Success in calculus depends to a large extent on knowledge of the mathematics that precedes calculus: algebra, analytic geometry, functions, and trigonometry. The fol- lowing tests are intended to diagnose weaknesses that you might have in these areas.
After taking each test you can check your answers against the given answers and, if necessary, refresh your skills by referring to the review materials that are provided.
1. Evaluate each expression without using a calculator.
(a) (b) (c)
(d) (e) (f)
2. Simplify each expression. Write your answer without negative exponents.
(a) (b) (c)
3. Expand and simplfy.
(a) (b)
(c) (d)
(e)
4. Factor each expression.
(a) (b)
(c) (d)
(e) (f)
5. Simplify the rational expression.
(a) (b)
(c) (d)
y x x
y 1 y 1
x x2
x24 x1 x2
2x2x1
x29 ⴢ x3 2x1 x23x2
x2x2
x3y4xy 3x3兾29x1兾26x1兾2
x427x x33x24x12
2x25x12 4x225
共x2兲3
共2x3兲2
(
sa sb)(
sa sb)
共x3兲共4x5兲 3共x6兲4共2x5兲
冉
3xx2y3兾21y兾32冊
2共3a3b3兲共4ab2兲2 s200 s32
163兾4
冉
23冊
2523 521
34 34
共3兲4 D I A G N O S T I C T E S T : A L G E B R A
A
xxiv
6. Rationalize the expression and simplify.
(a) (b)
7. Rewrite by completing the square.
(a) (b)
8. Solve the equation. (Find only the real solutions.)
(a) (b)
(c) (d)
(e) (f)
(g)
9. Solve each inequality. Write your answer using interval notation.
(a) (b)
(c) (d)
(e)
10. State whether each equation is true or false.
(a) (b)
(c) (d)
(e) (f)
1兾xa兾xb兾x 苷 1 ab 1
xy 苷 1 x 1
y
1TC
C 苷1T
sa2b2 苷ab
sab 苷sasb 共pq兲2苷p2q2
2x3 x1 1
ⱍ
x4ⱍ
3x共x1兲共x2兲0
x22x8 453x17
2x共4x兲1兾23s4x 苷0
3
ⱍ
x4ⱍ
苷10x43x22苷0
2x24x1苷0 x2x12苷0
2x
x1 苷 2x1 x x5苷1412x
2x212x11 x2x1
s4h 2 h s10
s5 2
6. (a) (b)
7. (a) (b)
8. (a) (b) (c)
(d) (e) (f)
(g)
9. (a) (b)
(c) (d)
(e)
10. (a) False (b) True (c) False
(d) False (e) False (f) True
共1, 4兴 共1, 7兲
共2, 0兲傼共1, 兲 共2, 4兲
关4, 3兲
12 5
2 3, 223
1, s2 112s2
3, 4 1
6
2共x3兲27
(
x12)
2341 s4h 2 5s22s10
1. (a) (b) (c)
(d) (e) (f)
2. (a) (b) (c)
3. (a) (b)
(c) (d)
(e)
4. (a) (b)
(c) (d)
(e) (f)
5. (a) (b)
(c) 1 (d) 共xy兲
x2
x1 x3 x2
x2
xy共x2兲共x2兲 3x1兾2共x1兲共x2兲
x共x3兲共x23x9兲 共x3兲共x2兲共x2兲 共2x3兲共x4兲 共2x5兲共2x5兲
x36x212x8
4x212x9 ab
4x27x15 11x2
x 9y7 48a5b7
6s2
1 8 9
25 4
1
81 81
81
If you have had difficulty with these problems, you may wish to consult the Review of Algebra on the website www.stewartcalculus.com.
A N S W E R S TO D I AG N O S T I C T E S T A : A L G E B R A
1. Find an equation for the line that passes through the point and (a) has slope
(b) is parallel to the -axis (c) is parallel to the -axis (d) is parallel to the line
2. Find an equation for the circle that has center and passes through the point . 3. Find the center and radius of the circle with equation . 4. Let and be points in the plane.
(a) Find the slope of the line that contains and .
(b) Find an equation of the line that passes through and . What are the intercepts?
(c) Find the midpoint of the segment . (d) Find the length of the segment .
(e) Find an equation of the perpendicular bisector of . (f) Find an equation of the circle for which is a diameter.
5. Sketch the region in the -plane defined by the equation or inequalities.
(a) (b)
(c) (d)
(e) x2y24 (f) 9x216y2苷144
y x21 y112x
ⱍ
xⱍ
4 andⱍ
yⱍ
21y3
xy
AB AB AB
AB
B A B A B共5, 12兲
A共7, 4兲
x2y26x10y9苷0 共3, 2兲 共1, 4兲
2x4y苷3 y
x 3
共2, 5兲 D I A G N O S T I C T E S T : A N A LY T I C G E O M E T RY
B
5.
y
x
1 2
0
y
0 x
y
0 4 x
3
_1
2 y
x 0
y
0 4x
_4
y
0 2 x 1
(a) (b) (c)
(d) (e) (f )
_1 3
2
_2
y=≈-1
≈+¥=4
y=1- x12
1. (a) (b)
(c) (d)
2.
