• Tidak ada hasil yang ditemukan

Fabrication and photoelectrochemical properties of silicon nanowires/g-C 3 N 4 core/shell arrays

N/A
N/A
Protected

Academic year: 2023

Membagikan "Fabrication and photoelectrochemical properties of silicon nanowires/g-C 3 N 4 core/shell arrays"

Copied!
7
0
0

Teks penuh

(1)

ContentslistsavailableatScienceDirect

Applied Surface Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Full Length Article

Fabrication and photoelectrochemical properties of silicon nanowires/g-C 3 N 4 core/shell arrays

Zhen Chen

a,c

, Ge Ma

a

, Zhihong Chen

b,∗

, Yongguang Zhang

d

, Zhe Zhang

a

, Jinwei Gao

c

, Qingguo Meng

b

, Mingzhe Yuan

b

, Xin Wang

a,∗

, Jun-ming Liu

c

, Guofu Zhou

a

aInstituteofElectronicPaperDisplays,SouthChinaAcademyofAdvancedOptoelectronics,SouthChinaNormalUniversity,Guangzhou,Guangdong Province,China

bShenyangInstituteofAutomation,Guangzhou,ChineseAcademyofSciences,Guangzhou511458,China

cInstituteofAdvancedMaterials,SouthChinaAcademyofAdvancedOptoelectronics,SouthChinaNormalUniversity,Guangzhou,GuangdongProvince, China

dResearchInstituteforEnergyEquipmentMaterials,TianjinKeyLaboratoryofMaterialsLaminatingFabricationandInterfaceControlTechnology,Hebei UniversityofTechnology,Tianjin300130,China

a r t i c l e i n f o

Articlehistory:

Received7September2016

Receivedinrevisedform27October2016 Accepted31October2016

Availableonline1November2016

Keywords:

PEC

Siliconnanowire/g-C3N4core/shellarrays Watersplitting

a b s t r a c t

Aphotoelectrochemical(PEC)cellmadeofmetal-freecarbonnitride(g-C3N4)@siliconnanowire(SiNW) arrays(denotedasSiNWs/g-C3N4)ispresentedinthiswork.Theas-preparedphotoelectrodeswithdif- ferentmasscontentsofg-C3N4havebeensynthesizedviaametal-catalyzedelectrolessetching(MCEE), liquidatomiclayerdeposition(LALD)andannealingmethods.Theamountofg-C3N4ontheSiNWarrays canbecontrolledbytuningtheconcentrationofthecyanamidesolutionusedintheLALDprocedure.The denseandverticallyalignedSiNWs/g-C3N4core/shellnanostructureswerecharacterizedbyscanning electronmicroscopy(SEM),transmissionelectronmicroscopy(TEM),andX-raydiffraction(XRD).Incom- parisonwithFTO/g-C3N4andSiNWsamples,theSiNWs/g-C3N4samplesshowedsignificantlyenhanced photocurrentsovertheentirepotentialsweeprange.Electrochemicalimpedancespectroscopy(EIS)was conductedtoinvestigatethepropertiesofthechargetransferprocess,andtheresultsindicatedthat theenhancedPECperformancemaybeduetotheincreasedphoto-generatedinterfacialchargetrans- ferbetweentheSiNWsandg-C3N4.Thephotocurrentdensityreached45␮A/cm2under100mW/cm2 (AM1.5G)illuminationat0V(vs.Pt)inneutralNa2SO4solution(pH∼7.62).Finally,asystematicalPEC mechanismoftheSiNWs/g-C3N4wasproposed.

©2016PublishedbyElsevierB.V.

1. Introduction

Energy harvested directly from sunlight offers a promising approach to satisfy theincreasing global energy demands and to resolve environmental issues caused by the overuse of fos- silfuels.Oneofthemostattractiveoptionsistheconversionof solarenergy into chemical bonds,suchasH2,through a water splittingprocesswiththehelpofsemiconductor-basedphotocat- alysts[1–4].In the pastdecades, thetraditional TiO2 hasbeen extensivelyinvestigatedinthefieldofhydrogenproductionsince FujishimaandHondafirstdemonstratedthatwatercouldbesplit intoH2 and O2 ona TiO2 electrode under light irradiation[5].

However,therelativelyhighbandgapofTiO2 (ca.3.2eV) leads

Correspondingauthors.

E-mailaddresses:chenzhihong1227@sina.com(Z.Chen),wangxin@scnu.edu.cn (X.Wang).

toinsufficientuseofthesolarspectrum(itcanabsorblessthan 4%oftheavailablesolarenergy),resultinginthelowvisible-light photocatalytic activity of TiO2 [6]. Therefore, developing novel visible-light-responsivephotocatalystshasbecomeahottopicin thephotocatalysisfield.

In recent years, special attentionhas beenpaid tographitic carbonnitride(g-C3N4), duetotherelativelylowband-gap(ca.

