• Tidak ada hasil yang ditemukan

Experimental observation of ferroelectricity in ferrimagnet MnCr 2 S 4

N/A
N/A
Protected

Academic year: 2023

Membagikan "Experimental observation of ferroelectricity in ferrimagnet MnCr 2 S 4 "

Copied!
6
0
0

Teks penuh

(1)

Appl. Phys. Lett. 117, 032903 (2020); https://doi.org/10.1063/5.0012914 117, 032903

© 2020 Author(s).

Experimental observation of ferroelectricity in ferrimagnet MnCr 2 S 4

Cite as: Appl. Phys. Lett. 117, 032903 (2020); https://doi.org/10.1063/5.0012914 Submitted: 19 May 2020 . Accepted: 03 July 2020 . Published Online: 22 July 2020 J. X. Wang , L. Lin, C. Zhang, H. F. Guo, and J.-M. Liu

(2)

Experimental observation of ferroelectricity in ferrimagnet MnCr 2 S 4

Cite as: Appl. Phys. Lett.117, 032903 (2020);doi: 10.1063/5.0012914 Submitted: 19 May 2020

.

Accepted: 3 July 2020

.

Published Online: 22 July 2020

J. X.Wang,1,a) L.Lin,2C.Zhang,1H. F.Guo,1and J.-M.Liu2,a) AFFILIATIONS

1School of Physics and Engineering, Henan University of Science and Technology, Henan Key Laboratory of Photoelectric Energy Storage Materials and Applications, Luoyang 471003, China

2Laboratory of Solid State Microstructures and Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China

a)Authors to whom correspondence should be addressed:[email protected]and[email protected]

ABSTRACT

Ferrimagnetic spinel compounds AB2X4(A and B are the magnetic transition elements) are considered to be promising candidates for multiferroics with large magnetization and polarization. In this work, we synthesize polycrystalline spinel MnCr2S4and characterize the magnetic and ferroelectric properties. Two well defined ferroelectric phase transitions are demonstrated. The first one occurs at the Cr ferromagnetic phase transition temperature ofTC¼65 K, and the other takes place at the Yafet Kittel (YK) magnetic phase transition tem perature ofTYK5 K. It is suggested that ferroelectricity in the YK phase is driven by the noncollinear triangular YK spin orders and can be greatly tuned by an external magnetic field. BetweenTYKandTCranges, another opposite electric polarization sublattice appears, which is enhanced by the external magnetic field just nearTC, revealing that this opposite electric polarization is likely related to magnetostriction and the magnetic field can enhance the lattice distortions nearTC. Thus, this work paves the way for exploiting ferrimagnetic multiferroicity although more studies are needed to clarify the ferroelectricity mechanism in the Crferromagnetic phase.

Published under license by AIP Publishing.https://doi.org/10.1063/5.0012914

Multiferroicity, as one of the favorable topics in condensed mat ter and materials physics, has been receiving intensive attention since the two landmark peer reviewed works on TbMnO3and BiFeO3in 2003, thanks to their unusual physics and potential applications.1,2 Two classes of multiferroics have been identified to date.3–8For Type I multiferroics, the coexistence of magnetism and ferroelectricity comes from separate functional units and may not necessarily offer strong magnetoelectric (ME) coupling, while the ferroelectricity of Type II multiferroics is induced by particular magnetic orders and shows an unprecedented sensitivity to applied magnetic fields. For these so called spin driven ferroelectrics (FEs), representative examples are boracites (Ni3B7O13I, Co3B7O13I, etc.), magnetite Fe3O4, rare earth manganites ReMnO3and ReMn2O5(R¼Gd Ho),etc.However, it is a combination of the ferroelectric order and anti ferromagnetic order coexisting in discovered Type II multiferroics so far, with small electric polarization and nearly zero magnetization.9,10Therefore, coexistence of ferroelectricity (or ferrielectricity) and ferromagnetism (or ferrimag netism) becomes very precious, and many scientists are trying to find a new kind of multiferroics with high multiferroic phase transition temperature and large electric and magnetic polarization.11–13

