• Tidak ada hasil yang ditemukan

drhuang.com

N/A
N/A
Protected

Academic year: 2023

Membagikan "drhuang.com"

Copied!
92
0
0

Teks penuh

(1)

高等数学 高等数学 高等数学 高等数学

积 分 分 表

公 式 式 推 推 导

(2)
(3)

(一)含有

(一)含有

(一)含有 (一)含有 ax + b 的积分 的积分 的积分 的积分

(1~9)·······················································1

(二)含有

(二)含有

(二)含有 (二)含有 ax

+

b 的积分 的积分 的积分 的积分

(10~18)···················································5

(三)含有

(三)含有

(三)含有 (三)含有 x

2

± a

2

的积分 的积分 的积分 的积分

(19~21)····················································9

(四)含有

(四)含有

(四)含有 (四)含有 ax

2

+ b ( a > 0 ) 的积分 的积分 的积分 的积分

(22~28)············································11

(五)含有

(五)含有

(五)含有 (五)含有 ax

2+

bx

+

c

(

a

>0)

的积分 的积分 的积分 的积分

(29~30)········································14

(六)含有

(六)含有

(六)含有 (六)含有

x2 + a2 (a > 0)

的积分 的积分 的积分 的积分

(31~44)·········································15

(七)含有

(七)含有

(七)含有 (七)含有 x

2

a

2 (

a

>0)

的积分 的积分 的积分 的积分

(45~58)·········································24

(八)含有

(八)含有

(八)含有 (八)含有 a

2

x

2 (

a

> 0)

的积分 的积分 的积分 的积分

(59~72)·········································37

(九)含有

(九)含有

(九)含有 (九)含有 ± a

2

+ bx + c ( a > 0 ) 的积分 的积分 的积分 的积分

(73~78)····································48

(十)含有

(十)含有

(十)含有 (十)含有

(xa)(bx)

的积分 的积分 的积分 的积分

(79~82)···························51

(十一)含有三角函数的积分

(十一)含有三角函数的积分

(十一)含有三角函数的积分 (十一)含有三角函数的积分

(83~112)···········································55

(十二)含有反三角函数的积分(其中

(十二)含有反三角函数的积分(其中

(十二)含有反三角函数的积分(其中 (十二)含有反三角函数的积分(其中 a > 0 ) )))

(113~121)·······················68

(十三)含有指数函数的积分

(十三)含有指数函数的积分

(十三)含有指数函数的积分 (十三)含有指数函数的积分

(122~131)··········································73

(十四)含有对数函数的积分

(十四)含有对数函数的积分

(十四)含有对数函数的积分 (十四)含有对数函数的积分

(132~136)··········································78

(十五)含有双曲函数的积分

(十五)含有双曲函数的积分

(十五)含有双曲函数的积分 (十五)含有双曲函数的积分

(137~141)··········································80

(十六)定积分

(十六)定积分

(十六)定积分 (十六)定积分

(142~147)····························································81

附录:常数和基本初等函数导数公式

附录:常数和基本初等函数导数公式 附录:常数和基本初等函数导数公式 附录:常数和基本初等函数导数公式

·········································85

说明

说明 说明 说明

·····················································································86

团队人员

团队人员 团队人员 团队人员

··············································································87 b

x a x

± −

(4)
(5)

- 1 -

(一)含有

(一)含有

(一)含有 (一)含有 ax + b 的积分 的积分 的积分 的积分

(1~9)

C b ax a ln b ax b dx

ax t

C t a ln

tdt a b ax

dx

adt dx , adx dt t

t b ax

a x b b x

) ax x ( f

C b ax a ln b ax . dx

+ +

⋅ + =

+

=

+

= + =

=

=

= +

− + ≠

= + +

⋅ + =

1

1

1 1

1 )

0 (

}

| 1 {

1 1

代入上式得:

,则 令

的定义域为 被积函数

证明:

C b

μ ax dx a

b ax b

ax t

C μ t

a dt a t dx b ax

adt dx , adx dt t b ax

μ C b

μ ax dx a

b ax .

