• Tidak ada hasil yang ditemukan

Calculus - diagnostic tests

N/A
N/A
Protected

Academic year: 2024

Membagikan "Calculus - diagnostic tests"

Copied!
5
0
0

Teks penuh

(1)

Success in calculus depends to a large extent on knowledge of the mathematics that precedes calculus: algebra, analytic geometry, functions, and trigonometry. The fol- lowing tests are intended to diagnose weaknesses that you might have in these areas.

After taking each test you can check your answers against the given answers and, if necessary, refresh your skills by referring to the review materials that are provided.

1. Evaluate each expression without using a calculator.

(a) (b) (c)

(d) (e) (f)

2. Simplify each expression. Write your answer without negative exponents.

(a) (b) (c)

3. Expand and simplfy.

(a) (b)

(c) (d)

(e)

4. Factor each expression.

(a) (b)

(c) (d)

(e) (f)

5. Simplify the rational expression.

(a) (b)

(c) (d)

y x x

y 1 y 1

x x2

x24 x1 x2

2x2x1

x29 ⴢ x3 2x1 x23x2

x2x2

x3y4xy 3x329x126x12

x427x x33x24x12

2x25x12 4x225

x2兲3

共2x3兲2

(

sa sb

)(

sa sb

)

x3兲共4x5兲 3共x6兲4共2x5兲

3xx2y321y32

2

共3a3b3兲共4ab22 s200 s32

1634

23

2

523 521

34 34

共3兲4 D I A G N O S T I C T E S T : A L G E B R A

A

xxiv

(2)

6. Rationalize the expression and simplify.

(a) (b)

7. Rewrite by completing the square.

(a) (b)

8. Solve the equation. (Find only the real solutions.)

(a) (b)

(c) (d)

(e) (f)

(g)

9. Solve each inequality. Write your answer using interval notation.

(a) (b)

(c) (d)

(e)

10. State whether each equation is true or false.

(a) (b)

(c) (d)

(e) (f)

1x

axbx 苷 1 ab 1

xy 苷 1 x 1

y

1TC

C 苷1T

sa2b2 ab

sab 苷sasbpq2p2q2

2x3 x1 1

x4

3

xx1兲共x2兲0

x22x8 453x17

2x共4x123s4x 苷0

3

x4

10

x43x22苷0

2x24x1苷0 x2x12苷0

2x

x1 苷 2x1 x x5苷1412x

2x212x11 x2x1

s4h 2 h s10

s5 2

6. (a) (b)

7. (a) (b)

8. (a) (b) (c)

(d) (e) (f)

(g)

9. (a) (b)

(c) (d)

(e)

10. (a) False (b) True (c) False

(d) False (e) False (f) True

共1, 4兴 共1, 7兲

共2, 0兲傼共1, 兲 共2, 4兲

关4, 3兲

12 5

2 3, 223

1, s2 112s2

3, 4 1

6

2共x3兲27

(

x12

)

234

1 s4h 2 5s22s10

1. (a) (b) (c)

(d) (e) (f)

2. (a) (b) (c)

3. (a) (b)

(c) (d)

(e)

4. (a) (b)

(c) (d)

(e) (f)

5. (a) (b)

(c) 1 (d) 共xy

x2

x1 x3 x2

x2

xyx2兲共x2兲 3x12x1兲共x2兲

xx3兲共x23x9兲 共x3兲共x2兲共x2兲 共2x3兲共x4兲 共2x5兲共2x5兲

x36x212x8

4x212x9 ab

4x27x15 11x2

x 9y7 48a5b7

6s2

1 8 9

25 4

1

81 81

81

If you have had difficulty with these problems, you may wish to consult the Review of Algebra on the website www.stewartcalculus.com.

A N S W E R S TO D I AG N O S T I C T E S T A : A L G E B R A

(3)

1. Find an equation for the line that passes through the point and (a) has slope

(b) is parallel to the -axis (c) is parallel to the -axis (d) is parallel to the line

2. Find an equation for the circle that has center and passes through the point . 3. Find the center and radius of the circle with equation . 4. Let and be points in the plane.

(a) Find the slope of the line that contains and .

(b) Find an equation of the line that passes through and . What are the intercepts?

(c) Find the midpoint of the segment . (d) Find the length of the segment .

(e) Find an equation of the perpendicular bisector of . (f) Find an equation of the circle for which is a diameter.

5. Sketch the region in the -plane defined by the equation or inequalities.

(a) (b)

(c) (d)

(e) x2y24 (f) 9x216y2苷144

y x21 y112x

x

4 and

y

2

1y3

xy

AB AB AB

AB

B A B A B共5, 12兲

A共7, 4兲

x2y26x10y9苷0 共3, 2兲 共1, 4兲

2x4y苷3 y

x 3

共2, 5兲 D I A G N O S T I C T E S T : A N A LY T I C G E O M E T RY

B

5.

y

x

1 2

0

y

0 x

y

0 4 x

3

_1

2 y

x 0

y

0 4x

_4

y

0 2 x 1

(a) (b) (c)

(d) (e) (f )

_1 3

2

_2

y=≈-1

≈+¥=4

y=1- x12

1. (a) (b)

(c) (d)

2.

