• Tidak ada hasil yang ditemukan

– 287 – я ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

N/A
N/A
Protected

Academic year: 2023

Membagikan "– 287 – я ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯"

Copied!
24
0
0

Teks penuh

(1)

!" # $% "& '( )" *$

+, )"& $,

- 1

,/

$12 $3$45 67

- 2

,/

+, 9: $;

- 3

,/

=1 >$45 $;

- 4

,/

@" A

- 5 /

%&

' (

) *+ , 27

02 1434

;

*+ ./,0 )

16 07 1434

C D E5$ FG HI

'( E" J"K :K # )LG4 H A M" N

O

P"Q : 12 345 .%0 161 7 20 18&9 2 : ;<= >?@=' AB 'C D2 18= E F G1H I6% J K

L 1 M6 ) N

O% 'C +1P DQMR0

273 I 161R ST+% UV4 O% 18WP @X Y C1=Z YR ,6%0 [\%

: ,3^7+@0 ,._

M6 `/R0 N

61 70 18&9 2 a1@ 'C 3b S1/XR YR

\c+1 ;<=0 1 N

AB 18= E F G1H I6% .1% d8=+ Gceb ,0

161 7 2 O% fgb .MW 18&9 2 h=' O% F iB ) GP' [1F @/X 18= E F G1HC j=g ;b AB d8=+ GCkb \g N

:=2 : ;<=

YR Y11@R ) Q<=% lT h=' 0b ,Q<=% 1HC 2% Y@R ) :6 `' m1nR oP 45R p c+M0 ,161 70 18&9

YqVT N crb O% ;<= F OP / st D2 I= 1/L .% O% P & (u0 :

d + @= jC= GvMR%

, 0 ,wC= j1'b

0 xy ) wC= z1 >{Pb c%h=L I= lX0 ,18&9 2 jQ& oP vgR DQg % [/| I= G1H j=g0 ,GC@6 ) J=}

= GvMR%0 ,18= E F ~VX Y11@R q Y= I= @X0 ,Y11@= GvMR%0 ,GC@

;6 @R ^ jC N

P AB d8=+ GCkb \g

3f€ G+'0 ,161= 3C90 ,w+ Gmn= JvR 18= E F G1H I6% : ;<= F ) [18?FB l02 &0 N

& 'S"!

: G1H GC@% ,wC= j1'b N

______________

___________________________________________________________

________

The Balance between the Procedural and Conceptual Knowledge for Elementary Mathematics Teachers in Saudi Arabia and the Influencing Factors

Khalid Khashan(1), Refat Kandeel(2), Mohammed Khashan(3), Mohammed Alnatheer(4), and Misfer Alsalouli(5)

King Saud University

(Received 09/01/2013; accepted 26/05/2013)

Abstract: The study investigated the balance between procedural and conceptual knowledge of mathematics teachers at the elementary school in SA and the factors affecting it. The sample consisted of (273) teachers, selected randomly from three different cities. The study showed that the teachers had a tendency to use procedural knowledge more than conceptual knowledge. The results indicated that the current math textbooks in the elementary school played a positive role in finding a balance between procedural and conceptual knowledge. But this did not help in changing the teachers’ behavior in providing a balance between mathematical knowledge in its aspects procedural and conceptual, or the use of balanced methods in assessing their students’ learning. The most important of which are: the training foundations related curricula, teaching methods, and assessments; the mathematics content at the university; math textbooks that teachers had studied at school; the methods used by faculty members; and the way in which students are evaluated in the elementary stage. The results also indicated that there are no statistically significant differences in the balance between mathematics teachers at the elementary stage due to these variables: (sex, place of work, and years of experience).

Keywords: Teaching strategies, Mathematics content.

________________________________________________________________

_________

________

1 m{}= +L ,PL% u='b ,

' ( %&

N

, M6 L 1 ,

~ # 2454 f v% ,

11451 (1) Assistant Prof.- Preparatory Year Deanship, King Saud University.

Riyadh, Kingdom of Saudi Arabia, P.O. Box (2454) , Postal Code: (11451)

‚0M9 f :

[email protected]

e-mail:

2 m{}= +L ,PL% u='b ,

' ( %&

N (2) Assistant Prof.- Preparatory Year Deanship, King Saud University.

3 :6 1g ,PL% u='b ,

&

' ( % N

(3) Assistant Prof. - Teachers College, King Saud University.

4 ,`CW% u='b 1 1g

, ' ( %&

N (4) Associate Prof. - Education College, King Saud University.