2.8eV)andtheappropriatepositionsoftheconductionband(CB) andvalenceband(VB)forwaterreductionandoxidation,respec- tively [7–10]. Furthermore, g-C3N4 can be synthesized by the simplethermalcondensationoflow-costnitrogen-richprecursors, suchasurea, cyanamide,dicyandiamide,andmelamine, among other precursors [11–14]. However, the photocatalytic activity oftheas-obtainedg-C3N4 is usuallyrestrictedby therelatively fastrecombinationof photo-generatedelectron–hole pairs[15].

Variousstrategies, such asmorphology modification,elemental doping,andcopolymerizationaresubsequentlyappliedtoimprove

http://dx.doi.org/10.1016/j.apsusc.2016.10.203 0169-4332/©2016PublishedbyElsevierB.V.

(2)

610 Z.Chenetal./AppliedSurfaceScience396(2017)609–615 thephotocatalyticperformanceofg-C3N4[16–18].Morerecently,

combiningg-C3N4withothersemiconductors,suchasZnO,TiO2, CuInS2,Bi5O7I,InVO4,toformaphotoelectrochemical(PEC)het- erogeneouselectrodeforwatersplittinghasbeenconsideredan effectivewaytoimproveitsphotocatalyticactivity[19–25].How- ever,thesephotoelectrodesalsosufferfrominsufficientabsorption ofsolarenergy and poorsurfacearea, which mayrestricttheir practicalapplications.

SiliconisapromisingphotoelectrodematerialforPECapplica- tionsbecauseofitsnarrowbandgap,enablingeasilycontrollable electricalconductivity[26–28].ComparedtothebulkSistructure, SiNWsexhibitsignificantlyenhancedlightabsorptionandenergy conversionefficiencydue totheirfaster charge transport path- ways,moreefficientcharge collection,higher contactareawith theelectrolyteandlowerreflectivity[29–31].Hence,constructing aheterojunctionbycouplingg-C3N4andSiNWsmayprovidean alternativenovelpathwaytoaddresstheintrinsicdrawbacksof g-C3N4-basedphotoelectrodesforPECapplications.Tothebestof ourknowledge,therearenoreportedstudiesaboutSiNWs/g-C3N4 heterojunctionPECelectrodes.

Inthecurrentwork,wereportanovelmetal-freeSiNWs/g-C3N4

core/shellPECphotoanodeforwater splittingpreparedbysim- plemetal-assistedetching,liquidatomiclayerdeposition(LALD) andannealingmethodsandcharacterizedbyTEM,SEM,XPSS,DRS, XRD.Undervisiblelightirradiation,theSiNWs/g-C3N4photoelec- trodesexhibitednoticeablyenhancedPECperformancecompared toFTO/g-C3N4andSiNWphotoelectrodes,whichisattributedto thefastphoto-generatedchargetransferbetweentheSinanowires andg-C3N4. Asystematic investigationof theeffects ofg-C3N4 thicknessonphotocurrentandthePECmechanismwasconducted.

Thisworkmayprovideacommonandsimpleroutealongwith an insight into designing and understanding an efficient wide spectral-responsePECphotoelectrodeforrenewableenergyappli- cations.

2. Experimental

2.1. SynthesisofSiNWnanoarrays

N-typeverticallyaligned SiNW arrays weresynthesizedvia metal-catalyzed electroless etching (MCEE) of the n-Si wafer substrate. A 2cm×2cm phosphorous-doped n-type Si wafers piece(2–10/cm)wascleanedbywaterandacetone,andthen immersedinanoxidantsolutioncontainingH2SO4(98%)andH2O2

(40%)(v/v=3/1)for60mintoremoveorganicsentirely.Thecleaned siliconwaferwasthenimmediatelyimmersedinanHF–AgNO3 solutioninasealedvesseltoetchfor45minandthenimmersed intheoxidantsolutionforoveranhourtoremovetheresidual Agdendriticcrystalonthewafer.Thesolutionconcentrationsof HFandAgNO3 werekeptat49%(massfraction)and0.25mol/L, respectively.

2.2. SynthesisofSiNWs/g-C3N4core/shellnanoarrays

InatypicalsynthesisoftheSiNWs/g-C3N4nanoarrays,asshown in Scheme1, Si NWswere used asthe core,and a cyanamide solutionwithacertainmassconcentrationwasusedastheshell precursor.TheSiNWs/g-C3N4samplesmentionedlaterwerefabri- catedwithcyanamidesolutionswithamassconcentrationof0.25, exceptwherenoted.Then,apieceoftheSiNWnanoarraysample wasimmersedinthecyanamideaqueoussolutionandleftstand- ingfor 30min.Afterbeingtakenout,thetreatedSiNWsample wasplacedonplanarglassandexposedtoairfor12h.Then,theSi NWs/cyanamidewaferwastransferredtoavacuumtubefurnace andmaintainedat550Cfor3h.

