課程大綱及進度表
開課系所
數學三開課學年
98開課學期
1課程名稱(中文)
複變數函數論課程名稱(英文)
COMPLEX ANALYSIS課程碼
C133800先修科目或先備能力
微積分 (高等微積分)學分數
3開課教師
黃秀娟電話
2757575-65149Office
數學系館 412室Office Hours
By Appointment課程概述
微積分處理實變數實值函數的微分和積 分,複變數函數論則是處理複變數複數值 函數的微分和積分,因不同於R2 到R2 的 函數微分,複變數函數論中有著非常不一 樣並且乾淨且美麗的定理與性質,它同時 也是一門重要的工程數學課程
。教學目標
探討解析函數(複變數函數論中的可微函 數)之微分及積分性質,可作為後續深入 複分析研究之基礎或作為往應用(工程) 數學發展必備的一重要工具。授課課程大綱明細
CH1. Complex NumbersAlgebrac Structure of C Polar Form of C
Geometric Structure of C CH2. Analytic Functions
Cauchy-Riemann Equations
Analytic Functions Harmonic Functions
CH8. Mapping by Elementary Functions Mobius transform (or bilinear transform or linear fractional transformations)
1st
CH3. Elementary Functions -Midterm Test
Exponential、Logarithmic Trigonometric、Hyperbolic、
Multi-Valued Functions CH4. Integrals
Contours Integrals
Fundamental Theory of Integral Cauchy-Goursat Theorem
Cauchy Integral Formula Liouville's Theorem 2nd
CH5. Series
- Midterm Test
Power Series Taylor Series Laurent Series
CH6. Residues and Poles Cauchy's Residue Theorem Isolated Singularities Zeros and Poles
CH7. Applications of Residues Evaluation of Improper Integrals Integration Along a Branch Cut Rouche's Theorem
Final Test
參考書目
Text:“Complex Variables and applications,8
thby James Ward Brown & Ruel V. Churchill
ed
“References:
1. “Fundamentals of complex analysis with applications to engineering and science, 3th
By E.B.Saff & A.D.Snider ed “
2. “Complex Analysis, 2
ndby L.V.Ahlfors
ed”
課程要求
1. 出席聽課 2. 寫作業3. 參加小考、期中考、期末考
評量方式
作業 15%小考 15%
兩次(one hour test) 期中考共佔40%
期末考(two hours test) 30%