3. Center , radius 5 4. (a)
(b) ; -intercept , -intercept
(c) (d) (e)
(f)共x1兲2共y4兲2苷100 3x4y苷13
20
共1, 4兲 x 4 y 163
4x3y16苷0 34
共3, 5兲
共x1兲2共y4兲2苷52
y苷12x6 x苷2
y苷5 y苷3x1
A N S W E R S TO D I AG N O S T I C T E S T B : A N A LY T I C G E O M E T RY
If you have had difficulty with these problems, you may wish to consult the Review of Analytic Geometry on the website www.stewartcalculus.com.
1. The graph of a function is given at the left.
(a) State the value of . (b) Estimate the value of . (c) For what values of is ?
(d) Estimate the values of such that . (e) State the domain and range of .
2. If , evaluate the difference quotient and simplify your answer.
3. Find the domain of the function.
(a) (b) (c)
4. How are graphs of the functions obtained from the graph of ?
(a) (b) (c)
5. Without using a calculator, make a rough sketch of the graph.
(a) (b) (c)
(d) (e) (f)
(g) (h)
6. Let
(a) Evaluate and . (b) Sketch the graph of .
7. If and , find each of the following functions.
(a) fⴰt (b) tⴰf (c) tⴰtⴰt
t共x兲苷2x3 f共x兲苷x22x1
f f共1兲
f共2兲
f共x兲苷
再
12xx21 ifif xx00 y苷1x1
y苷2x
y苷2sx y苷sx
y苷4x2
y苷共x2兲33 y苷共x1兲3
y苷x3
y苷f共x3兲2 y苷2f共x兲1
y苷f共x兲
f
h共x兲苷s4x sx21 t共x兲苷 s3x
x21 f共x兲苷 2x1
x2x2
f共2h兲f共2兲 f共x兲苷x3 h
f
f共x兲苷0 x
f共x兲苷2 x
f共2兲 f共1兲
f D I A G N O S T I C T E S T : F U N C T I O N S
C
6.(a) 7. (a)
(b) (b)
(c) 共tⴰtⴰt兲共x兲苷8x21 共tⴰf兲共x兲苷2x24x5
y
x _1 0
1
共fⴰt兲共x兲苷4x28x2 3, 3
(h) y
x 0 1
1
(g) y
x 0 _1 1
(f ) y
x 0 1
(e) y
x 0 1
(d) y
x 0 4
2
1. (a) (b) 2.8
(c) (d)
(e) 2.
3. (a) (b) (c)
4. (a) Reflect about the -axis
(b) Stretch vertically by a factor of 2, then shift 1 unit downward (c) Shift 3 units to the right and 2 units upward
5. (c) y
x 0
(2, 3) y
x 0
(a) (b) y
1
1 0 x
1 _1
x 共, 1兴傼关1, 4兴
共, 兲
共, 2兲傼共2, 1兲傼共1, 兲 126hh2
关3, 3兴, 关2, 3兴
2.5, 0.3 3, 1
2 y
0 x
1 1
FIGURE FOR PROBLEM 1
A N S W E R S TO D I AG N O S T I C T E S T C : F U N C T I O N S
If you have had difficulty with these problems, you should look at Sections 1.1–1.3 of this book.
1. Convert from degrees to radians.
(a) (b)
2. Convert from radians to degrees.
(a) (b)
3. Find the length of an arc of a circle with radius 12 cm if the arc subtends a central angle of . 4. Find the exact values.
(a) (b) (c)
5. Express the lengths and in the figure in terms of .
6. If and , where and lie between and , evaluate .
7. Prove the identities.
(a) (b)
8. Find all values of such that and .
9. Sketch the graph of the function y苷1sin 2xwithout using a calculator.
0x2 sin 2x苷sin x
x 2 tan x
1tan2x 苷sin 2x tan sin cos 苷sec
sin共xy兲 2
0 y
x sec y苷54
sin x苷13
b
a
sec共5兾3兲 sin共7兾6兲
tan共兾3兲
30 2
5兾6
18 300
6.
8.
9.
_π 0 π x
2 y
0, 兾3, , 5兾3, 2
1
15
(
46s2)
1. (a) (b)
2. (a) (b)
3.
4. (a) (b) (c)
5. (a)24 sin (b) 24 cos 12 2 s3
2 cm
360兾⬇114.6 150
兾10 5兾3
D I A G N O S T I C T E S T : T R I G O N O M E T RY
D
a
¨ b 24
F I G U R E F O R P R O B L E M 5
A N S W E R S TO D I AG N O S T I C T E S T D : T R I G O N O M E T RY
If you have had difficulty with these problems, you should look at Appendix D of this book.