2.3. SynthesisofFTO/g-C3N4photoelectrode

To confirm the superiority of the core-shell nanowires, a FTO/g-C3N4 photoelectrode was prepared.Twenty milliliters of cyanamideaqueoussolutionwastransferredtoacruciblewitha lid.Then, thecruciblewiththecyanamide solutionwasheated to550C ataheatingrateof10C/mininamuffle furnaceand thenmaintainedatthistemperaturefor3h.Intotal,0.2gofthe as-preparedsamplewassuspendedin5mLofethanol,whichwas thengroundfor 4htoformaslurry.Theslurrywasdip-coated ona20mm×20mmfluorine–tinoxide(FTO)glasselectrode.The electrodewasthenannealedat150Cfor2hataheatingrateof 5C/min.

2.4. Characterization

The crystalline structure of the Si NWs/g-C3N4 sample was characterizedusingaShimadzu7000SX-raydiffractometer(XRD) withCuK␣ radiation.The morphologiesand nanowiresizesof theas-preparedsamplesandhigh-resolutionimageswerestudied withafield-emission(JEM2100F)transmissionelectron micro- scope (TEM). EDX mapping analysis was carried out with the sameTEMin STEM mode.Scanning electronmicroscopy (SEM) wasperformedusinga ZEISSULTRA55field-emissionscanning electronmicroscope.TheUV–vis diffusereflectionspectrawere measuredbyaShimadzuU-3010Ultraviolet–visspectrophotome- terequippedwithanintegratingsphereusingbariumsulfateas thereference.Electrochemicalimpedancespectroscopy(EIS),lin- earsweepvoltammetry(LSV)andamperometricI–Tcurve(AIT) measurementswereconductedwithanaccurateelectrochemical workstation(CHI660E)inatwo-electrodesystemusingplatinum wireasthecounterelectrode.X-rayphotoelectronspectroscopy (XPS)datawereobtainedfromaThermoScientific,Escalab250Xi X-rayphotoelectronspectrometer.

2.5. PECmeasurements

The PECproperties of the as-prepared sampleswere evalu- atedbyathree-electrodeelectrochemicalworkstation(CHI660E, China).Forthetwo-electrodesystem,weusedtheas-preparedSi NWs/g-C3N4nanoarraysastheworkingelectrodeandaplatinum wireasthecounterelectrodeandreferenceelectrode[32,33].An aqueoussolutioncontaining0.5MNa2SO4wasusedastheelec- trolyte.ThepHvalueof0.5MNa2SO4isapproximately7.62,which wasmeasuredbya pHmeter(HzaollPS-3C,witha precisionof 0.01).A300-Wxenonlampwithalightintensityof100mW/cm2 (AM1.5G)actedasthelightsource.LSVwascarriedoutatascan rateof50mV/sfrom−1.5to1.5Vvs.Pt.Electrochemicalimpedance spectra(EIS)weremeasuredusingthesameworkstationunderan open-circuitconditionwiththefrequencyrangingfrom0.05Hzto 100kHz.

3. Resultsanddiscussion

3.1. Characterizationofcompositionandstructure

The structures and morphologies of Si NWsand Si NWs/g- C3N4core/shellarraysareobservedbySEMandTEM.Asshown inFig.1(a),thesmoothSiNWarrayswithdiametersrangingfrom 70to300nmareevenlyandverticallyarrangedontheSisubstrate.

Moreover,fromtheviewofthecross-sectionimageoftheSiNWs, thelengthofthesingleSiNWsisapproximately10␮m,controlled byadjustingtheetchingtime.ThesurfaceoftheSiNWsbecomes roughaftercoatingitwithg-C3N4 bytheLALDmethod,butthe lengthoftheSiNWsdidnotchange,asindicatedbythecompari- sonofFig.1(a)and(b).Theg-C3N4iscoatedontothesurfaceofthe

(3)

Scheme1.SchematicIllustrationforthePreparationofSiNWs/g-C3N4.

Fig.1.SEMandTEMimages:(a)cross-sectionalSEMimageofpristineSiNWsand(b)SiNWs/g-C3N4;(c)TEMimagesofasingleSiNWs/g-C3N4core/shellstructure;(d) HRTEMimagesofSiNWs/g-C3N4.

SiNWsuniformlytoformtheSiNWs/g-C3N4core/shellstructure, confirmingtheintimateinterfacialcontactbetweenSiNWsandg- C3N4,asshowninFig.1(c).AnHRTEMimageofSiNW/g-C3N4is showninFig.1(d),whichindicatesthatthethicknessoftheg-C3N4 shellisapproximately15nm.