5 ,`CW% u='b 1 1g

, ' ( %&

N

(2)

$T G1H Y1R „ ) ;?=h Y=…

161=0 1c+ '1L H00 ,c6†R0

− ^+%

1 O%<

− ;@ G1H Y†R oP m/g v1g

1H CM2‡ Yc2 ;b oP ;0g50 ,Yc7 I2 a'b0 C0ˆ

D,0 b O% ‰gb ƒŠ D,

‹%

(NCTM, 1989; 2000)

, ;Œ (u ;0Cf0

‰gb SFV Y†= .i Yc7 ~}? Y†=

+% Gu G1H K12 Ž/?R0 ,:6= oP c' 2  C oP Yc7 ;@ Y= @0 ,Y… P =0 18&9 2 161 7 : G,V o

G,V s^ /RR ‘1g Yc20 ,1H CM2‡

[X %0 [V%M=% ’Vg d=+R IM c{ oP +/R0 N

AB 1H 2 ‘+?R0

C O% :PQ :

161 7% 2%

Conceptual Knowledge

2%0 ,

18&B

Procedural Knowledge

, 2 ;M=R0

61 7 s^ /RR0 ,[1Z ŒW+R G,VP P6 O% 1 2 O6{=R0 ,[@/L% 3& CM2‡ “% G,V 2%0 ,G>&90 ,1H CM2‡ Yc2 161 7 2 ~VX (=60 ,~LŠ ) 1''‡ S8@Š

”/ • oP OC, QM %+P 161 7 c@1/XR0 ,G}X?0 S8@Š ;@/X0 ;20 ,

Y1 7 : V=ZE0 K/W K&0b • oP OC,0

;m='0 C+k J0 ,7=h

(Schneider & Stern,

2010)

30 % 2 I 161 7 2 ;b c+1 \12 Z= G,V0 C} ”/6 N

J0

00 vQm ('

(Byrnes & Wasik, 1991)

2 ;b

2%0 ,”/0 Y1 76 @16 2 I 161 7 c+v– Y=0 ,:% „ ) c+1 \12 Z= G,V I% X— 0b X % M/k .Mk oP 3g^ ) N

^17+R ) 3Cc OP f=2 18&9 2 %b G>&9 Y8V% }Q oP0 ,˜„™š20 ˜S1,0 ˜;% ˜.MW

(New York State Education Department, 2005)

N

;LQ& .=C J0 ƒ/1b0 1'0

(Rittle-

Johnson, Siegler, & Alibali, 2001)

2 ;b

I= GX€0 G>&9 2% O6{=R 18&9 ,3_  b AB „› O% ++Mœ

PLR I 0

17 0 P GVMW .F oP a+

; ž‡

jL=MR 1+1R0 n/?

N

71k JR0

(Shepherd, 2006)

2 ;b

% >Ÿ ;M ‘1g „0+=R I= 2 I 18&9 P6  /R „VZ O% c1B „› Y=0 ,[}1}›

0 Gf1 J0 ,LL=0 3} GX€ O%

m71

(Hiebert & Lefevre, 1986)

fR 18&9 2 ;b

OM6 I= G160 ,¡0*0 ,<% n OP % S7=0 ,% 1HC 6c% „\g9 c@1/XR

(Mahir,

(3)

2009)

žb J £1F ,18&9 26 3¤+ s^ “%

G>&90 P@ n0 ,16' G1H n

=L w J \12 ,1H G\c .F ) %h

M%b ) I%@ £}/

(National Research

Council [NRC], 2001)

18&9 ,VX ;b

Procedural Fluency

G16 1@ .6WR

.MW 1HC GCc%0 G1%<CZ O% 18&9

‘,6 Y8V%0 ,;%0 S1, N

7 ;b S/' ¥ Ž{=

I61 7 Y= : l

Y@= @ mZ‡ ;b ) O6M I8&9 Y=0 S1/X=g 1'C 3F ž ) GVMW O% P6 Y= ) \+1 ,[@ ' c6R YR I= ”/0 Y1 7 oP ,Y= 16P GVMW0 G@1/X= @R I61 7 0

„VZ ~L=g Y= cF Y1 7

(NCTM, 2000)

N

@ „VZ : O% P „0F ,0 ,18&90 161 7 2 : ,V 'C 1H C} vgR0 ,JZ‡ ) \c+% .g 45R ‘1g 2%0 O^ ~L=gE ƒ‰ j1R „F „ w18 2 O% :P+

: 61 7 2 ~L=g . 5 1

2 ~L=g ;b b ?18&9 2 ~L=g AB Y| oP0 ?161 7 2 ~L=gE 5 18&9 2 : ,V ) £}/ O% .X §C= ^ O%

AB ? p : ;b EB ,18&9 20 161 7 ,V • ) gW% X@Q

O% :P+ O^ :

m‰M [PH% ;¨ =F ,V s^ D< E0 ,2 U} ‡0 G'C O%

N &% „VZ O%0

.g ,7=— >C© Cb & „@ OM6  ~‡

: ,V W0 ‡ O% YP% c+%

&9 20 161 7 2 18

:

O% K=R \c+1 ,V ;b J „0‡ b 18&9 2 AB 161 7 2

[E0b Y1 7

,

s+/R ^ ‘1+?= 0

(Baroody, Lai, & Mix,

2006)

N G>&9 ;b stE ^ ~}›b J0 G16 ;B £1F ;Y1 7 c6R ji GCc0

18&9 HP 1+1R0 @X c6†R Y= I=

2 [X/R% c6R ;M ;b ji0 ,cL ;1L+

q1=' @R .&b O% c1P 68@ 161 7 C=' mW0 ,sXR0

(Star, 2002)

D, ) KQb AB

) W7 , Yžª2 @2 >&9 ~VX K12 «7¬ ^

3M7 Yc2 g^= .c'b ct ;b OM6 I= S6P‡

s6†R S1/X=0 N

;0Z©0 0C J0

(Baroody

et al., 2006)

~VX PLR 161 7 2 ;b

AB Ycc/+R ,0 ,G1%<C€ ~L=g 16P Y­ 1R0

@ , I= zT€ G>&9 YcF >+4b c12

R žb \g ,.8L6 ,.8L .Š Y®>&B m1nR AB 5

m| .F j1'b0 G>&B CM= O% Yc+œ0

(4)

12HB 18&B G16P CM= O% Yc+Mœ0 ,}1}›

£1} ,3M=/% 3& .8L% Ycc&R %+P }1}›

m|0 }1}? 18&9 G16 : 0v16 vRCM' mW0 ;}1}?

Schwartz, 2008

AB KQb

b O% ‰gb v1g YR O*0 Š ;@ “X6 d8=+ DQg uB ;161 7 2 Y1R oP ‹% D,0 @= I+T Y11@= ./, O% S4% \g W%

I61=

NAEP

, >b ) 3X% 3< Gceb I=0

X 1H c6 Yc6c20 ~VX N

b j ^0

‚‰

„0‡ b ¯1@Q oP

2 AB 18&9 2 O% K=R \c+1 ,V ;b 161 7

[E0b G>&9

s+/R ^ ‘1+?= 0 ,

(Byrnes & Wasik, 1991; Siegler & Stern, 1998;

Haapasalo & Kadijevich, 2000)

N ~}›b J0

6 Y= ;b stE ^ ;b ./, +1% 18&B F% )

OM6=

− .P2 .MW 0 −

K=2% h=' O%

2 ~L=g ST OP Y†= 72 ;161 7 18&9 2 3>7M 3<0 ,[E0b K+ u ) 18&9 vQm mW0 ;161 7 2 Y= ~/ K Ž=7R ('00

(Byrnes & Wasik, 1991)

2 ;b AB

,G>&9 “% K%= 1=+g CX=R 7 161 7 G1%<C€0 ,GCc0 N

2 O% ’Vg ;b Jm2 £‰ b %b ,Z¨ OP .@=L% .MW CX= 161 70 18&9 K JQ ^ stE 0

(Baker & Czaronch,

2002)

N B “ b j ^0 \c+1 ,V ;b A

stE 0 ,Z¨ 45 \c+% .g ;b b ,: t s+/R ^

(NCTM, 2000; Tall, et al., 2000; Rittle-

Johnson et al., 2001; Shepherd, 2006; ATM, 2006)

, .{2‡ z1/ ;b stE ^ ~}›b J0

7 :=2 Y1¤+R ŽH0 .MW O6{=R Y1=

161

;;<=% .MW 18&90

£1F 2 ;B

G16P fP ;CX=R 18&9 20 161 7 2 ) U¬ ^ CX=2 ,X %0 Z=%

CX=0 ,18&9 2 oP [1 iB wM+ 161 7 oP [1 iB wM+ 18&9 2 ) U¬ ^

I= ”/ @140 GCkb ,0 ,161 7 2 ) G1H I6 I%@ w C›b J ;M=R %+P KQb 1M%‡ 3}= GE ;M ' .%M=% .Mg G1H AB 3¤Q ~VX žb oP GCc0 Y1 7 AB ¤+ .,b .1% Y… DX/RC uB0 ,?7+%

~VX ;ª2 G>&9 Y1 7

O% %M=% P6 žb oP G1H AB ;0¤+

G>&9 : .%M= ^ ;M ;b ji0 ,:Q@

1'C G1H ) [vg% Y1 70

(NCTM,

2000)

N C=' Ckb \g

(Star, 2002)

z1/ ;b AB

1¤+R ŽH0 .MW O6{=R Y1= .{2‡

:=2 Y

G162 ;O%v=% .MW 18&90 161 7

(5)

