• Tidak ada hasil yang ditemukan

Calculus (I)

N/A
N/A
Protected

Academic year: 2024

Membagikan "Calculus (I)"

Copied!
26
0
0

Teks penuh

(1)

Calculus (I)

WEN-CHING LIEN

Department of Mathematics National Cheng Kung University

2008

(2)

8.3 Tables of Integrals

(1) Basic Functions (2) Rational Functions (3) Square Roots

(4) Trigonometric Functions (5) Exponential Functions (6) Logarithmic Functions

(3)

8.3 Tables of Integrals

(1) Basic Functions (2) Rational Functions (3) Square Roots

(4) Trigonometric Functions (5) Exponential Functions (6) Logarithmic Functions

(4)

8.3 Tables of Integrals

(1) Basic Functions (2) Rational Functions (3) Square Roots

(4) Trigonometric Functions (5) Exponential Functions (6) Logarithmic Functions

(5)

8.3 Tables of Integrals

(1) Basic Functions (2) Rational Functions (3) Square Roots

(4) Trigonometric Functions (5) Exponential Functions (6) Logarithmic Functions

(6)

8.3 Tables of Integrals

(1) Basic Functions (2) Rational Functions (3) Square Roots

(4) Trigonometric Functions (5) Exponential Functions (6) Logarithmic Functions

(7)

8.3 Tables of Integrals

(1) Basic Functions (2) Rational Functions (3) Square Roots

(4) Trigonometric Functions (5) Exponential Functions (6) Logarithmic Functions

(8)

Examples:

1

Z p

9+4x2dx

2

Z

(x +1)2e−2xdx

3

Z

cos2(5x−3)dx

4

Z

e2x+1sin(πx 2 )dx

(9)

Examples:

1

Z p

9+4x2dx

2

Z

(x +1)2e−2xdx

3

Z

cos2(5x−3)dx

4

Z

e2x+1sin(πx 2 )dx

(10)

Examples:

1

Z p

9+4x2dx

2

Z

(x +1)2e−2xdx

3

Z

cos2(5x−3)dx

4

Z

e2x+1sin(πx 2 )dx

(11)

Examples:

1

Z p

9+4x2dx

2

Z

(x +1)2e−2xdx

3

Z

cos2(5x−3)dx

4

Z

e2x+1sin(πx 2 )dx

(12)

Examples:

1

Z p

9+4x2dx

2

Z

(x +1)2e−2xdx

3

Z

cos2(5x−3)dx

4

Z

e2x+1sin(πx 2 )dx

(13)

Example:

Integration of R(x,√

1−x2)

By using the substitution x =cos u

1−x2=sin u dx =−sin udu (or x =sin u)

(14)

Example:

Integration of R(x,√

1−x2)

By using the substitution x =cos u

1−x2=sin u dx =−sin udu (or x =sin u)

(15)

Example:

Integration of R(x,√

1−x2)

By using the substitution x =cos u

1−x2=sin u dx =−sin udu (or x =sin u)

(16)

Integral Tables

Z 1

a2x2dx =sin−1 x a +c Z 1

a2+x2dx = 1

atan1x a +c Z √

u2a2

u du=p

u2a2a sec−1u a +c

Z du

u2(a+bu) =− 1 au + b

a2 ln

a+bu u

+c Z du −√

a2+u2

(17)

Integral Tables

Z 1

a2x2dx =sin−1 x a +c Z 1

a2+x2dx = 1

atan1x a +c Z √

u2a2

u du=p

u2a2a sec−1u a +c

Z du

u2(a+bu) =− 1 au + b

a2 ln

a+bu u

+c Z du −√

a2+u2

(18)

Integral Tables

Z 1

a2x2dx =sin−1 x a +c Z 1

a2+x2dx = 1

atan1x a +c Z √

u2a2

u du=p

u2a2a sec−1u a +c

Z du

u2(a+bu) =− 1 au + b

a2 ln

a+bu u

+c Z du −√

a2+u2

(19)

Integral Tables

Z 1

a2x2dx =sin−1 x a +c Z 1

a2+x2dx = 1

atan1x a +c Z √

u2a2

u du=p

u2a2a sec−1u a +c

Z du

u2(a+bu) =− 1 au + b

a2 ln

a+bu u

+c Z du −√

a2+u2

(20)

Integral Tables

Z 1

a2x2dx =sin−1 x a +c Z 1

a2+x2dx = 1

atan1x a +c Z √

u2a2

u du=p

u2a2a sec−1u a +c

Z du

u2(a+bu) =− 1 au + b

a2 ln

a+bu u

+c Z du −√

a2+u2

(21)

Integral Tables

Z 1

a2x2dx =sin−1 x a +c Z 1

a2+x2dx = 1

atan1x a +c Z √

u2a2

u du=p

u2a2a sec−1u a +c

Z du

u2(a+bu) =− 1 au + b

a2 ln

a+bu u

+c Z du −√

a2+u2

(22)

Examples:

1

Z 1

4+x2+2xdx

2

Z du 2u2

1+4u2

3

Z √

3x2−1

2x dx

(23)

Examples:

1

Z 1

4+x2+2xdx

2

Z du 2u2

1+4u2

3

Z √

3x2−1

2x dx

(24)

Examples:

1

Z 1

4+x2+2xdx

2

Z du 2u2

1+4u2

3

Z √

3x2−1

2x dx

(25)

Examples:

1

Z 1

4+x2+2xdx

2

Z du 2u2

1+4u2

3

Z √

3x2−1

2x dx

(26)

Thank you.

Referensi

Dokumen terkait