ىسلا -:
يذيبغنا ذًحا ذًحي وبصع
ًعيبجنا ىقرنا -:
0393078
ةٍهكنا -:
ةفبجنا قطبًُنا ةعارزو ةئٍبناو دبصرلاا
ةًٍهعنا ةجرذنا -:
بٍهع تبسارد (
رٍتسجبي )
ًبرعنبب ةنبسرنا ٌاىُع -:
ةكرحنا ةقبط ةٍَاسٍي ةسارد
ٌٍٍىج ٍٍٍيبظَ ٍٍب معبفتنا ءبُثأ ٍي رخَاو يراذي بًهذحأ
ىطسىنا ضورعنا
يسٍهجَلابب ةنبسرنا ٌاىُع -:
STUDY OF KINETIC ENERGY BUDGET DURING THE INTERACTION
BETWEEN TROPICAL AND MIDDLE LATIUDE ATMOSPHERIC SYSTEM
يرجهنا وبعنا -:
1430 ـه
-
2009
و
صهختسًنا
ٌاف ٌٜا ٗرح احظأ ضــٛن ّٚذؼثنا خلاداثرنات ءإٓنا اكٛياُٚد غاثذرإ ٌأ ٍي ىغزنات
لداثرنا اذْ حظٕذ ٗرنا ًّْٛلأا ٍي زٛثك ةَاج ٗهػ ٌٕكذ ّفهرخًنا خالاؽنا عإَا ٍٛت ّللاؼنا .
فنا خاٛهًؼنا فهرخًن ًآًف وشهرظٚ ِزتاؼنا ّٕٚجنا خاعفخًُهن مصإرًنا رٕؽرنا ٌإ ّٛئاٚشٚ
ػٛحًنا ػطٕنا غي خاعفخًُنا ِذْ مػافذ ٖذي كنذكٔ خاعفخًُنا ِذٓت حمهؼرًنا .
قزؽنا ٖذحأ
حلاؽنا خاثكزي مٛهحرن حٛفصٕنا خاٛهًؼنا للاخ ٍي ٌٕكذ ٌأ ٍكًٚ غاثذرلأا اذْ ضزؼن ,
باظح للاخ ٍي ٌٕكذ حكزحنا حلاؼ لداثذ زظفذ ٌأ ٍكًٚ ٗرنأ آٛهػ فراؼرًنا حمٚزؽنأ
شٛي زصاُػ جزرفنا ِذْ للاخ طفخًُنا آهخاذت ٌٕكٚ اي ححاظًن حلاؽنا حَٛا
. حطارذنا ِذْ ٗف
ٗثظُنا زٛشأرنا ٗف جاؼثَلاأ ٌارٔذنا ٗرثكزي ٍي مك رٔدٔ حكزحنا حلاؼ حَٛاشٛي حطارد زثرؼذ سحثهن ٗظٛئزنا فذٓنا ْٕ حلاؽنا حَٛاشٛي ٗهػ .
ىنا ٌٕكذ كنذك ٔ حكزحنا حلاؼ حَٛاشٛي ٍػ حٛخٚراذ جذثَ
ػطٕرًنا زحثنا ٗهػ خاعفخَ
خاعفخًُنا غي ٗؽطٕنا ضٔزؼنا خاعفخُي ٍٛت مػافرنا كنذكٔ ًٗطًٕنا ٌادٕظنا طفخُئ
ٗف مٛصفرنات آًٚذمذ ىذ حٛئإرطلاا لولأا مصفنا
ايا , ىَبثنا مصفنا ضزؼت ىرٓٚ حناطزهن
حــطارذنا ٗف مخذذ ٗرنا صاٛمنا خايٕهؼي ٔ خاتاظحنا قزؼ ٔ خاٚزظُنا .
ٗفٔ
صفنا ثنبثنا ل ىذ
زافُنا راٛرنا كنذكٔ ٙثؽمنا زافُنا راٛرنا ٍي لاك رٔد سازتا غي اٛكٛرتُٕٛط حطارذنا حناح مٛهحذ ٖراذًنا دحذ .
ٌارٔذنا ٗرثكزًن ٗثظُنا زٛشأرنا كنذكٔ حكزحنا حلاؼ حَٛاشٛي مٛهحذ ىذ كنذكٔ
ّمؽًُنا قٕف ٖٕجنا طفخًُنا جاٛح جزرف للاخن حكزحنا حلاؼ ٗهػ جاؼثَلأأ
. مٛهحرنا زٓظأ ذلٔ
طفخًُنا اذْ فهخ عٕفذًنا دراثنا ءإٓنا رٕٓظ غي أذت طفخًُنا اذْ رٕؽذ ٌأ .
