• Tidak ada hasil yang ditemukan

زاﺋدﯾﺔ ﻣﻌﺎدﻟﺔ ﺣل ﻓﻲ اﻟﺧطوط ﻟطرﯾﻘﺔ ﺟدﯾد ﺗﻌدﯾل اﻷوﻟﯽ اﻟرﺗ

N/A
N/A
Protected

Academic year: 2024

Membagikan "زاﺋدﯾﺔ ﻣﻌﺎدﻟﺔ ﺣل ﻓﻲ اﻟﺧطوط ﻟطرﯾﻘﺔ ﺟدﯾد ﺗﻌدﯾل اﻷوﻟﯽ اﻟرﺗ"

Copied!
14
0
0

Teks penuh

(1)

ةكلمملا ةيبرعلا

ةيدوعسلا

ةرازو ميلعتلا

يلاعلا

ةيلك مولعلا تانبلل

مسق تايضايرلا

A New Modification of the Method of Lines for a First Order Hyperbolic

Differential Equation

F.M.Alabdli

Supervisor

Dr.Huda Omar Bakodah

1435/1434

ليدعت ديدج

ةقيرطل طوطخلا

يف لح

ةلداعم ةيدئاز

ةيلضافت نم

ةبترلا ىلولأا

(2)

The general formula for first order linear equation of two independent variables, is as follows :

is constant, represent time and is distance .

it is appear in many physical and chemical applications, as well as in the biological processes .

t and x

.1 First Order Hyperbolic Differential Equation

1) 0 (

t

x vu

u

v t x

(3)

2

. Method of Lines approximations

Suppose we have the following equation

the conditions are

when using the method of lines to solve this problem, we discretize one of the two independent variables and the other remains continuous .

(discretization of the -variable)

2) 0 (

x u t

u

0 ) 0, ( , ) ( 0)

,

(x f x u t u

x

ih n x

a

h b , i

(4)

(I) If we approximate the spatial derivative x by the central differences as follows:

substituting 3 into 2 , we get the following problem:

putting we get in the following system

4) ( ,....,

2 1, 2 ,

1

1 i n

h u

ui ui i

r h 2

1

2 1

1 3

2

0 2

1

. .

5) ( .

n n

n ru ru

u

ru ru

u

ru ru

u

3) 2 (

1 1

h u u

x

ui i i

(5)

equation (5) are a system of first order ordinary differential equations that can be solved by using numerical

methods such as Euler or Runge-Kutta.

For studying stability by using matrix method ,expressed in a form of matrix as follows:

6)

1u ( A u

(6)

(

II) when using non-central differences formula to approximate the spatial derivative

putting we get in the following system

for studying stability by using matrix method ,expressed in

a form of matrix as follows:

7) ( 4 ]

3 2 [

1

1

1

i i

i u u

h u x

u

9)

2u ( A u

4 ] 3

[ .

.

8) ( .

4 ] 3

[

4 ] 3

[

1 1

1

1 2

3 2

0 1

2 1

i i n

n r u u u

u

u u

u r u

u u

u r u

r h 2

1

(7)
(8)

Example (1): linear case

Consider the advection equation with the conditions

if we calculate the error by using and error and it is defined

as follows :

4

. Numerical examples

0

x

t u

u

, 0 sin

) 0, (

1 , 0

sin 0)

, (

t t t

u

x x

x u

a i e

i i

a i n

i

e i

u u

L

u u

h L

max

]

[ 0.5

0 2

L2 L

(9)

Table 1: and error for example 1

0.00101545 0.000579369 0.01 0.00233093 0.00118751 0.02 0.00397634 0.00184354 0.03

0.00598185 0.0025641 0.04

0.00837779 0.00337482 0.05

0.0111947 0.00428697 0.06

0.0144633 0.0053202049 0.07

0.0182144 0.00649227 0.08

0.0224789 0.00781859 0.09

0.0272878 0.00931508 0.10

L

L2

t

01 0. 1 ,

0.

x t

L2 L

(10)

Example (2): nonlinear case

Consider the advection equation with the condition

and the exact solution

0

x

t uu

u

x x

u( ,0)

t t x

x

u

) 1 , (

(11)

