, β„“, 𝜁) = ∫ 𝜁

0

h

2βˆ’ Ξ¦β„“π‘šπ‘‘(𝑑)i

𝑑𝑑 is in π”‡βˆ—πœš(πœ‰), if and only if Eq.(2.1)holds.

Proof. It is easy to see that 𝐿(π‘š, β„“, 𝜁) =πœβˆ’Γ•βˆž

𝑛=2

(π‘›βˆ’1)π‘™π‘šπ‘›βˆ’1 𝑛! π‘’βˆ’π‘šπœπ‘›. Using Remark 1.7, we only need to show that

Γ•βˆž 𝑛=2

𝑛(π‘›πœšβˆ’πœš+1)(π‘›βˆ’πœ‰)(π‘›βˆ’1)π‘™π‘šπ‘›βˆ’1

𝑛! π‘’βˆ’π‘š ≀1βˆ’πœ‰.

Now 𝑃4 =

Γ•βˆž 𝑛=2

𝑛(π‘›πœšβˆ’ 𝜚+1)(π‘›βˆ’πœ‰)(π‘›βˆ’1)π‘™π‘šπ‘›βˆ’1 𝑛! π‘’βˆ’π‘š

=π‘’βˆ’π‘š

"Γ•βˆž

𝑛=2

(𝜚(π‘›βˆ’1)(π‘›βˆ’2) + (1+2πœšβˆ’πœ‰ 𝜚)(π‘›βˆ’1) + (1βˆ’πœ‰)) (π‘›βˆ’1)π‘™π‘šπ‘›βˆ’1

(π‘›βˆ’1)!

=π‘’βˆ’π‘š

"Γ•βˆž

𝑛=2

𝜚(π‘›βˆ’1)2 + (1+πœšβˆ’πœ‰ 𝜚)(π‘›βˆ’1) + (1βˆ’πœ‰)] (π‘›βˆ’1)β„“π‘šπ‘›βˆ’1

(π‘›βˆ’1)!

=π‘’βˆ’π‘š

"Γ•βˆž

𝑛=1

πœšπ‘›2+ (1+πœšβˆ’πœ‰ 𝜚)𝑛

+ (1βˆ’πœ‰)]π‘›β„“π‘šπ‘› 𝑛!

=π‘’βˆ’π‘š

"

πœšΓ•βˆž

𝑛=1

𝑛ℓ+2π‘šπ‘› 𝑛!

(7)

+ (1+πœšβˆ’πœ‰ 𝜚)Γ•βˆž

𝑛=1

𝑛ℓ+1π‘šπ‘› 𝑛! + (1βˆ’πœ‰)Γ•βˆž

𝑛=1

π‘›β„“π‘šπ‘› 𝑛!

#

=





ο£³

πœšπœ‡β€²π‘™+2+ (1+πœšβˆ’πœ‰ 𝜚)πœ‡β€²π‘™+1 + (1βˆ’πœ‰)πœ‡β€²π‘™, 𝑙 β‰₯1

πœšπ‘š2+ (1+2πœšβˆ’πœ‰ 𝜚)π‘š +(1βˆ’πœ‰)(1βˆ’π‘’βˆ’π‘š), 𝑙=0. But, this last expression is bounded above by1βˆ’πœ‰, if Eq. (2.1) holds. This completes the proof of Theorem 2.6.

β–‘ Remark 2.7. By fixing the parameters 𝜚= 0and𝜚=1one can easily deduce the above results for the function classes Sβˆ—(πœ‰) and K(πœ‰), respectively, and also for the class studied earlier by Robertson [21] and Sil- verman [23].

3. Conclusion and Future Scope The main conclusion of this paper is to obtain some necessary and sufficient con- ditions of a power series associated with Touchard polynomials for belonging to uni- fied classes of starlike and convex func- tions. Here, we obtain the results for the case when 𝑙 = 0,1,2, . . .. Therefore, it is natural to ask what is the analogues results for𝑙 >0when𝑙is not a positive integer. It is also interesting to investigate analogues Touchard polynomials associated with gen- eralized distribution series, hypergeometric distribution series, confluent hypergeomet- ric distribution[11, 17, 26] series and Pascal distribution series [9, 10].

Acknowledgment

We authors record our sincere thanks to the referees for their insightful sugges- tions to revise the paper in present form.

References

[1] Ahmad MS., Mehmood Q., Nazeer W.

andαΈ’aq AU. An application of a hyperge- ometric distribution series on certain ana- lytic functions, Sci. Int., 2015ΝΎ27: 2989- 92.