μ μ

μ μ μ

μ μ

+ +

+ ⋅

= +

+

=

+ + ⋅

=

= +

=

=

= +

≠ +

+ + ⋅

= +

+ +

+

1 1

1

) ) (

1 ( ) 1

(

) 1 ( 1

) 1 (

1 ,

1) (

)

) ( 1 ( ) 1

( 2

代入上式得:

则 令

证明:

( )

( )

( )

( )

(

ax b b ln ax b

)

C dx a

b ax b x

ax t

C t ln b a t

C t a ln

b a t

t dt b dt a

a

t dt 1 b dt a

·a t

b a t bdx

ax x

adt dx , b a t x , t t b ax

a x b

| b x

ax ) x x ( f

C b ax ln b b a ax

bdx ax . x

2 2

2 2

2 2

2 2

+ +

− + + =

+

=

+

=

+

=

=

⎟⎠

⎜ ⎞

⎛ −

=

− + =

=

=

= +

− + ≠

=

+ +

− + + =

∫ ∫

1

1

1 1

1 1

1

1 1

) 0 (

} {

1 3

代入上式得:

则 令

的定义域为 被积函数

证明:

(6)

C b ax ln b b ax b b

a ax bdx ax

x

C b ax a ln b b ax bd a ax

dx b b ax

b a

C b ax a ln

x b a

b

b ax bd ax a dx b a

b

ax b d ax

b b ax a dx b b ax

abx a

C b a ax

dx b a ax

bdx ax

b dx a

b ax

abx dx a

b a ax

b dx ax

b abx b

ax dx a

b ax

x

C b ax ln b b ax b b

a ax bdx ax

x

⎥+

⎢⎣

⎡ + − + + ⋅ +

+ =

+ +

= + +

+ =

+ +

=

+ +

=

+

= + +

+ +

= +

− +

− + +

=

+

= + +

⎥+

⎢⎣

⎡ + − + + ⋅ +

+ =

) ( 2 ) 2(

1 1

) 1 (

1

2 2

) 1 (

2 2

) 2 (

2 1

) 2 (

) 1 1 (

1 2

) 1 1 (

) 2

) ( 1

) ( 2 ) 2(

1 1

. 4

2 2

3 2

3 3 2 3

2 2

2

3 2 2 3

3 2 3

3 2

1 2 3

2

2 2 2

2

2 2

2 2

2 2

3 2

由以上各式整理得:

证明:

x C b ln ax

b

b C ax ln x b

C b ax b ln x b ln

) b ax ( bd ax dx b

x b

bdx ax b dx a x dx b

) b ax ( b

a bx

b ax x

dx

b a b Ab

B Aa

b x a x b b ax

ax B x b ax x

a x b

| b x

ax ) x

x ( f

x C b ln ax b b

ax x . dx

+ +

=

+ +

=

+ +

=

+ +

=

− + + =

− ⋅ + =

⎪⎪

⎪⎪⎨

=

=

⎩⎨

=

=

∴ +

+ +

= + + + =

+ + =

− + ≠

= ⋅ + +

− + =

1

1

1 1

1 1 1 1

1 1

] 1 [ 1

) (

B A 1 1

0

A B) (A B ) A(

1 A ,

) ( 1

} ) {

( 1

1 ) (

5

于是 有

则 设

的定义域为 被积函数

证明:

b log b

loga −1 =− a 提示:

(7)

- 3 -

x C b ln ax

b a bx

C b ax b ln

a x bx

b ln a

b ax bd ax b dx a x dx b

x b

a

bdx ax b dx a x dx b

x b

a b

ax x

dx

b C a

b b

a

Bb aB Ab

C Aa

b aB Ab x a

x

Cx b ax b

ax b x

ax C x

B x b ax x

a x b b x

ax x x

f

x C b ln ax

b a bx b

ax x

dx

+ +

⋅ +

=

+ +

⋅ +

=

+ + +

+

=

+ + +

− + =

⎪⎪

=

=

=

⎪⎩

⎪⎨

=

= +

= +

= + + +

+

+ + +

+ + =

+ + + =

− + ≠

= ⋅

+ +

⋅ +

− + =

1

1

) 1 (

1 1 1

1 1

1 1 )