3. Center , radius 5 4. (a)

(b) ; -intercept , -intercept

(c) (d) (e)

(f)共x1兲2y4兲2苷100 3x4y苷13

20

共1, 4兲 x 4 y 163

4x3y16苷0 34

共3, 5兲

x1兲2y4兲2苷52

y12x6 x苷2

y苷5 y苷3x1

A N S W E R S TO D I AG N O S T I C T E S T B : A N A LY T I C G E O M E T RY

If you have had difficulty with these problems, you may wish to consult the Review of Analytic Geometry on the website www.stewartcalculus.com.

(4)

1. The graph of a function is given at the left.

(a) State the value of . (b) Estimate the value of . (c) For what values of is ?

(d) Estimate the values of such that . (e) State the domain and range of .

2. If , evaluate the difference quotient and simplify your answer.

3. Find the domain of the function.

(a) (b) (c)

4. How are graphs of the functions obtained from the graph of ?

(a) (b) (c)

5. Without using a calculator, make a rough sketch of the graph.

(a) (b) (c)

(d) (e) (f)

(g) (h)

6. Let

(a) Evaluate and . (b) Sketch the graph of .

7. If and , find each of the following functions.

(a) fⴰt (b) tⴰf (c) tⴰtⴰt

t共x兲苷2x3 fx兲苷x22x1

f f共1兲

f共2兲

fx兲苷

12xx21 ifif xx00 y1x

1

y苷2x

y苷2sx y苷sx

y苷4x2

y苷共x2兲33 y苷共x1兲3

yx3

yfx3兲2 y苷2fx兲1

yfx

f

hx兲苷s4x sx21 t共x兲苷 s3x

x21 fx兲苷 2x1

x2x2

f共2hf共2兲 fx兲苷x3 h

f

fx兲苷0 x

fx兲苷2 x

f共2兲 f共1兲

f D I A G N O S T I C T E S T : F U N C T I O N S

C

6.(a) 7. (a)

(b) (b)

(c) 共tⴰtⴰt兲共x兲苷8x21 共tⴰf兲共x兲苷2x24x5

y

x _1 0

1

fⴰt兲共x兲苷4x28x2 3, 3

(h) y

x 0 1

1

(g) y

x 0 _1 1

(f ) y

x 0 1

(e) y

x 0 1

(d) y

x 0 4

2

1. (a) (b) 2.8

(c) (d)

(e) 2.

3. (a) (b) (c)

4. (a) Reflect about the -axis

(b) Stretch vertically by a factor of 2, then shift 1 unit downward (c) Shift 3 units to the right and 2 units upward

5. (c) y

x 0

(2, 3) y

x 0

(a) (b) y

1

1 0 x

1 _1

x 共, 1兴傼关1, 4兴

共, 兲

共, 2兲傼共2, 1兲傼共1, 兲 126hh2

关3, 3兴, 关2, 3兴

2.5, 0.3 3, 1

2 y

0 x

1 1

FIGURE FOR PROBLEM 1

A N S W E R S TO D I AG N O S T I C T E S T C : F U N C T I O N S

If you have had difficulty with these problems, you should look at Sections 1.1–1.3 of this book.

(5)

1. Convert from degrees to radians.

(a) (b)

2. Convert from radians to degrees.

(a) (b)

3. Find the length of an arc of a circle with radius 12 cm if the arc subtends a central angle of . 4. Find the exact values.

(a) (b) (c)

5. Express the lengths and in the figure in terms of .

6. If and , where and lie between and , evaluate .

7. Prove the identities.

(a) (b)

8. Find all values of such that and .

9. Sketch the graph of the function y苷1sin 2xwithout using a calculator.

0x2 sin 2x苷sin x

x 2 tan x

1tan2x 苷sin 2x tan sin cos 苷sec

sin共xy兲 2

0 y

x sec y54

sin x13

b

a

sec共5兾3兲 sin共7兾6兲

tan共兾3兲

30 2

5兾6

18 300

6.

8.

9.

0 π x

2 y

0, 兾3, , 5兾3, 2

1

15

(

46s2

)

1. (a) (b)

2. (a) (b)

3.

4. (a) (b) (c)

5. (a)24 sin (b) 24 cos 12 2 s3

2 cm

360兾⬇114.6 150

兾10 5兾3

D I A G N O S T I C T E S T : T R I G O N O M E T RY

D

a

¨ b 24

F I G U R E F O R P R O B L E M 5

A N S W E R S TO D I AG N O S T I C T E S T D : T R I G O N O M E T RY

If you have had difficulty with these problems, you should look at Appendix D of this book.

Referensi

Dokumen terkait