[2] Abdullah, J.T., Ali, H.S. Laguerre and Touchard polynomials for linear Volterra integral and Integro differ- ential equations. J. Phys. Conf. Ser.

2020, 1591, 012047.doi:10.1088/1742- 6596/1591/1/012047.

[3] Al-Shaqsi K. On inclusion results of certain subclasses of analytic functions associated with generating function, AIP Conference Proceedings 2017ΝΎ doi:

10.1063/1.4980979.

[4] Altintas O., Γ–zkan Γ–.and Srivastava HM.

Neighborhoods of a class of analytic func- tions with negative coefficients, Appl.

Math. Lett., 2000ΝΎ13: 63-7.

[5] AltΔ±nkaya S. and YalΓ§Δ±n S. Poisson distri- bution series for analytic univalent func- tions, Complex Anal. Oper. Theory., 2018ΝΎ12(5):1315-9.

[6] De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985ΝΎ154: 137- 52.

[7] Bell ET. Exponential polynomials, Annal Math., 1934ΝΎ35: 258-77.

[8] Boyadzhiev KN. Exponential polynomi- als, Stirling numbers, and evaluation of some Gamma integrals, Abstract Appl.

Anal., 2009ΝΎ Art. ID 168672: 1-18.

[9] Bulboaca T and Murugusundaramoor- thy G.,Univalent functions with posi- tive coefficients involving Pascal dis- tribution series,Commun. Korean Math.

Soc., 2020ΝΎ35(3): 867-77.

[10] El-Deeb SM., Bulboacă T. and Dziok J.

Pascal distribution series connected with certain subclasses of univalent functions, Kyungpook Math. J., 2019ΝΎ 59(2): 301- 14.

(8)

[11] Lin S.-D., Srivastava H. M. and Yao,J.-C.

Some classes of generating relations as- sociated with a family of the generalized Gauss type hypergeometric functions, Appl. Math. Inform. Sci.,2015,9:1731-8.

[12] Murugusundaramoorthy G. and porwal S. Univalent functions with positive co- efficients involving Touchard polyno- mials, Al-Qadisiyah J. Pure Science, 2020ΝΎ25(4): 1-8.

[13] Murugusundaramoorthy G., Vijaya K.

and Kasthuri M. A note on subclasses of starlike and convex functions associated with Bessel functions, J. Nonlinear Funct.

Anal.,2014ΝΎ Art. ID 11: 1-11.

[14] Nazeer W., Mehmood Q. , Kang SM. and Haq AU. An application of Binomial dis- tribution series on certain analytic func- tions, J.Comput. Anal. Appl.,2019ΝΎ26:

11-7.

[15] Porwal S. An application of a Poisson dis- tribution series on certain analytic func- tions, J. Complex Anal.,2014ΝΎ Art. ID 984135: 1-3.

[16] Porwal S. Generalized distribution and its geometric properties associated with uni- valent functions, J. Complex Anal. 2018ΝΎ

Art. ID 8654506: 1-5.

[17] Porwal S. Confluent hypergeometric dis- tribution and its applications on certain classes of univalent functions of conic re- gions, Kyungpook Math. J. 2018ΝΎ58(3):

495-505.

[18] Porwal S. and Bajpai D. An application of Mittag-Leffler type Poisson distribu- tion series on starlike and convex func- tions, Asian Pacific J. Math., 2020ΝΎ7: 1-7.

[19] Porwal S. and Gupta A. Some properties of convolution for hypergeometric distri- bution type series on certain analytic uni- valent functions, Acta Univ. Apulensis Math. Inform., 2018ΝΎ56: 69-80.

[20] Porwal S. and Manish Kumar, A unified study on starlike and convex functions as- sociated with Poisson distribution series, Afr. Mat., 2016ΝΎ27(5-6): 1021-7.

[21] Robertson MS. On the theory of univalent functions, Ann. Math.,1936ΝΎ37: 374-408.

[22] Roman S. The Umbral calculus, Dover 1984.

[23] Silverman H. Univalent functions with negative coefficients, Proc. Amer. Math.

Soc.,1975ΝΎ51(1): 109-16.

[24] Simsek Y. Special numbers on analytic functions, Appl. Math.,2014ΝΎ 5: 1091-8.

[25] Touchard J. Sur les cycles des substitu- tions, Acta Math.,1939ΝΎ 70: 243-97.

[26] Swaminathan A. Certain suffienct condi- tions on Gaussian hypergeometric func- tions, Journal of Ineq. Pure & Appl.

Math.,2004ΝΎ5(4): 83,1-10.

Referensi

Dokumen terkait