(

B 1 A 1

0 0

1 B ) (

C) (A

) B(

) (

A 1 A ,

) (

1

}

| ) {

( ) 1

(

1 ) (

. 6

2

2 2

2 2

2

2 2 2

2 2

2 2

2 2

2 2

2

2 2 2

于是 有 即

则 设

的定义域为 被积函数

证明:

b C ax b b ax a ln

b C ax a b b ax a ln

b ax b d

ax a b b ax bd ax a

b dx ax a dx b b ax dx a

b ax

x

a B b

a B

Ab Aa

x B Ab a x

b ax b x

ax B b

ax A b

ax x

a x b

| b x

ax ) x x ( f

b C ax b b ax a ln

b dx ax . x

⎟+

⎜ ⎞

+ + +

=

+ + +

+

=

+ +

− + +

=

− +

= + +

⎪⎪

⎪⎪⎨

=

=

⎩⎨

= +

∴ =

= + +

+ + + =

+ + + =

− + ≠

=

⎟+

⎜ ⎞

+ + + + =

1

) ( 1

) ) (

( ) 1

1 ( 1

) (

1 1

1 )

(

A 1 0 1

) (

A

B ) A(

) , (

) (

} ) {

(

1 )

( 7

2

2 2

2 2

2

2 2

2 2

2 2

2

于是 有 即

则 设

的定义域为 被积函数

证明:

(8)

( )

b C ax b b ax ln b b a ax

b dx ax b x

ax t

t C t b ln b a t

C t a ln t b a t a

b

t dt a dt b dt a

t a dt b t

a

bt t

dx b b ax

x

t a

bt t

b t

a t b b

ax x

adt dx , b a t x , t t b ax

a x b

| b x

ax ) x x ( f

b C ax b b ax ln b b a ax

b dx ax . x

⎟⎟+

⎜⎜⎝

− + +

− + + =

+

=

+

=

+

⋅ +

=

− +

− =

= +

∴ +

= +

= −

∴ +

=

=

= +

− + ≠

=

⎟⎟+

⎜⎜⎝

− + +

− + + =

2 3

2 2

2 3

3 3

3 2

3 3

2 3 2 2

3 2 2 2

2

2 2

2 2 2

2 2 2

2

2 2

2 3

2 2

1 2 )

(

) 2

1 (

2 1

1 2 1

1 2

) (

2 )

( ) (

1 1

) 0 (

} ) {

(

1 2 )

( 8

代入上式得:

则 令

的定义域为 被积函数

证明:

C x |

b

| ax ln b · b ax b

b C

· ax b| b

|ax b ln

|x|

b ln

b dx ax b dx a b ax b dx a x b b ax x

dx

b D a

b B a A b 1

Ab

0 D Bb Aab 2

0 Ba Aa

Ab D

Bb Aab 2 x Ba Aa

x

Dx Bbx Bax

Aabx 2 Ab x

Aa

Dx b

ax Bx b

ax A 1

b ax

D b

ax B x

A b

ax x

a x b

| b x

ax ) x

x ( f

C x |

b

| ax b ln b ax b b

ax x . dx

2 2

2

2 2

2 2

2 2

2

2

+ + + −

=

+ + +

+

=

− +

− + + =

⎪⎪

=

=

=

⎪⎩

⎪⎨

=

= + +

= +

+ + + +

+

=

+ +

+ +

+

=

+ + +

+

=

+ + + +

+ =

− + ≠

=

+ + + −

+ =

2 2 2

2 2

2

2 2

2

2 2

2

1 ) (

1

1 1 1

1

) (

1 1

1 1 ) (

1

) (

) (

) (

) (

) (

) (

1

} ) {

( 1

1 · ) (

1 )

( 9

于是 有 则 设:

的定义域为 证明:被积函数

(9)

- 5 -

(二)含有

(二)含有

(二)含有 (二)含有 ax

+

b 的积分 的积分 的积分 的积分

(10~18)

C b a ax

C b

a ax b ax d b a ax

dx b ax

C b a ax

dx b ax

+ +

=

+ +

⋅ +

= + +

= +

+ +

= +

+

3

2 1 1 2

1 3

) 3 (

2

) ( 2 1 1

1 ) 1

( ) 1 (

) 3 (

2 . 10

证明:

C b ax b

a ax

C b ax b

b a ax

dx b ax x b

ax t

C b a t

t

C a t

t b dt a

a dt b a

dt bt a t

a dt t t a

b dx t

b ax x

a t b b t

ax x a dt

dx t a

b x t

t t b ax

C b ax b

a ax dx

b ax x

+ +

=

+ +

− +

= + +

=

+

=

+

=

=

=

− ⋅

= +

− ⋅

= +

− =

=

= +

+ +

= +

3 2

3 2

2 2 3

3 2 5 2 3 2 5 2

2 4 2 2

2 2

3 2

) ( ) 2 3 15 ( 2

) ( ] 5 ) ( 3 15 [ 2

) 5 3 15 ( 2

3 2 5

2 3

2 5

2

) 2 (

2

, 2 ,

, ) 0 (

) ( ) 2 3 15 ( 2

. 11

代入上式得:

则 令

证明:

[ ]

C b ax b

abx x

a a

b ax b b

abx b

x a b a ax

dx b ax x

b ax t

C bt b

a t t

C a t

t b a t b a

C a t

t b a

t b a

dt a t

dt b a t

dt b a t

dt bt t b t a t dx b ax x

a bt t b t t

a b b t

ax x

a dt dx t a

b x t

t t b ax

C b ax b

abx x

a a dx

b ax x

+ +

⋅ +

=

+

− +

+ +

+

= +

+

=

+

− +

=

+

⋅ +

=

+ + ⋅

− + ⋅

⋅ + + ⋅

=

=

− +

= +

= +

− ⋅

= +

− =

=

= +

+ +

⋅ +

= +

+ +

+

3 2

2 2 3

2 2

2 2 3 3

2

2 2

4 3 3

5 3 3 3 2 7 3

1 4 3

2 1 3

2 1 6 3

4 3 2 3

2 6

3

3 2

5 3 2

2 3 2

5 2

2 2 2

2

3 2

2 2 3

2

) ( ) 8 12

15 105 (

2

) ( 42 35

30 15

15 ) 105 (

2

) 42 35

15 105 (

2

5 4 3

2 7

2

4 1

1 4 2

1 1 2

6 1

1 2

4 2

2

) 2 2 (

2 )

(

, 2 ,

, ) 0 (

) ( ) 8 12

15 105 (

2 . 12

代入上式得:

则 令

证明:

(10)

C b ax b

a ax

C b a ax

b b ax b

a ax b dx

ax b x

ax t

C a t

t b a

C a t

t b a

a bdt dt a t

a dt t at

b dx t

b ax

x

a dt dx t a

b x t

t t b ax

C b ax b

a ax b dx

ax x

+ +

=

+ +

− +

⋅ +

= +

+

=

+

=

+

− + ⋅

=

=

− ⋅

= +

− =

=

>

= +

+ +

= +

+

) ( ) 2 3 (

2

) 2 (

) ( ) 3 (

2

2 3

2

2 2

1 1 2

2 2

2

, 2 ,

, ) 0 (

) ( ) 2 3 (

2 . 13

2

2 2

2 3 2

2 1 2 2

2 2

2 2

2 2

代入上式得:

则 令

证明:

[ ]

C b ax b

abx x

a a

C b ax b

ax b b

abx b

x a b a ax

b dx ax

x

b ax t

C bt b

a t t

C bt

t b a t

dt a t

dt b a b

dt a t

dt bt b a t

a dt t t a

b dx t

b ax

x

a dt dx t a

b x t

t t b ax

C b ax b

abx x

a a b dx

ax x

+ +

⋅ +

=

+ +

⋅ +

− + +

+

⋅ +

= +

+

=

+

− +

=

+

− +

=

− +

=

− +

=

− ⋅ + =

− =

=

>

= +

+ +

⋅ +

⋅ + =

) ( ) 8 4

3 15 ( 2

) ( ) ( 10 15

) 2 (

3 ) 15 (

2

) 10 15 3 15 ( 2

3 ) 2 5

(1 2

4 2

2

) 2 2 (

2 ) 1 (

, 2 ,

, ) 0 (

) ( ) 8 4

3 15 ( 2

. 14

2 2

2 3

2 2

2 2 3

2

2 2

4 3

3 2

5 3

2 3 2 3 4 3

2 2 4 3

2 2 2

2 2 2

2 3 2

代入上式得:

则 令

证明:

(11)