The elemental composition and chemical state of the as- preparedSi NWs/g-C3N4 sample aredetectedby XPSmeasure- ments,and theresultsare shownin Fig.2.The SiNWs/g-C3N4 compositesarecomposedofC, N,SiandO,whichconfirmsthe

coexistenceofSiNWsandg-C3N4intheSiNWs/g-C3N4compos- ite.ThetypicalhighresolutionXPSC1sandN1sspectraindifferent samplesarealsogiveninFig.2(b–c).TheC1shigh-resolutionspec- trumshowstwodifferentpeakswithbindingenergiesof284.8and 289.4eV.Thesharppeaklocatedat284.8eVisattributedtosp2 hybridizedcarbons(C C)andthepeaklocatedat289.4eVcorre- spondstoC (N)3bonds[34,35].TheN1shigh-resolutionspectrum isdecomposedintothreepeaks.Thepeakcenteredat399.8eVis attributabletothesp2Ninvolvedinthebridgingnitrogenatoms

(4)

612 Z.Chenetal./AppliedSurfaceScience396(2017)609–615

Fig.2.XPSspectra:(a)surveyspectra,high-resolutionXPSspectraof(b)C1s,(c)N1sand(d)XRDpatternsforthepureg-C3N4,SiNWs/g-C3N4andSiNWs(asshowninthe inset).

ofN (C)3,whereasthecontributionat398.5eVcorrespondstotri- azinerings[36].Thepeakat401.1eVmaybeascribedtothe NH2 or NHgroupsoriginatingfromtheincompletecondensationof cyanamide[37].TheXRD spectraoftheas-preparedSi NWs/g- C3N4,pureg-C3N4andSiNWsamplesareshowninFig.2(d).As forthepureg-C3N4sample,thetwonoteworthydiffractionpeaks at27.5and13.1correspondtothe(002)and(100)crystalplanes [38].AllthepeaksoftheSiNWsshowcompliancewiththerutile phase(JCPDS35-1158),andthefactthatnootherimpurityphaseis detectedindicatesthegoodcrystallinityoftheSiNWs.Noobvious diffractionpeaksforg-C3N4canbeobservedintheSiNWs/g-C3N4 core/shellarrays.ComparingtheXRDpattern ofSiNWs/g-C3N4 andtheSiNWs,itcanbeconcludedthatthediffractionpeaksat 38.5 and 44.7 oftheSiNWs/g-C3N4 samplecanbeattributed tothe(111)and(200)crystalplanesofSi.Thisresultmightbe ascribedtothefactthattheamountofg-C3N4wasverysmalland welldispersedontothesurfaceoftheSiNWs[20].

3.2. Photoelectrochemicalperformance

ThephotoelectrochemicalpropertiesoftheSiNWs/g-C3N4,Si NWs, and FTO/g-C3N4 samples are evaluated via linear sweep voltammetry experiments. The corresponding current density- potentialrelationstestedinthedarkandunderilluminationare showninFig.3(a).Underirradiation,allthepreparedphotoelec- trodesexhibitananodecurrent.TheSiNWs/g-C3N4photoanode showsahigherphotocurrentofapproximately0.316mA/cm2 at 1.0V vs. Pt compared to that of Si nanowire and FTO/g-C3N4

photoanodes,whichcanbeattributedtotheformationofahetero- junctionoftheSinanowireandg-C3N4,indicatingthatN-dopingof theWO3coatingisanefficientstrategytoenhancethePECperfor- manceofSi-basedphotoanodes.Toinvestigatetheeffectofg-C3N4 thicknessonthephotocurrentdensity,cyanamidesolutionswith differentmassconcentrationswereusedtowetthesampleofSi

NWs.Thelinearsweepvoltammetry(J–V)curves oftheresult- ingsampleswithvaryingg-C3N4 shellthicknessesareshownin Fig.3(b). Whenthemassconcentrationof cyanamideincreases from0.125to0.5,thecurrentdensityincreases.Theoptimalmass concentrationis0.25,correspondingtoa15nmg-C3N4shellthick- ness.Whenthemassconcentrationofcyanamideislargerthan 0.25,thephotocurrentoftheSiNWs/g-C3N4photoanodedecreases drasticallybecausethethickerg-C3N4shellmaydecreasethelight absorptionof the Si core.The linear sweepvoltammetry (LSV) measurementoftheFTO/g-C3N4sampleswasconductedtofur- therdemonstratethepositiveeffectsofsiliconnanowires.When g-C3N4 wasdepositedonFTO,anextremelyweakphotocurrent wasobtained(asshownintheinsetofFig.3(d)),indicatingthatthe bulkg-C3N4 hasaverylowPECperformance.Wheng-C3N4 was depositedonthesiliconnanowiresstructure,thephotocurrentwas significantlyraisedbecauseoftheincreasingoflightabsorption andcontactarea.Fig.3(c)showstheLSVcurvewithchoppedAM 1.5lightof100mW/cm2intensity.Amuchhighertransientpho- tocurrentisobservedcomparedtothesteady-statephotocurrent.

