• Tidak ada hasil yang ditemukan

do exercise: 8, 10, 12, 16, 17 (2) In section 16

N/A
N/A
Protected

Academic year: 2023

Membagikan "do exercise: 8, 10, 12, 16, 17 (2) In section 16"

Copied!
1
0
0

Teks penuh

(1)

HW 3 Suggested Problems (you do not have to turn them in).

(1) In section 14.6: do exercise: 8, 10, 12, 16, 17 (2) In section 16.5: do exercise: 5, 6, 7

Turn in the following set of problems:

(1) In section 14.6: 37

(2) In section 16.5: 23, 24, 25, 26, 27, 28, 29, 30.

(3) Letz=f(x, y) be a nice function defined on a domainDonR2.Letu=iandv= (i+j)/√ 2.

Suppose thatpis an interior point ofD andDuf(p) = 3 andDvf(p) =√ 2.

(a) Find∇f(p).

(b) Find the maximum ofDwf(p) whenw runs through the set of unit vectorsS1={w∈ R2:kwk= 1}.

(c) Find allwsuch thatDwf(p) = 0.

(4) Let u : D → R be a nice function on a plane domain D such that uxy = 0 on D. Find constantsa, bsuch that the functionf :D→Rdefined byf(x, y) =u(x, y)eax+bysatisfying the following partial differential equation

fxy−2fx−3fy+abf= 0.

(5) Let k, Q, qbe real numbers. We define a function V :R3\ {0} →Rby V(x, y, z) = kQq

r wherer=p

x2+y2+z2. (a) Find∇V.

(b) LetC be a curve from (2,2,1) to (3,4,12). Find the line integral Z

C

∇V ·dr.

(c) Prove that ∆V = 0 where ∆ =∇ · ∇is the Laplace operator.

(6) Let Fbe a nice vector field on a regionD in R3.Prove that∇ ·(∇ ×F) = 0.

(7) Let u:R2\ {0} →Rbe a nice function. We define a functionf : (0,∞)×[0,2π)→Rby f(r, θ) =u(rcosθ, rsinθ).

Use chain rule to prove that

uxx+uyy=frr+1 rfr+ 1

r2fθθ. (This is the Laplacian in the polar coordinate).

1

Referensi

Dokumen terkait

5, 2014 ラン藻の代謝改変によるバイオプラスチック増産 ラン藻代謝工学の新展開 ラン藻は,酸素発生型の光合成を行う細菌である(図 1).淡水,海水,土壌から深海や温泉に至るまで,あら ゆる環境に生育していることが知られている.光合成を 行うことで,光エネルギーと大気中の二酸化炭素の利用 が可能であることから,ラン藻を用いたバイオエネル