- 7 -

⎪⎪

>

− +

⋅ +

>

+ + +

⋅ + + =

− +

⋅ +

= + +

=

+

=

− +

− =

<

+ + +

⋅ + + =

+

=

+ +

⋅ −

=

= −

> −

= −

− ⋅ + =

− =

=

>

= +

⎪⎪

<

− +

⋅ +

>

+ + +

⋅ +

= +

) 0 ( 2

) 0 ( 1

2 , 1

2

t 2

) ( 2 1 0 2

. 2

1

1

) ( 2 1 0 2

b . 1

2

2 1

, 2 ,

, ) 0 (

) 0 ( 2

) 0 ( 1

. 15

2 2 2

2 2 2

2 2

2

b b C

b arctan ax

b

b b C

b ax

b b ln ax

b b

ax x

dx

b C b arctan ax

b b

ax x b dx

ax t

C b arctan b

b dt dt t

b b t

b C b ax

b b ln ax

b b ax x b dx

ax t

b C t

b ln t

b

b dt dt t

b t

bdt t

a dt t a t

b b t

ax x

dx

a dt dx t a

b x t

t t b ax

b b C

b arctan ax

b

b b C

b ax

b b ln ax

b b

ax x

dx

得:

综合讨论

代入上式得:

, 时 当

代入上式得:

, 时 当

则 令

证明:

a C x

a ln x a a x

dx +

+

=

21

21 2 2

公式

a C arctan x a

a x

dx = +

+ 1

19 2 2

公式

(12)

+ + −

=

+ +

− +

− +

=

+

⋅ + +

− +

=

+ + +

− +

=

+

− +

=

+ + +

= +

⎪⎪

⎪⎪⎨

=

=

⎩⎨

=

=

∴ +

+ +

+ = +

+

= +

+ + −

= +

b ax x

dx b

a bx

b ax

b dx ax b x

a bx

b dx ax

b ax b x

a

dx b a ax x b bx

b dx ax

b ax b x

a

b ax xd b bx

b dx ax

b ax b x

a

d x b b ax

bdx ax b x

a

x dx b ax dx b

b ax b x

a b ax x

dx

b b a Bb

Ba A

b ax x x

b ax B b ax x b ax x

b ax x

dx b

a bx

b ax b

ax x

dx

2

1 2

1

) 2(

1 1 1

1 1 1

1 1

1

1 1

B 1 A 1

0

) B(

A 1 A ,

1

2 . 16

2 1 2 2

2 2 2

于是 有

则 设

证明:

2

2 2 1

) ( 2

2 2 1

2

2 1 2

1 ,

2 1 2

2 1 2

2

2 2

2 ,

, ) 0 (

2

. 17

2 2

2 2

2 2

2 2 2

2 2 2

2

+ + +

=

+

− ⋅ + +

+ + =

+

=

− ⋅ +

= + − + =

∴ − + −

=

+ −

− = +

= −

= −

− ⋅ + =

− =

=

= +

+ +

+ + =

b ax x b dx b ax

bdx ax

a b b b ax b

ax x dx

b b ax

ax t

tdx a b b t

t

bdt b t

t x dx

b ax

bdt R t

b

bdt b t

t

bdt b t

dt b dt

t b b t

bdt t dt t a

t b t dx at x

b ax

a dt dx t a

b x t

t t b ax

b ax x b dx b ax x dx

b ax

代入上式得:

不能明确积分 符号可正可负

取值为

则 令

证明:

(13)

- 9 -

(三)含有

(三)含有

(三)含有 (三)含有 x

2

± a

2

的积分 的积分 的积分 的积分

(19~21)

2

) 2 1 (

1

1

2 . 18

2 1 2

2

+ + +

=

⋅ +

⋅ + +

=

+ + +

=

+

− + =

+ +

− + + =

b ax x

dx a

x b ax

adx b

x ax x

b ax

b ax x d x

b ax

d x b ax x dx

b ax

b ax x

dx a

x b dx ax

x b ax

证明:

a C arctanx a

a x

dx a

arctanx t

a arctanx t

tant a x

C a t a dt

t dt sec t a

sec a a

x dx

t sec a t tan a

dx a

x

t dt sec a tant a d π dx

π t tant a x

a C arctanx a

a x

dx

2 2

2

2 2 2

2

+

⋅ + =

=

=

=

+

=

=

⋅ + =

+ =

= ⋅ +

=

=

<

<

=

+

⋅ + =

1

1

1

1

1 )

1 ( 1

)

(

, 2) ( 2

1 . 19

2 2 2

2

2 2 2 2 2

代入上式得:

则 令

证明:

(14)