Thisphenomenonmaysimplybeascribedtocarrierrecombination atthesurfaceofg-C3N4.Wealsoinvestigatedtheamperometric I–TcurveofSiNWs/g-C3N4,SiNWsandFTO/g-C3N4at0Vvs.Pt underAM1.5light,asshowninFig.3(d).TheSiNWs/g-C3N4sample achievesastablephotocurrentdensityof45␮A/cm2,whichis2.5 timesthatoftheSiNWsampleand562.5timesthatofFTO/g-C3N4. Thispromotionofphotocurrentdensityindicatesthatconstructing aSiNWs/g-C3N4core/shellheterojunctionisaneffectiverouteto addresstheintrinsicdrawbacksofg-C3N4-basedphotoanodesfor PECapplications.

3.3. Opticalabsorptionandchargetransferproperties

TheopticalabsorptionoftheSiNWs,FTO/g-C3N4andSiNWs/g- C3N4sampleswereinvestigatedbyUV–visspectrophotometry,and

(5)

Fig.3.(a-c)LinearsweepJ–Vmeasurementsunder100mWcm2ofsimulatedsunlightillumination:(a)FTO/g-C3N4,SiNWsandSiNWs/g-C3N4samples;(b)photocur- rentdensityoverg-C3N4-modifiedSiNWswithdifferentcyanamideconcentrations;(c)SiNWs/g-C3N4arrayelectrodesilluminatedwithchoppedwhitelight;and(d) amperometricI–tcurvesofFTO/g-C3N4,SiNWsandSiNWs/g-C3N4samplesat0Vvs.Ptwith25slighton/offcycles.

Fig.4. UV–visabsorptionspectraoftheFTO/g-C3N4,SiNWsandSiNWs/g-C3N4

samples.

theresultsareshowninFig.4.BothSiNWs/g-C3N4andSiNWsam- plesshowstronglightabsorptioninthespectralregionfrom350to 900nm,whiletheFTO/g-C3N4justshowsabsorptionintherangeof wavelengthsshorterthan450nm,indicatingthattheformationof SiNWs/g-C3N4isanefficientroutetoenhancethelightabsorbing abilityofg-C3N4PECelectrodes.

ThechargetransferpropertiesofSi NWs,FTO/g-C3N4 andSi NWs/g-C3N4samplesweredetectedbyelectrochemicalimpedance spectroscopy(EIS),andtheresultsareshowninFig.5.Asmallerarc wasfoundintheNyquistcurveoftheSiNWs/g-C3N4photoanode comparedtothearcsobservedforbareSiNWsandFTO/g-C3N4, indicatingthattheresistancebetweentheSiNWs/g-C3N4photoan- odeinterfaceandelectrolyteismuchsmallerthanthatoftheSi NWsandFTO/g-C3N4.TheformationtheSiNWs/g-C3N4core/shell nanostructure can significantly improve the rate of charge

transferbecauseofthelowerchargetransferresistancebetween theSiNWs/g-C3N4 photoanodeinterfaceand electrolyte.Under lightirradiation,photo-generatedelectronswillflowintothecon- ductionbandandreactattheelectrode/electrolyteinterface.The lifetimeofelectronsforrecombinationwithatimeconstant(␶n)is correlatedwithcharacteristicmaximumfrequency(notedasfmax), whichcouldbeacquiredfromtheBodephaseplots[39].Fig.5(b) shows theBode phase plots of theSi NWs/g-C3N4,Si NW and FTO/g-C3N4photoanodes.Thereisnodifferencebetweenthetwo photoanodesintermsofcharacteristicmaximumfrequencypeaks.

SinceSiNWs/g-C3N4andSiNWshavethesamecharacteristicmax- imumfrequencypeaks,theyexhibitsimilarcarrierrecombination kinetics. However,arelative highfmaxmeasuredinFTO/g-C3N4

electrodeunderthesameconditionsasSiNWs/g-C3N4 indicates therelativelyshort␶nofelectronsgeneratedinFTO/g-C3N4.Thus, wecandeclarethatthecombinationofSiNWsandg-C3N4 pro- motescarrierseparation.

3.4. Mechanismanalysis

The curvesbased ontheKubelka–Munk functionversus the energyoflightareshowninFig.6(a).Theestimatedbandgapof g-C3N4isapproximately2.79eV.TheVBXPSspectraofthepris- tineg-C3N4areshowninFig.6(b).TheVBofg-C3N4isobservedat

∼1.88eV,whichisconsistentwiththepreviousresult[40].TheVB edgeoftheSiNWsis∼0.73eV.

ECB= EVB−Eg (1)

TheCBofg-C3N4 andSiNWscanbecalculatedbytheabove equation,andtheCBenergiesofg-C3N4 andSiNWsweredeter- minedtobe−0.91and−0.39eV,respectively.Onthebasisofthe resultsofallthemeasurementsoftheas-preparedsamples,apossi- blemechanismfortheperformanceimprovementofphotocatalytic activityoftheSiNWs/g-C3N4core/shellstructureisproposed,as

(6)

614 Z.Chenetal./AppliedSurfaceScience396(2017)609–615

Fig.5.EISmeasurementsofFTO/g-C3N4,SiNWsandSiNWs/g-C3N4photoanodesunderillumination:(a)Nyquistand(b)Bodephaseplots.

