WEN-CHING LIEN
Department of Mathematics National Cheng Kung University
2008
Case 1: Unbounded Intervals
Let f(x)be continuous on the intervals[a,∞).
If
zlim→∞
Z z
a
f(x)dx exists and has a finite value.
we say that the improper integral Z ∞
a
f(x)dx
converge and define
Z ∞ Z z
Let f(x)be continuous on the intervals[a,∞).
If
zlim→∞
Z z
a
f(x)dx exists and has a finite value.
we say that the improper integral Z ∞
a
f(x)dx
converge and define
Z ∞ Z z
Let f(x)be continuous on the intervals[a,∞).
If
zlim→∞
Z z
a
f(x)dx exists and has a finite value.
we say that the improper integral Z ∞
a
f(x)dx
converge and define
Z ∞ Z z
Let f(x)be continuous on the intervals[a,∞).
If
zlim→∞
Z z
a
f(x)dx exists and has a finite value.
we say that the improper integral Z ∞
a
f(x)dx
converge and define
Z ∞ Z z
Let f(x)be continuous on the intervals[a,∞).
If
zlim→∞
Z z
a
f(x)dx exists and has a finite value.
we say that the improper integral Z ∞
a
f(x)dx
converge and define
Z ∞ Z z
If f (x) is continuous on (a, b] and lim
x→a+f (x) does not exist, we define
Z
ba
f (x )dx = lim
c→a+
Z
cb
f (x )dx
If f (x) is continuous on (a, b] and lim
x→a+f (x) does not exist, we define
Z
ba
f (x )dx = lim
c→a+
Z
cb
f (x )dx
If f (x) is continuous on (a, b] and lim
x→a+f (x) does not exist, we define
Z
ba
f (x )dx = lim
c→a+
Z
cb
f (x )dx
If f ( x ) is continuous on [ a, b ) and lim
x→b−f ( x ) does not exist, we define
Z
ba
f (x)dx = lim
c→b−
Z
ca
f (x)dx
If f ( x ) is continuous on [ a, b ) and lim
x→b−f ( x ) does not exist, we define
Z
ba
f (x)dx = lim
c→b−
Z
ca
f (x)dx
If f ( x ) is continuous on [ a, b ) and lim
x→b−f ( x ) does not exist, we define
Z
ba
f (x)dx = lim
c→b−
Z
ca
f (x)dx
Case 1:
1
Z
∞1
1 x dx ,
Z
∞1
1 x
2dx ,
Z
∞1
1 x
pdx
2
Z
∞−∞
e
−|x|dx
3
Z
∞e
1
x (ln x )
2dx
∞
Case 1:
1
Z
∞1
1 x dx ,
Z
∞1
1 x
2dx ,
Z
∞1
1 x
pdx
2
Z
∞−∞
e
−|x|dx
3
Z
∞e
1
x (ln x )
2dx
∞
Case 1:
1
Z
∞1
1 x dx ,
Z
∞1
1 x
2dx ,
Z
∞1
1 x
pdx
2
Z
∞−∞
e
−|x|dx
3
Z
∞e
1
x (ln x )
2dx
∞
Case 1:
1
Z
∞1
1 x dx ,
Z
∞1
1 x
2dx ,
Z
∞1
1 x
pdx
2
Z
∞−∞
e
−|x|dx
3
Z
∞e
1
x (ln x )
2dx
∞
Case 1:
1
Z
∞1
1 x dx ,
Z
∞1
1 x
2dx ,
Z
∞1
1 x
pdx
2
Z
∞−∞
e
−|x|dx
3
Z
∞e
1
x (ln x )
2dx
∞
Case 1:
1
Z
∞1
1 x dx ,
Z
∞1
1 x
2dx ,
Z
∞1
1 x
pdx
2
Z
∞−∞
e
−|x|dx
3
Z
∞e
1
x (ln x )
2dx
∞
1
Z
20
1
(x − 1)
13dx
2
Z
e1
1 x ln x dx
3
Z
10
√ 1
x dx
Z
11
1
Z
20
1
(x − 1)
13dx
2
Z
e1
1 x ln x dx
3
Z
10
√ 1
x dx
Z
11
1
Z
20
1
(x − 1)
13dx
2
Z
e1
1 x ln x dx
3
Z
10
√ 1
x dx
Z
11
1
Z
20
1
(x − 1)
13dx
2
Z
e1
1 x ln x dx
3
Z
10
√ 1
x dx
Z
11
(1)
Assume that f(x)≥0 for x ≥a.
Suppose that there exists g(x)such that g(x)≥f(x)for x ≥a andR∞
a g(x)dx is convergent. Then Z ∞
a
f(x)dx is also convergent
(1)
Assume that f(x)≥0 for x ≥a.
Suppose that there exists g(x)such that g(x)≥f(x)for x ≥a andR∞
a g(x)dx is convergent. Then Z ∞
a
f(x)dx is also convergent
(1)
Assume that f(x)≥0 for x ≥a.
Suppose that there exists g(x)such that g(x)≥f(x)for x ≥a andR∞
a g(x)dx is convergent. Then Z ∞
a
f(x)dx is also convergent
(1)
Assume that f(x)≥0 for x ≥a.
Suppose that there exists g(x)such that g(x)≥f(x)for x ≥a andR∞
a g(x)dx is convergent. Then Z ∞
a
f(x)dx is also convergent
(2)
Assume that f(x)≥0 for x ≥a.
Suppose that there exists g(x)such that g(x)≤f(x)for x ≥a andR∞
a g(x)dx is divergent. Then Z ∞
a
f(x)dx is also divergent
(2)
Assume that f(x)≥0 for x ≥a.
Suppose that there exists g(x)such that g(x)≤f(x)for x ≥a andR∞
a g(x)dx is divergent. Then Z ∞
a
f(x)dx is also divergent
(2)
Assume that f(x)≥0 for x ≥a.
Suppose that there exists g(x)such that g(x)≤f(x)for x ≥a andR∞
a g(x)dx is divergent. Then Z ∞
a
f(x)dx is also divergent
(2)
Assume that f(x)≥0 for x ≥a.
Suppose that there exists g(x)such that g(x)≤f(x)for x ≥a andR∞
a g(x)dx is divergent. Then Z ∞
a
f(x)dx is also divergent
1
Z ∞
1
√ 1
1+x6dx
2
Z ∞
−∞
1 ex +e−x
3
Z ∞
1
1 px+√
xdx
4
Z ∞ 1
√ dx
1
Z ∞
1
√ 1
1+x6dx
2
Z ∞
−∞
1 ex +e−x
3
Z ∞
1
1 px+√
xdx
4
Z ∞ 1
√ dx
1
Z ∞
1
√ 1
1+x6dx
2
Z ∞
−∞
1 ex +e−x
3
Z ∞
1
1 px+√
xdx
4
Z ∞ 1
√ dx
1
Z ∞
1
√ 1
1+x6dx
2
Z ∞
−∞
1 ex +e−x
3
Z ∞
1
1 px+√
xdx
4
Z ∞ 1
√ dx
1
Z ∞
1
√ 1
1+x6dx
2
Z ∞
−∞
1 ex +e−x
3
Z ∞
1
1 px+√
xdx
4
Z ∞ 1
√ dx