Cr based chalcogenide spinels with general formula ACr2X4 (A¼Cd, Hg, Fe, Co, Mn, and Cu; X¼O, S, and Se) host rich physical properties due to the coexistence of frustration and strong coupling among spin, charge, orbital, and lattice degrees of freedom,14such as complex orbital states and colossal magnetoresistance in FeCr2S4,15 negative thermal expansion in ZnCr2S4,13colossal magnetocapacitance in CdCr2S4 and HgCr2S4,16,17 and multiferroicity in CdCr2S4, HgCr2S4, and FeCr2S4.16–19 For multiferroicity, the ferromagnetic CdCr2S4 and HgCr2S4 show a relaxor ferroelectric behavior with a colossal magnetocapacitive effect. The relaxor ferroelectricity was claimed to originate from the off center position of the Crion.17 Improper ferroelectricity in the multiferroic FeCr2S4stems from both the noncollinear conical spin order associated with the spin orbital coupling and Jahn Teller distortion below the Fe orbital ordering tem perature of 8.5 K, and the electric polarization (P) reaches the saturated value of 70lC/m2below 4 K.19However, the multiferrioic phase transition temperature is very low and the value of P is not large enough. Therefore, along this group of materials, we pay our attention to MnCr2S4, a spinel with two magnetic sublattices, for designing mul tiferroic with net large magnetization and polarization.

Appl. Phys. Lett.117, 032903 (2020); doi: 10.1063/5.0012914 117, 032903 1

Published under license by AIP Publishing

Applied Physics Letters

ARTICLE scitation.org/journal/apl

(3)
(4)
(5)
(6)

in MnCr2S4. One sublattice has its polarization generated by mag netostriction belowTC. WhenTis decreased toTYK, the other fer roelectric sublattice with polarization in an opposite direction appears, and its polarization is attributed to the spin canted Mn ion in the YK phase.

In summary, extensive multiferroic measurements have been car ried out on MnCr2S4, and the origin of ferroelectricity has been dis cussed. We argued that magnetostriction induced ferroelectricity appears in MnCr2S4onceTfalls belowTC, whileTis lower thanTYK, another ferroelectric sublattice with reverse polarization rises above the former one. This new emerging ferroelectric sublattice is driven by the YK type magnetic structure. Furthermore, ferroelectricity in MnCr2S4 can be enhanced by the applied magnetic field for the increased canted spin angle of Mnions in the YK phase under the magnetic field and the field induced lattice distortions.

This work was supported by the Natural Science Foundation of China (Grant Nos. 11804080, 11874031, and 11834002) and the NSFC Henan Joint Fund (Grant No 162300410089).

DATA AVAILABILITY

The data that support the findings of this study are available within this article.

REFERENCES

1T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura,Nature 426, 55 (2003).

2J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.

Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K.

M. Rabe, M. Wuttig, and R. Ramesh,Science299, 1719 (2003).

3K. F. Wang, J.-M. Liu, and Z. F. Ren,Adv. Phys.58(4), 321 (2009).

4S. Dong, J.-M. Liu, S. W. Cheong, and Z. F. Ren,Adv. Phys.64, 519 (2015).

5K. Xu, X.-Z. Lu, and H. J. Xiang,npj Quantum Mater.2, 1 (2017).

6S.-W. Cheong, D. Talbayev, V. Kiryukhin, and A. Saxena,npj Quantum Mater.

3, 19 (2018).

7K. Yoo, B. Koteswararao, J. Kang, A. Shahee, W. Nam, F. Balakirev, V. S. Zapf, N. Harrison, A. Guda, N. Ter-Oganessian, and K. Hoon Kim,npj Quantum Mater.3, 45 (2018).

8C. L. Lu, M. H. Wu, L. Lin, and J.-M. Liu,Natl. Sci. Rev.6, 653 (2019).

9T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura,Phys. Rev. Lett.

92, 257201 (2004).

10N. Hur, S. Park, P. A. Sharma, S. Guha, and S.-W. Cheong,Phys. Rev. Lett.93, 107207 (2004).

11H. Schmid and E. Asche,J. Phys. C7, 2697 (1974).