Fig.6.(a)UV–visdiffusivereflectancecurvesofthepristineg-C3N4;(b)XPSVBspectraofthepristineg-C3N4andSiNWs.

Scheme2.TheproposedmechanismforthechargeseparationandtransferattheSiNWs/g-C3N4heterojunction.

showninScheme2.TheCBpotentials oftheSiNWsarelower thanthoseofg-C3N4,sothephoto-generatedelectronsintheCB ofg-C3N4couldtransfertotheCBoftheSiNWs.Forthejunction betweenn-Siandn-g-C3N4,thedepletionregionmostlyliesinn- g-C3N4becauseofthehigherconcentrationofelectronofthen-Si NWs(itslowresistivityisapproximately2–10cm).Thedirec- tionofthebuilt-inelectricfieldbetweenthetwosemiconductorsis fromthen-Sitotheg-C3N4.Underillumination,theelectron–hole pairsgeneratedinthedepletionregion(g-C3N4)increasethenum- berofelectronsintheconductionband(CB)ofg-C3N4aswellas

theSiNWs.Then,theelectronsintheCBofg-C3N4willdrifttothe n-SiNWs,whichisbeneficialforcarrierseparationonthesurface ofg-C3N4.ThesurvivingabundantholesintheVBofg-C3N4can oxidizewaterandproduceO2.

4. Conclusion

In conclusion, metal-free Si NWs/g-C3N4 heterojunction core/shellarrayphotoelectrodeswithdifferentg-C3N4masscon- tentshavebeenfabricated.Thesephotoelectrodesnotonlyexpand

(7)

theopticalabsorptionrangeoftheg-C3N4-basedphotoelectrodes butalsosignificantlyimprovethePECperformanceofbulkphase g-C3N4.TheSiNWarrayshavebeenproventofurthertoaccelerate themigrationofchargecarriersandimprovetheeffectivesepa- rationofthechargesgenerateding-C3N4.Conversely,thestrong opticalabsorptionperformanceoftheSiNWsalsocontributesa criticalroleintheimprovementofPECperformance.Meanwhile, theexaminedphotocatalystforneutralwatersplittingprovidesa promisingprospectforoverallsplittingofwaterusingmetal-free materials.Alltheconclusionsdiscussedabovewillprovideconve- nientguidanceforresearchersstudyingthephotoelectrochemical process.

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 21406052, 51602111), Guangdong Province Grant Nos. 2014A030308013, 2014B090915005, 2015A030310196, 2015B050501010,14KJ13,andthePearlRiverS&TNovaProgram ofGuangzhou(201506040045),GuangdongInnovativeResearch TeamProgram(No.2011D039),PCSIRTProjectNo.IRT13064.

References

[1]L.Ge,C.Han,X.Xiao,L.Guo,Y.Li,Enhancedvisiblelightphotocatalytic hydrogenevolutionofsulfur-dopedpolymericg-C3N4photocatalysts,Mater.

Res.Bull.48(2013)3919–3925.

[2]M.Zhou,X.W.Lou,Y.Xie,Two-dimensionalnanosheetsfor

photoelectrochemicalwatersplitting:possibilitiesandopportunities,Nano Today8(2013)598–618.

[3]X.Wang,K.Maeda,A.Thomas,K.Takanabe,G.Xin,J.M.Carlsson,K.Domen, M.Antonietti,Ametal-freepolymericphotocatalystforhydrogenproduction fromwaterundervisiblelight,Nat.Mater.8(2009)76–80.

[4]M.T.Mayer,Y.Lin,G.Yuan,D.Wang,Formingheterojunctionsatthe nanoscaleforimprovedphotoelectrochemicalwatersplittingby

semiconductormaterials:casestudiesonhematite,Acc.Chem.Res.46(2013) 1558–1566.

[5]A.Fujishima,Electrochemicalphotolysisofwateratasemiconductor electrode,Nat238(1972)37–38.

[6]Z.Zou,J.Ye,K.Sayama,H.Arakawa,Directsplittingofwaterundervisible lightirradiationwithanoxidesemiconductorphotocatalyst,Nature414 (2001)625–627.

[7]Y.Wang,X.Wang,M.Antonietti,Polymericgraphiticcarbonnitrideasa heterogeneousorganocatalyst:fromphotochemistrytomultipurpose catalysistosustainablechemistry,Angew.Chem.Int.Ed.Engl.51(2012) 68–89.

