• Tidak ada hasil yang ditemukan

Calculus (I)

N/A
N/A
Protected

Academic year: 2024

Membagikan "Calculus (I)"

Copied!
30
0
0

Teks penuh

(1)

Calculus (I)

WEN-CHING LIEN

Department of Mathematics National Cheng Kung University

2008

WEN-CHINGLIEN Calculus (I)

(2)

10.2

Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers

a1,a2,a3, . . . ,an, . . . {an}

WEN-CHINGLIEN Calculus (I)

(3)

10.2

Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers

a1,a2,a3, . . . ,an, . . . {an}

WEN-CHINGLIEN Calculus (I)

(4)

10.2

Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers

a1,a2,a3, . . . ,an, . . . {an}

WEN-CHINGLIEN Calculus (I)

(5)

(1)

1 the scalar product

an}={αa1, αa2, . . .} 2 the sum

{an+bn}={a1+b1,a2+b2, . . .} 3 the difference

{{anbn}=a1b1,a2b2, . . .} 4 the product

{anbn}={a1b1,a2b2, . . .} 5 the reciprocal

{1/bn}={1/b1,1/b2. . .} 6 the quotient

{an/bn}={a1/b1,a2/b2, . . .}

WEN-CHINGLIEN Calculus (I)

(6)

(1)

1 the scalar product

an}={αa1, αa2, . . .} 2 the sum

{an+bn}={a1+b1,a2+b2, . . .} 3 the difference

{{anbn}=a1b1,a2b2, . . .} 4 the product

{anbn}={a1b1,a2b2, . . .} 5 the reciprocal

{1/bn}={1/b1,1/b2. . .} 6 the quotient

{an/bn}={a1/b1,a2/b2, . . .}

WEN-CHINGLIEN Calculus (I)

(7)

(1)

1 the scalar product

an}={αa1, αa2, . . .} 2 the sum

{an+bn}={a1+b1,a2+b2, . . .} 3 the difference

{{anbn}=a1b1,a2b2, . . .} 4 the product

{anbn}={a1b1,a2b2, . . .} 5 the reciprocal

{1/bn}={1/b1,1/b2. . .} 6 the quotient

{an/bn}={a1/b1,a2/b2, . . .}

WEN-CHINGLIEN Calculus (I)

(8)

(1)

1 the scalar product

an}={αa1, αa2, . . .} 2 the sum

{an+bn}={a1+b1,a2+b2, . . .} 3 the difference

{{anbn}=a1b1,a2b2, . . .} 4 the product

{anbn}={a1b1,a2b2, . . .} 5 the reciprocal

{1/bn}={1/b1,1/b2. . .} 6 the quotient

{an/bn}={a1/b1,a2/b2, . . .}

WEN-CHINGLIEN Calculus (I)

(9)

(1)

1 the scalar product

an}={αa1, αa2, . . .} 2 the sum

{an+bn}={a1+b1,a2+b2, . . .} 3 the difference

{{anbn}=a1b1,a2b2, . . .} 4 the product

{anbn}={a1b1,a2b2, . . .} 5 the reciprocal

{1/bn}={1/b1,1/b2. . .} 6 the quotient

{an/bn}={a1/b1,a2/b2, . . .}

WEN-CHINGLIEN Calculus (I)

(10)

(1)

1 the scalar product

an}={αa1, αa2, . . .} 2 the sum

{an+bn}={a1+b1,a2+b2, . . .} 3 the difference

{{anbn}=a1b1,a2b2, . . .} 4 the product

{anbn}={a1b1,a2b2, . . .} 5 the reciprocal

{1/bn}={1/b1,1/b2. . .} 6 the quotient

{an/bn}={a1/b1,a2/b2, . . .}

WEN-CHINGLIEN Calculus (I)

(11)

(1)

1 the scalar product

an}={αa1, αa2, . . .} 2 the sum

{an+bn}={a1+b1,a2+b2, . . .} 3 the difference

{{anbn}=a1b1,a2b2, . . .} 4 the product

{anbn}={a1b1,a2b2, . . .} 5 the reciprocal

{1/bn}={1/b1,1/b2. . .} 6 the quotient

{an/bn}={a1/b1,a2/b2, . . .}

WEN-CHINGLIEN Calculus (I)

(12)

(1)

1 the scalar product

an}={αa1, αa2, . . .} 2 the sum

{an+bn}={a1+b1,a2+b2, . . .} 3 the difference

{{anbn}=a1b1,a2b2, . . .} 4 the product

{anbn}={a1b1,a2b2, . . .} 5 the reciprocal

{1/bn}={1/b1,1/b2. . .} 6 the quotient

{an/bn}={a1/b1,a2/b2, . . .}

WEN-CHINGLIEN Calculus (I)

(13)

(1)

1 the scalar product

an}={αa1, αa2, . . .} 2 the sum

{an+bn}={a1+b1,a2+b2, . . .} 3 the difference

{{anbn}=a1b1,a2b2, . . .} 4 the product

{anbn}={a1b1,a2b2, . . .} 5 the reciprocal

{1/bn}={1/b1,1/b2. . .} 6 the quotient

{an/bn}={a1/b1,a2/b2, . . .}

WEN-CHINGLIEN Calculus (I)

(14)

(1)

1 the scalar product

an}={αa1, αa2, . . .} 2 the sum

{an+bn}={a1+b1,a2+b2, . . .} 3 the difference

{{anbn}=a1b1,a2b2, . . .} 4 the product

{anbn}={a1b1,a2b2, . . .} 5 the reciprocal

{1/bn}={1/b1,1/b2. . .} 6 the quotient

{an/bn}={a1/b1,a2/b2, . . .}

WEN-CHINGLIEN Calculus (I)