+

+ + +

+

+

− + − +

= −

⎥⎦

⎢⎣

− + + +

= −

= + +

⎥⎦

⎢⎣

− + + +

+ =

− +

= +

− +

− + + +

= +

+

− + +

= +

+ +

= +

⋅ +

⋅ + −

=

− +

= + +

+

− + − +

= − +

1 2 2 2 1

2 2 2

1 2 2 1

2 2 2 2

2

2 2 2

2 2 1

2 2

1 2 2 2

2 2

2

1 2 2 2 2

2 2

2

1 2 2

2 2 2 2

2

1 2 2

2 2

2

1 2 2 2

2

2 2 2

2 2

2

1 2 2 2 1

2 2 2 2

2

) (

) 1 ( 2

3 2 )

( ) 1 ( 2

) ) (

3 2 ) (

( ) 1 ( 2

1 )

( , 1

) ) (

1 2 ) ( (

2 1 )

( 1

) (

1 )

( ) ) (

2 1 (

) (

2 1 )

( 2 1 ) (

) 2 (

) (

) 2 (

) (

2 ) (

) ) (

(

) (

1 )

( ) (

) (

) 1 ( 2

3 2 )

( ) 1 ( 2 ) (

. 20

n n

n n

n

n n

n

n 2

n n

n n

n

n n

n n

n n

n n

n

n n

n

a x

dx a

n n a

x a n

x

a x n dx

a x

x a

n a

x n dx

n

a x n dx a

x x dx na

a x

a dx 2na x

a x

x a

x n dx

a dx na x

a dx n x

a x

x

a dx x

a a n x

a x

x

a dx x n x a

x x

dx x a

x n a x

x x

a d x

a x x

x a

x dx

a x

dx a

n n a

x a n

x a

x dx

则 令

移项并整理得:

证明:

a C x

a ln x a

C a x a ln a x a ln

adx x dx a

a x a

a dx x a x a a

x dx

a C x

a ln x a a x

dx

+ +

⋅ −

=

+ +

=

− +

= −

− +

= −

+ +

⋅ −

− =

2 1

2 1 2

1

1 2

1 1

2 1

1 ] [ 1

2 1

2 1

. 21

2 2 2 2

证明:

(15)

- 11 -

(四)含有

(四)含有

(四)含有 (四)含有 ax

2

+ b ( a > 0 ) 的积分 的积分 的积分 的积分

(22~28)

) 0 ( 2

1

) 0 ( 1

2 , 1

2

1

1 2

1

) (

1 1

1 ) (

1 1

) ( 1 0 1

. 2

1

1 C

) (

1 1

1 ) (

1 1

1 0 1

b . 1

) ( ) 0 ( 2

1

) 0 ( 1

. 22

2

2 2

2

2 2 2

2

2 2

2

2 2 2

2 2

⎪⎪

<

− + +

⋅ ⋅

>

+

⋅ + =

+

− +

⋅ ⋅

=

+ + −

− −

=

− + =

=

− + =

<

+

=

+

=

+ + =

⋅ +

=

⋅ + + =

>

>

⎪⎪

<

+

− +

⋅ ⋅

>

+

⋅ + =

b b C

x a

b x

ln a ab

b C b x

arctan a ab

b ax

dx

b C x

a

b x

ln a ab

C a x b

a x b a ln a

b

dx a x b

b a ax

dx

a a x b

a a x b

b b ax

C b x

arctan a ab

b x arctan a b

a a

dx a x b

a b ax

dx

a a x b

a a x b b ax

0 a b

b C x

a

b x

ln a ab

b C b x

arctan a ab

b ax

dx

得:

综合讨论

, 时 当

, 时 当

证明:

C b ax a ln

b ax bd ax a

bdx dx ax

b ax

x

a C

b ax a ln bdx

ax x

2 2

+ +

=

+ +

=

= + +

>

+ +

⋅ + =

2 1

) 1 (

2 1

1 2 1

) 0 ( 2

1 . 23

2 2

2 2

2 2

证明:

Referensi

Dokumen terkait

大学拥有着自己的重要使命。其一是将自己的研究成果反馈、奉献于社 会之发展;其二是通过教育培养人才;还有一点,则是成为地域的、乃至整个 世界的和平之基点。 樱美林大学始终以“学而事人”为信条,“学”而奉献于人,正是樱美林 人的思想根基。上述的三项使命都包含于这一信条之中。就“学”而言,学 习与研究并没有明确的分界线,对于深度知识和高度技术之探求,只要我们探