[8]Y.Zheng,J.Liu,J.Liang,M.Jaroniec,S.Z.Qiao,Graphiticcarbonnitride materials:controllablesynthesisandapplicationsinfuelcellsand photocatalysis,EnergyEnviron.Sci.5(2012)6717.

[9]A.Thomas,A.Fischer,F.Goettmann,M.Antonietti,J.-O.Müller,R.Schlögl,J.M.

Carlsson,Graphiticcarbonnitridematerials:variationofstructureand morphologyandtheiruseasmetal-freecatalysts,J.Mater.Chem.18(2008) 4893.

[10]X.Wang,S.Blechert,M.Antonietti,Polymericgraphiticcarbonnitridefor heterogeneousphotocatalysis,ACSCatal.2(2012)1596–1606.

[11]F.Dong,L.Wu,Y.Sun,M.Fu,Z.Wu,S.C.Lee,Efficientsynthesisofpolymeric g-C3N4layeredmaterialsasnovelefficientvisiblelightdrivenphotocatalysts, J.Mater.Chem.21(2011)15171.

[12]Y.Li,H.Zhang,P.Liu,D.Wang,Y.Li,H.Zhao,Cross-linkedg-C3N4/rGO nanocompositeswithtunablebandstructureandenhancedvisiblelight photocatalyticactivity,Small9(2013)3336–3344.

[13]M.J.Bojdys,J.O.Muller,M.Antonietti,A.Thomas,Ionothermalsynthesisof crystallinecondensed,graphiticcarbonnitride,Chem.Eur.J.14(2008) 8177–8182.

[14]S.C.Yan,Z.S.Li,Z.G.Zou,Photodegradationperformanceofg-C3N4fabricated bydirectlyheatingmelamine,Langmuir25(2009)10397–10401.

[15]F.Dong,Z.Zhao,T.Xiong,Z.Ni,W.Zhang,Y.Sun,W.K.Ho,Insituconstruction ofg-C3N4/g-C3N4metal-freeheterojunctionforenhancedvisible-light photocatalysis,ACSAppl.Mater.Interfaces5(2013)11392–11401.

[16]J.Sun,J.Zhang,M.Zhang,M.Antonietti,X.Fu,X.Wang,Bioinspiredhollow semiconductornanospheresasphotosyntheticnanoparticles,Nat.Commun.

(2012)1139.

[17]L.Ge,C.Han,X.Xiao,L.Guo,Y.Li,Enhancedvisiblelightphotocatalytic hydrogenevolutionofsulfur-dopedpolymericg-C3N4photocatalysts,Mater.

Res.Bull.48(2013)3919–3925.

[18]J.Zhang,X.Chen,K.Takanabe,K.Maeda,K.Domen,J.D.Epping,X.Fu,M.

Antonietti,X.Wang,Synthesisofacarbonnitridestructureforvisible-light catalysisbycopolymerization,Angew.Chem.Int.Ed.Engl.49(2010)441–444.

[19]J.Xiao,X.Zhang,Y.Li,Aternaryg-C3N4/Pt/ZnOphotoanodeforefficient photoelectrochemicalwatersplitting,Int.J.HydrogenEnergy40(2015) 9080–9087.

[20]Y.Li,R.Wang,H.Li,X.Wei,J.Feng,K.Liu,Y.Dang,A.Zhou,Efficientandstable photoelectrochemicalseawatersplittingwithTiO2@g-C3N4nanorodarrays decoratedbyCo-Pi,J.Phys.Chem.C119(2015)20283–20292.

[21]D.Jiang,J.Li,C.Xing,Z.Zhang,S.Meng,M.Chen,Two-dimensional CaIn2S4/g-C3N4heterojunctionnanocompositewithenhancedvisible-light photocatalyticactivities:interfacialengineeringandmechanisminsight,ACS Appl.Mater.Interfaces7(2015)19234–19242.

[22]B.Hu,F.Cai,T.Chen,M.Fan,C.Song,X.Yan,W.Shi,Hydrothermalsynthesis g-C3N4/nano-InVO4nanocompositesandenhancedphotocatalyticactivityfor hydrogenproductionundervisiblelightirradiation,ACSAppl.Mater.

Interfaces7(2015)18247–18256.

[23]C.Liu,H.Huang,X.Du,T.Zhang,N.Tian,Y.Guo,Y.Zhang,Insitu Co-crystallizationforfabricationofg-C3N4/Bi5O7Iheterojunctionfor enhancedvisible-lightphotocatalysis,J.Phys.Chem.C119(2015) 17156–17165.

[24]Y.Li,X.Wei,H.Li,R.Wang,J.Feng,H.Yun,A.Zhou,Fabricationof inorganic–organiccore–shellheterostructure:novelCdS@g-C3N4nanorod arraysforphotoelectrochemicalhydrogenevolution,RSCAdv.5(2015) 14074–14080.