ٌأ ذجٔ ذلٔ
ٙظٛئزنا ةثظنا َّأ ٗمفلاا برامرنا طٛف ذح ٍػ جذاَ طفخًُنا اذٓن ٗطاطلاا حلاؽنا رذصي
حكزحنا حلاؼ ذٛنٕذ ذح ٌأ اعٚأ ذجٔٔ ٕ٘هؼنا زافُنا راٛرنا جذش ٗهػ حظفاحًنا ٗف للاخ ٍي
واٚأ ىظؼي ٙف حلاؽهن راذْإٔ ذمف ةثظٚ جرازحنا ٖٔاظذ غٕؽخ غي عافذرلاا ٖٔاظذ غٕؽخ غؼامذ طفخًُنا جاٛح .
ًٗظػ حًٛل ّن ٙلاثك ّجارُرطا ىذ ٘ذنأ حكزحنا حلاؽن درشرنا ذح ٌأ حعذأ
زافُنا راٛرنا ٖٕرظي ٍي بزمنات كنذكٔ زٛفطٕتٔزرنا ٍي ٗهفظنا حمثؽنا ٍي مك ٙف حٛهحي .
ذلٔ
حلاؽنا جداٚس خاٛهًػ ىظؼي ٌا حفهرخًنا حلاؽنا حَٛاشٛي دٔذحن ٗمفلاا غٚسٕرنا خلااجي دحظٔأ
ِرٕؽذٔ طفخًُنا كًؼرن حثحاصي دَاك .
رذصًك حكزحنا حلاؽن ٙطازنا لامرَلاا ذح مًػ ذلٔ
زٛفطٕذازرطلان ٗهفظنا حمثؽهن كنذكٔ زٛفطٕتٔزرهن حؽطٕرًنا حمثؽهن حلاؽهن .
حطارذنا خزٓظأ
ٗنإحت دًْاط ذل جاؼثَلاا حثكزي ٌا اعٚا 6
% دًْاط اًُٛت حٛهكنا حكزحنا حلاؼ عًٕجي ٍي
ٗنإحت كفلاا طٛفنا حثكزي 13
% طفخًُنا جاٛح جزرف للاخ حٛهكنا حلاؽنا ٍي .
Abstract
Although the dynamics associated with scale interaction are not yet well understood, the relationship of various types of energy transformation is of great importance. The behavior of the ever-changing migratory cyclone requires an understanding of the various physical processes associated with the cyclone as well as interaction with its environment. One way of enhancing this understanding is through detailed diagnostic energy analyses. The common approach which can be used to explain kinetic energy exchange processes associated with a moving cyclone system is via computation of energy budget terms for an area containing the cyclone during the period of interest. In the present work energy studying the kinetic energy budget and the relative contribution of divergent and rotational wind components to the kinetic energy budget of a cyclonic system are the main goal.
Historical reviews about the kinetic energy budget, Mediterranean cyclogensies, Sudan Monsoon Low and the interaction between middle latitude and tropical cyclones have been considered in Chapter One . Chapter Two is concerned with theories, methodology and the data used in our study. Synoptic discussion of our case study and the role of the polar and subtropical jets have been introduced in Chapter three. Also, an analysis of the kinetic energy budget and the relative contribution of divergent and rotational wind components to the kinetic energy budget of a case of winter cyclogensies have been investigated in Chapter Three.
Analysis of the kinetic energy budget for this cyclone shows that the development occurred as cold fresh air is advected to the rear of the system. It is found that horizontal flux convergence constitutes the major energy source and is the main cause for maintaining the strength of the
upper tropospheric jet maxima. Generation of kinetic energy via cross- counter flow is a persistent sink at the most days. Dissipation of kinetic energy, computed as a residual, has local maxima both in the lower troposphere and near the jet stream level. Spatial fields of the energy terms show that the most intense energy processes occur associated with deep cyclogenesis. The vertical transfer of kinetic energy acts as s source of kinetic energy to middle troposphere and lower stratosphere. The divergent component contributes about 6% of the total kinetic energy but nearly 13% of the flux convergence of total kinetic energy during the lifetime of our cyclone.