2.56842

1.52351 0.1

3.65622

2.16876 0.2

4.02893

2.38985 0.3

4.05249

2.40383 0.4

3.90807

2.31851 0.5

3.6900

2.1888 0.6

3.44423

2.04302 0.7

3.19589

1.89572 0.8

2.95723

1.77415 0.9

2.73389

1.62166 1.0

L

L2

t

1011

1011

1011

1011

1011

1011

1011

1011

1011

1011

1011

1011

1011

1011

1011

1011

1011

1011

1011

1011

01 0. 1 ,

0.

x t

L2 L

(12)

In this paper we use modified method of the lines to approximate

the first order hyperbolic differential equation . These equations

are one of the most difficult class of PDEs to integrate

numerically. To overcome this, we will suggest a modified MOL

scheme. the results are in good agreement with the exact solution

as shown in tables(1,2,3). The presented method is a

5

. Conclusion

(13)

G.D.Smith, Numerical Solution of Partial Differential Equations(Finite Difference Methods),Third Edition, Oxford University Press, 1985

.

[ 1

]

W.E.Schiesser, "The Numerical Method of Lines,Integration of partial differential , , Ed ,Clarendon press Oxford , 1978

.

[ 2

]

A.A.Sharaf and H.O.Bakodah, "A Good Spatial Discretization in the Method of , Applied Mathematics and Computation,vol.

171-2 , PP.

1253-

(1263 2005

) .

[ 3

]

M.B.Carver and H.W.Hinds, The Method of lines and Advective Equation ,Simulation,PP.

59-69 ,August,(

1978 )

.

[ 4

]

References

equationn 2nd

linesn

(14)

Referensi

Dokumen terkait

ةيدوعسلا ةيبرعلا ةكلمملا يلاعلا ميلعتلا ةرازو ةعمجملا ةعماج ةيناسنلإا تاساردلا و مولعلا ةيلك ريدس ةطوح– تاساردلا نسق جهانرب ةيهلاسلإا يعهالجا بلاطلل يقلاخلأا قاثيلما

ةيدوعسلا ةيبرعلا ةكلمملا يلاعلا ميلعتلا ةرازو ةعمجملا ةعماج ةعمجملاب ةيبرتلا ةيلك ةدوجلاو ريوطتلل ةيلكلا ةلاكو يرادإ رارق مسق سلجمل ةلوخملا تايحلاصلا ىلع ءانب ءايحلأا ةداملا

ةيدوعسلا ةيبرعلا ةكلمملا يلاعلا ميلعتلا ةرازو زيزعلادبع كلملا ةعماج ةيلك ةرادلإاو داصتقلاا – ماظتنلااتابلاط KINDOM OF SAUDI ARABIA Ministry of Higher Education KING ABDULAZIZ

ةيدوعسلا ةيبرعلا ةكلمملا ميلعتلا ةرازو دبع كلملا ةعماج زيزعلا ةيقيبطتلا ةيبطلا مولعلا ةيلك مسق ةيكينيلكلاا ةيذغتلا KINDOM OF SAUDI ARABIA Ministry of Education KING ABDULAZIZ

ةيدوعسلا ةيبرعلا ةكلمملا ىرقلا مأ ةعماج يلاعلا ميلعتلا ةرازو ةيملاسلا ةيلاملاو ةيداصتاقلا مولعلا ةيلك ليومتلا مساق ةقاطب ياكلهتاسلا ليومتلا سيردتلا ةئيه وضع نع تامولعم ررقملا ذاتاسأ

ةيدوعسلا ةيبرعلا ةكلمملا ميلعتلا ةرازو زيزعلادبع كلملا ةعماج بادلآا ةيلك ةيناسنلإا مولعلاو امتجلاا ملع مسق ةيعامتجلاا ةمدخلاو ع عقاو ةيعامتجلاا ةيلوؤسملا ةيدوعسلا تاعماجلا يف

ةيدوعسلا ةيبرعلا ةكلمملا ميلعتلا ةرازو ىلاعلا ىرقلا مأ ةعماج مولعلا ةيلك ةيقيبطتلا ءايزيفلا مسق ةنجل ةينهملا ةحصلاو ةملاسلا ونانلا لمعملماعملا - نيجورتينلا لمعم - ةشرولا –

ةيدوعسلا ةيبرعلا ةكلمملا يلاعلا ميلعتلا ةرازو ىرقلا مأ ةعماج نيدلا لوصأو ةوعدلا ةيلك فلملا يميداكلأا وضعل ةئيه سيردتلا ةيلكلاب مسق : ةوعدلا ةفاقثلاو ةيملاسلإا ةئيه وضع