(15)

(1)

1 the scalar product

an}={αa1, αa2, . . .} 2 the sum

{an+bn}={a1+b1,a2+b2, . . .} 3 the difference

{{anbn}=a1b1,a2b2, . . .} 4 the product

{anbn}={a1b1,a2b2, . . .} 5 the reciprocal

{1/bn}={1/b1,1/b2. . .} 6 the quotient

{an/bn}={a1/b1,a2/b2, . . .}

WEN-CHINGLIEN Calculus (I)

(16)

(1)

1 the scalar product

an}={αa1, αa2, . . .} 2 the sum

{an+bn}={a1+b1,a2+b2, . . .} 3 the difference

{{anbn}=a1b1,a2b2, . . .} 4 the product

{anbn}={a1b1,a2b2, . . .} 5 the reciprocal

{1/bn}={1/b1,1/b2. . .} 6 the quotient

{an/bn}={a1/b1,a2/b2, . . .}

WEN-CHINGLIEN Calculus (I)

(17)

Definition (monotonic sequences) The sequence {an}is said to be

–increasing if an <an+1, ∀n –nondecreasing if anan+1, ∀n –decreasing if an >an+1, ∀n –nonincreasing if anan+1, ∀n

Example:

{−1,−2,−3, . . .} {−1,1,−1,1, . . .}

WEN-CHINGLIEN Calculus (I)

(18)

Definition (monotonic sequences) The sequence {an}is said to be

–increasing if an <an+1, ∀n –nondecreasing if anan+1, ∀n –decreasing if an >an+1, ∀n –nonincreasing if anan+1, ∀n

Example:

{−1,−2,−3, . . .} {−1,1,−1,1, . . .}

WEN-CHINGLIEN Calculus (I)

(19)

Definition (monotonic sequences) The sequence {an}is said to be

–increasing if an <an+1, ∀n –nondecreasing if anan+1, ∀n –decreasing if an >an+1, ∀n –nonincreasing if anan+1, ∀n

Example:

{−1,−2,−3, . . .} {−1,1,−1,1, . . .}

WEN-CHINGLIEN Calculus (I)

(20)

Definition (monotonic sequences) The sequence {an}is said to be

–increasing if an <an+1, ∀n –nondecreasing if anan+1, ∀n –decreasing if an >an+1, ∀n –nonincreasing if anan+1, ∀n

Example:

{−1,−2,−3, . . .} {−1,1,−1,1, . . .}

WEN-CHINGLIEN Calculus (I)

(21)

Definition (monotonic sequences) The sequence {an}is said to be

–increasing if an <an+1, ∀n –nondecreasing if anan+1, ∀n –decreasing if an >an+1, ∀n –nonincreasing if anan+1, ∀n

Example:

{−1,−2,−3, . . .} {−1,1,−1,1, . . .}

WEN-CHINGLIEN Calculus (I)

(22)

Definition (monotonic sequences) The sequence {an}is said to be

–increasing if an <an+1, ∀n –nondecreasing if anan+1, ∀n –decreasing if an >an+1, ∀n –nonincreasing if anan+1, ∀n

Example:

{−1,−2,−3, . . .} {−1,1,−1,1, . . .}

WEN-CHINGLIEN Calculus (I)

(23)

Definition (monotonic sequences) The sequence {an}is said to be

–increasing if an <an+1, ∀n –nondecreasing if anan+1, ∀n –decreasing if an >an+1, ∀n –nonincreasing if anan+1, ∀n

Example:

{−1,−2,−3, . . .} {−1,1,−1,1, . . .}

WEN-CHINGLIEN Calculus (I)

(24)

Definition (monotonic sequences) The sequence {an}is said to be

–increasing if an <an+1, ∀n –nondecreasing if anan+1, ∀n –decreasing if an >an+1, ∀n –nonincreasing if anan+1, ∀n

Example:

{−1,−2,−3, . . .} {−1,1,−1,1, . . .}

WEN-CHINGLIEN Calculus (I)

(25)

Examples:

1. {an = 3n

n!}is nonincreasing?

2. {an =√

n2+1}

3. {an = n+3 ln(n+3)}

4. {an = (n+1)2 n2 } 5. {an = (2n+3n)1n}

WEN-CHINGLIEN Calculus (I)

(26)

Examples:

1. {an = 3n

n!}is nonincreasing?

2. {an =√

n2+1}

3. {an = n+3 ln(n+3)}

4. {an = (n+1)2 n2 } 5. {an = (2n+3n)1n}

WEN-CHINGLIEN Calculus (I)

(27)

Examples:

1. {an = 3n

n!}is nonincreasing?

2. {an =√

n2+1} 3. {an = n+3

ln(n+3)}

4. {an = (n+1)2 n2 } 5. {an = (2n+3n)1n}

WEN-CHINGLIEN Calculus (I)

(28)

Examples:

1. {an = 3n

n!}is nonincreasing?

2. {an =√

n2+1} 3. {an = n+3

ln(n+3)}

4. {an = (n+1)2 n2 } 5. {an = (2n+3n)1n}

WEN-CHINGLIEN Calculus (I)

(29)

Examples:

1. {an = 3n

n!}is nonincreasing?

2. {an =√

n2+1} 3. {an = n+3

ln(n+3)}

4. {an = (n+1)2 n2 } 5. {an = (2n+3n)1n}

WEN-CHINGLIEN Calculus (I)

(30)

Thank you.

WEN-CHINGLIEN Calculus (I)

Referensi

Dokumen terkait