12G. Q. Zhang, S. Dong, Z. B. Yan, Y. Y. Guo, Q. F. Zhang, S. Yunoki, E. Dagotto, and J.-M. Liu,Phys. Rev. B84, 174413 (2011).

13F. Wang, T. Zou, L. Q. Yan, Y. Liu, and Y. Sun,Appl. Phys. Lett.100, 122901 (2012).

14C.-C. Gu, X.-L. Chen, and Z.-R. Yang, Electric, Transports and Magnetic Properties of Cr-Based Chalcogenide Spinels(INTECH Publisher, 2017).

15J. Hemberger, P. Lunkenheimer, and R. Fichtl,Phase Transitions79(12), 1065 (2006).

16J. Hemberger, H.-A. Krug von Nidda, V. Tsurkan, and A. Loidl,Phys. Rev. Lett.

98, 147203 (2007).

17J. Hemberger, P. Lunkenheimer, R. Fichtl, H.-A. Krug von Nidda, V. Tsurkan, and A. Loidl,Nature434, 364 (2005).

18S. Weber, P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, and A. Loidl, Phys. Rev. Lett.96, 157202 (2006).

19L. Lin, H. X. Zhu, X. M. Jiang, K. F. Wang, S. Dong, Z. B. Yan, J. G. Wan, and J.-M. Liu,Sci. Rep.4, 6530 (2015).

20V. Tsurkan, M. M€ucksch, V. Fritsch, J. Hemberger, M. Klemm, S. Klimm, S.

K}orner, H.-A. Krug von Nidda, D. Samusi, E.-W. Scheidt, A. Loidl, S. Horn, and R. Tidecks,Phys. Rev. B68, 134434 (2003).

21N. Menyuk, K. Dwight, and A. Wold,J. Appl. Phys.36, 1088 (1965).

22J. Denis, Y. Allain, and R. Plumier,J. Appl. Phys.41, 1091 (1970).

23K. Ohgush, Y. Okimoto, T. Ogasawara, S. Miyasaka, and Y. Tokura,J. Phys.

Soc. Jpn.77(3), 034713 (2008).

24R. Plumier and M. Sougi,Mater. Sci. Forum133-136, 523 (1993).

25V. Tsurkan, S. Zherlitsyn, L. Prodan, V. Felea, P. T. Cong, Y. Skourski, Z.

Wang, J. Deisenhofer, H. K. von Nidda, J. Wosnitza, and A. Loidl,Sci. Adv.3, e1601982 (2017).

26T. A. Kaplan and S. D. Mahanti,Phys. Rev. B83, 174432 (2011).

27A. Ruff, Z. S. Wang, S. Zherlitsyn, J. Wosnitza, S. Krohns, H.-A. K. von Nidda, P. Lunkenheimer, V. Tsurkan, and A. Loidl,Phys. Rev. B100, 014404 (2019).

28M. Nauciei-Bloch, A. Castets, and R. Plumier,Phys. Lett. A39(4), 311 (1972).

29A. Miyata, H. Suwa, T. Nomura, L. Prodan, V. Felea, Y. Skourski, J.

Deisenhofer, H.-A. Krug von Nidda, O. Portugall, S. Zherlitsyn, V. Tsurkan, J.

Wosnitza, and A. Loidl,Phys. Rev. B101, 054432 (2020).

30M. R. Suchomel, D. P. Shoemaker, L. Ribaud, M. C. Kemei, and R. Seshadri, Phys. Rev. B86, 054406 (2012).

31K. Singh, A. Maignan, C. Simon, and C. Martin,Appl. Phys. Lett.99, 172903 (2011).

32Y. Yamasaki, S. Miyasaka, Y. Kaneko, J.-P. He, T. Arima, and Y. Tokura,Phys.

Rev. Lett.96, 207204 (2006).

Applied Physics Letters

ARTICLE scitation.org/journal/apl

Appl. Phys. Lett.117, 032903 (2020); doi: 10.1063/5.0012914 117, 032903 5

Published under license by AIP Publishing

Referensi

Dokumen terkait