Calculus (I)
WEN-CHING LIEN
Department of Mathematics National Cheng Kung University
2008
8.3 Tables of Integrals
(1) Basic Functions (2) Rational Functions (3) Square Roots
(4) Trigonometric Functions (5) Exponential Functions (6) Logarithmic Functions
8.3 Tables of Integrals
(1) Basic Functions (2) Rational Functions (3) Square Roots
(4) Trigonometric Functions (5) Exponential Functions (6) Logarithmic Functions
8.3 Tables of Integrals
(1) Basic Functions (2) Rational Functions (3) Square Roots
(4) Trigonometric Functions (5) Exponential Functions (6) Logarithmic Functions
8.3 Tables of Integrals
(1) Basic Functions (2) Rational Functions (3) Square Roots
(4) Trigonometric Functions (5) Exponential Functions (6) Logarithmic Functions
8.3 Tables of Integrals
(1) Basic Functions (2) Rational Functions (3) Square Roots
(4) Trigonometric Functions (5) Exponential Functions (6) Logarithmic Functions
8.3 Tables of Integrals
(1) Basic Functions (2) Rational Functions (3) Square Roots
(4) Trigonometric Functions (5) Exponential Functions (6) Logarithmic Functions
Examples:
1
Z p
9+4x2dx
2
Z
(x +1)2e−2xdx
3
Z
cos2(5x−3)dx
4
Z
e2x+1sin(πx 2 )dx
Examples:
1
Z p
9+4x2dx
2
Z
(x +1)2e−2xdx
3
Z
cos2(5x−3)dx
4
Z
e2x+1sin(πx 2 )dx
Examples:
1
Z p
9+4x2dx
2
Z
(x +1)2e−2xdx
3
Z
cos2(5x−3)dx
4
Z
e2x+1sin(πx 2 )dx
Examples:
1
Z p
9+4x2dx
2
Z
(x +1)2e−2xdx
3
Z
cos2(5x−3)dx
4
Z
e2x+1sin(πx 2 )dx
Examples:
1
Z p
9+4x2dx
2
Z
(x +1)2e−2xdx
3
Z
cos2(5x−3)dx
4
Z
e2x+1sin(πx 2 )dx
Example:
Integration of R(x,√1−x2)
By using the substitution x =cos u ⇒
√
1−x2=sin u dx =−sin udu (or x =sin u)
Example:
Integration of R(x,√1−x2)
By using the substitution x =cos u ⇒
√
1−x2=sin u dx =−sin udu (or x =sin u)
Example:
Integration of R(x,√1−x2)
By using the substitution x =cos u ⇒
√
1−x2=sin u dx =−sin udu (or x =sin u)
Integral Tables
Z 1
√a2−x2dx =sin−1 x a +c Z 1
a2+x2dx = 1
atan−1x a +c Z √
u2−a2
u du=p
u2−a2−a sec−1u a +c
Z du
u2(a+bu) =− 1 au + b
a2 ln
a+bu u
+c Z du −√
a2+u2
Integral Tables
Z 1
√a2−x2dx =sin−1 x a +c Z 1
a2+x2dx = 1
atan−1x a +c Z √
u2−a2
u du=p
u2−a2−a sec−1u a +c
Z du
u2(a+bu) =− 1 au + b
a2 ln
a+bu u
+c Z du −√
a2+u2
Integral Tables
Z 1
√a2−x2dx =sin−1 x a +c Z 1
a2+x2dx = 1
atan−1x a +c Z √
u2−a2
u du=p
u2−a2−a sec−1u a +c
Z du
u2(a+bu) =− 1 au + b
a2 ln
a+bu u
+c Z du −√
a2+u2
Integral Tables
Z 1
√a2−x2dx =sin−1 x a +c Z 1
a2+x2dx = 1
atan−1x a +c Z √
u2−a2
u du=p
u2−a2−a sec−1u a +c
Z du
u2(a+bu) =− 1 au + b
a2 ln
a+bu u
+c Z du −√
a2+u2
Integral Tables
Z 1
√a2−x2dx =sin−1 x a +c Z 1
a2+x2dx = 1
atan−1x a +c Z √
u2−a2
u du=p
u2−a2−a sec−1u a +c
Z du
u2(a+bu) =− 1 au + b
a2 ln
a+bu u
+c Z du −√
a2+u2
Integral Tables
Z 1
√a2−x2dx =sin−1 x a +c Z 1
a2+x2dx = 1
atan−1x a +c Z √
u2−a2
u du=p
u2−a2−a sec−1u a +c
Z du
u2(a+bu) =− 1 au + b
a2 ln
a+bu u
+c Z du −√
a2+u2
Examples:
1
Z 1
4+x2+2xdx
2
Z du 2u2√
1+4u2
3
Z √
3x2−1
2x dx
Examples:
1
Z 1
4+x2+2xdx
2
Z du 2u2√
1+4u2
3
Z √
3x2−1
2x dx
Examples:
1
Z 1
4+x2+2xdx
2
Z du 2u2√
1+4u2
3
Z √
3x2−1
2x dx
Examples:
1
Z 1
4+x2+2xdx
2
Z du 2u2√
1+4u2
3
Z √
3x2−1
2x dx