[25]Y.Li,X.Wei,X.Yan,J.Cai,A.Zhou,M.Yang,K.Liu,Constructionof inorganic-organic2D/2DWO3/g-C3N4nanosheetarraystowardefficient photoelectrochemicalsplittingofnaturalseawater,Phys.Chem.Chem.Phys.

18(2016)10255–10261.

[26]S.Chandrasekaran,T.Nann,N.H.Voelcker,Nanostructuredsilicon

photoelectrodesforsolarwaterelectrolysis,NanoEnergy17(2015)308–322.

[27]M.G.Walter,E.L.Warren,J.R.McKone,S.W.Boettcher,Q.Mi,E.A.Santori,N.S.

Lewis,Solarwatersplittingcells,Chem.Rev.110(2010)6447.

[28]M.Asheghi,K.Kurabayashi,R.Kasnavi,K.E.Goodson,Thermalconductionin dopedsingle-crystalsiliconfilms,J.Appl.Phys.91(2002)5079.

[29]Q.Liu,F.Wu,F.Cao,L.Chen,X.Xie,W.Wang,W.Tian,L.Li,Amultijunctionof ZnIn2S4nanosheet/TiO2film/Sinanowireforsignificantperformance enhancementofwatersplitting,NanoRes.8(2015)3524–3534.

[30]L.Ge,C.Han,X.Xiao,L.Guo,Y.Li,Enhancedvisiblelightphotocatalytic hydrogenevolutionofsulfur-dopedpolymericg-C3N4photocatalysts,Mater.

Res.Bull.48(2013)3919–3925.

[31]R.R.Devarapalli,J.Debgupta,V.K.Pillai,M.V.Shelke,C@SiNW/TiO2core-shell nanoarrayswithsandwichedcarbonpassivationlayerashighefficiency photoelectrodeforwatersplitting,Sci.Rep.4(2014)4897.

[32]X.Wang,K.Q.Peng,Y.Hu,F.Q.Zhang,B.Hu,L.Li,M.Wang,X.M.Meng,S.T.

Lee,Silicon/hematitecore/shellnanowirearraydecoratedwithgold nanoparticlesforunbiasedsolarwateroxidation,NanoLett.14(2014)18–23.

[33]I.S.Cho,Z.Chen,A.J.Forman,D.R.Kim,P.M.Rao,T.F.Jaramillo,X.Zheng, BranchedTiO2nanorodsforphotoelectrochemicalhydrogenproduction, NanoLett.11(2011)4978–4984.

[34]B.Chai,T.Peng,J.Mao,K.Li,L.Zan,Graphiticcarbonnitride(g-C3N4)-Pt-TiO2

nanocompositeasanefficientphotocatalystforhydrogenproductionunder visiblelightirradiation,Phys.Chem.Chem.Phys.14(2012)16745–16752.

[35]S.C.Yan,S.B.Lv,Z.S.Li,Z.G.Zou,Organic-inorganiccompositephotocatalystof g-C3N4andTaONwithimprovedvisiblelightphotocatalyticactivities,Dalton Trans.39(2010)1488–1491.

[36]Q.Xiang,J.Yu,M.Jaroniec,Preparationandenhancedvisible-light photocatalyticH2-productionactivityofgraphene/C3N4composites,J.Phys.

Chem.C115(2011)7355–7363.

[37]K.Dai,L.Lu,Q.Liu,G.Zhu,X.Wei,J.Bai,L.Xuan,H.Wang,Sonicationassisted preparationofgrapheneoxide/graphitic-C3N4nanosheethybridwith reinforcedphotocurrentforphotocatalystapplications,DaltonTrans.43 (2014)6295–6299.

[38]X.Bai,L.Wang,R.Zong,Y.Zhu,Photocatalyticactivityenhancedviag-C3N4

nanoplatestonanorods,J.Phys.Chem.C117(2013)9952–9961.

[39]F.Xu,Y.Yao,D.Bai,R.Xu,J.Mei,D.Wu,Z.Gao,K.Jiang,Asignificantcathodic shiftintheonsetpotentialandenhancedphotoelectrochemicalwater splittingusingAunanoparticlesdecoratedWO3nanorodarray,J.Colloid InterfaceSci.458(2015)194–199.

[40]S.Cao,J.Low,J.Yu,M.Jaroniec,Polymericphotocatalystsbasedongraphitic carbonnitride,Adv.Mater.27(2015)2150–2176.

Referensi

Dokumen terkait

Terima kasih kepada Ibu Maisyanah, M.Pd.I., atas ilmu, waktu, tenaga serta arahan dan masukan-masukannya yang telah diberikan untuk membimbing saya, sehingga

Paspa6orKa ilporpaMMHoro o6ecner{eHr4fl .qrrq crerauorpa$Hqecxofi ilepeAaqn uH0opN4arruu R pacrpoBrtx u: o6p alKeFr Hrrx Ax s 3 au{?rrbr ran cp opna awrr4 4.. Paspa6orKa 3reMeHToB