• Tidak ada hasil yang ditemukan

Unit Root Tests

N/A
N/A
Protected

Academic year: 2024

Membagikan "Unit Root Tests"

Copied!
5
0
0

Teks penuh

(1)

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 1

Unit Root Tests

Test for Stationarity

• Correlogram (Graphical)

• Unit Root Tests

–Dickey-Fuller –Phillip-Perron

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 3

Dickey-Fuller’s UR Test (1)

Assumptions Y t ~AR(1) Hypothesis

H 0 : Y t ~ non-stationary H 1 : Y t ~ stationary

Dickey-Fuller’s UR Test(2)

CASE I

Y t ~AR(1) w/o drift and trend Testing Model

1 1

t t t

Y = φ Y − + ε

(2)

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 5

Dickey-Fuller’s UR Test(3)

Testing Model

1 1 1

1 1

1

0 1

1 1

where

( 1)

1 H : 1 or 0 H : 1 or 0

t t t t

t t t

Y Y Y

Y Y

φ ε

γ ε

γ φ

φ γ

φ γ

− −

− = − +

∆ = +

= −

≥ ≥

< < Necessary condition

Dickey-Fuller’s UR Test(4)

Steps

1) run OLS of ∆ Y t on Y t-1 2) test for γ <0

DF have shown by simulation that

τ does not follow a t-dist or a normal

ˆ ~ ??

( ) ˆ se τ γ

= γ

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 7

Dickey-Fuller’s UR Test(5)

Ref: Table 4.1 page 223 (Enders), Table D.7 (Gujarati)

τ

-1.645 -1.95

z

.05

0

Dickey-Fuller’s UR Test(6)

CASE II

Y t ~AR(1) w/ drift but w/o trend Testing Model

0 1 1

0 1 1

t t t

t t t

Y a Y

Y a Y

φ ε

γ ε

= + +

∆ = + +

(3)

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 9

Dickey-Fuller’s UR Test(7)

Steps

1) run OLS of ∆ Y t on constant Y t-1 2) test for γ <0

DF have shown by simulation that

τ µ does not follow a t-dist or a normal

ˆ ~ ??

( ) ˆ

µ se τ γ

= γ

Dickey-Fuller’s UR Test(8)

Ref: Table 4.1 page 223

τ

-1.645 -1.95

z

.05

0 -2.89

τ µ

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 11

Dickey-Fuller’s UR Test(9)

CASE III

Y t ~AR(1) w/ drift and trend Testing Model

0 1 1 2

0 1 1 2

t t t

t t t

Y a Y a t

Y a Y a t

φ ε

γ ε

= + + +

∆ = + + +

Dickey-Fuller’s UR Test(10)

Steps

1) run OLS of ∆ Y t on constant t Y t-1 2) test for γ <0

DF have shown by simulation that

τ τ does not follow a t-dist or a normal

ˆ ~ ??

( ) ˆ

τ se τ γ

= γ

(4)

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 13

Dickey-Fuller’s UR Test(11)

Ref: Table 4.1 page 223

τ

-1.645 -1.95

z

.05

0 -2.89

τ µ

-3.45 τ τ

Dickey-Fuller’s UR Test(12)

Note that

Drift and time trend will make it more difficult to reject H 0 .

If H 0 is rejected when both are

included, it will be rejected in the other cases.

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 15

Dickey-Fuller’s UR Test(12)

Simple Rule

First, include both drift and trend in the testing model. Do τ τ test.

If reject, Y ~ stationary

Otherwise, remove trend and do τ µ test.

If reject, Y ~ stationary. Otherwise, remove drift and do τ test.

If reject, Y ~ stationary. Otherwise, Y is non-stationary

Dickey-Fuller’s UR Test(12)

Full-scheme testing rule

See Figure 4.7 on page 257

(5)

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 17

Augmented Dickey-Fuller (1)

Assumptions Y t ~AR(p) Testing Model

1 1 2 2 1 1

1 ( 1 )

t t t p t p

p t p p t p t p t

Y Y Y Y

Y Y Y

φ φ φ

φ φ ε

− − − − +

− + − + −

= + + +

+ − − +

L

Augmented Dickey-Fuller (2)

1 1 2 2 1 2

1 2 1

1

1 1 2 2 1 2

1 2 1

( )

(- )( )

( )

( )

(- ) ( )

t t t p p t p

p p t p t p

p t p t

t t p p t p

p p t p p t p t

Y Y Y Y

Y Y

Y

Y Y Y

Y Y

φ φ φ φ

φ φ

φ ε

φ φ φ φ

φ φ φ ε

− − − − +

− − + − +

− +

− − − − +

− − + − +

= + + + +

+ − −

+ − ∆ +

= + + + +

+ − ∆ + − ∆ +

L

L M

(c) Pongsa Pornchaiwiseskul, Faculty of Economics, Chulalongkorn University 19

Augmented Dickey-Fuller (3)

1 2 2 1

2 2 1

2 1 3

1 2

1

( 1)

+( )

(- - )

(- )

( )

t p t

p t

p p p t p

p p t p

p t p t

Y Y

Y Y Y

Y

φ φ φ φ

φ φ φ

φ φ φ φ φ

φ ε

− − − +

− − +

− +

∆ = + + + + −

− − − − ∆ +

+ − ∆

+ − ∆

+ − ∆ + L

L L

p-1 Augmented terms

Hypothesis

Fortunately, we can use the same τ τ ,

τ µ and τ tests as DF unit root tests

0 1

1 2 2

where

H : 0 H : 0

p 1 γ

γ

γ φ φ φ φ

<

= + + + + L −

Augmented Dickey-Fuller (4)

Referensi

Dokumen terkait