HP 1+1R0 @X c6†R Y= I= 18&9 2 /R% c6R ;M ;b ji0 ,cL ;1L+

q1=' @R .&b O% c1P 68@ 161 7 6P °u\Q : O% P , ,0 ,sXR0 171M 1

AB [/+& ;mL £1} 18&90 161 7 2 d%

°u\+ s^ ‰%b O%0 ,wC= 16P >+4b j+&

°u6Q

Proceptual

71k K=%, ^

(Shepherd,

2006)

,

°u6Q0

Procept

;0Z©0 „0R K%, ^

(Tall et al., 2000)

N

7% ›V€ 5 S L .0

2 Y@= G1H 6% @ ;b 3C0ˆ

Y®PL% „VZ O% Q<=% @X ~VX 1H ˜;© ) I61 7 S60 18&9 Q0 `V=% oP E b ,Z¨ oP rFb nX ;b ;0 ,[% F0 nXR E0 ,18&9 2 oP 161 7 2 nXR O% E . ,161 7 2 oP 18&9 2 ;B £1F ;G1H wCR +P \c+1 ;<R &0 ^ I61 7 a'‡ 2% ;0 G>&9 2%

Y1 7 :  R I= G,V 2% 0b ,K1P @R 2 <vR I= 18&9 GX€ 2% ;0 1' 161 7 Yc7 O%  Q AB 1gŒ= ~VX @

Y1 7 s^­ ±T€

N

= 1rŒ Y1L= “%0

<

G1H Y1R ) ;

− s^ 8W Y1 7 O% ;<= Ž/›b £1F , : ;b AB 2H9 , .@Š ) ‡

%Œ' 2X= ¤+ Gc&00 >C¨ O%

(Michael &

Damon, 2008)

− KL7Q xX ^ „5L ;ª2

O% G1H I6 ²C= >‡ ~, J%

mW £1F ?18&90 161 7 2 : ;<=

w CRb

(Attorps, 2003)

;0@=7 :6 ;b AB

Yžb0 ,1H Y1 76 Y­0+R +P ~X S6 Y¤% ;{6 “% ,G>&9 “% ;%= Yc=,0

s^ c1P D1+ I= 161 7 2 oP .1, v1gR ay<0 aC='% g50 ,G>&9

(Mastorides & Zachariades, 2004)

I6% ;b

1 Yc7 Y… w1 Q‰ F ) G1H b0 ,„?RE0 c+ I%c7 j'+0 32 &R KQ

I@1@Š c70 Y1 7 s^­ :6 Yc2 : 3m/g sR J0 ,­

(Toh, 2009)

+/ p :6 Y¤% ;b

@= Y1 76 %k0 @16P 1HC 2%

>+4b G>&9 AB ;16 % 3P Yžb0 ,.H7=

1H G\c “% Yc%R

Calculus Tasks

, :F )

I+<0 g< mW

(Zakaria & Zaini, 2009)

;b AB

;g 18&90 161 7 2 ) :6 J=L%

„VZ O% M .1‰œ ) [v1œ 0ceb £1F ;[7R%

161 7% 3C, 0ceb \g ,/LQ 0b ,@X+% 0b ,P6

(6)

Zb c& O%0 ,CLM @= .8L .F oP J

h=' oP 3m/g \=P ;6 ceb OC, m| Qg0 ,:Q@0 ,P@0 ,G1%<C€

;%@ I= „} GCf%0 G}1HR Y@R oP

;%0 .1W1% mW0 ,q

(Michael & Damon,

2008)

J³C ) m/g  +R & KQb AB ? ^ ) „F :6 ¤Q Gc&00 161 70 18&9 2

;b q %, I= 'C Gceb £1F ,\c+1 ;<=0 AB @R 161 7 2 ;b ;0@= O^ :6 /LQ ƒF 18&9 2 ) ,+1 I6% P O% 63%

:=2 =g ;b ;0@= O^ :6 /LQ ;b :F

‡ AB @R JZ

O% =' b `+ OMR p0 ,37%

2 AB @R 18&9 2 ;b c¤R :6 >C© : m/g ~C{R & KQb AB 2H9 ,161 7 ,161 70 18&9 :=2 : ;<= „F :6 18&9 :=2 : ;<R & O KQb AB Ckb0 0 Y= =F ./@=L ) G1H Y1R ) 161 7

161 7 20 18&9 2 O% .M \= E N

oP v1gR D0b @ L G'C DQg uB0 Y= : ;<= }Q Y®@=%0 :6 >b ¯ D,XR @2 ,I8&9 Y=0 I61 7 Gu £}/ G'C ¤Q c&0 O% OM0 ,„

.‰% ,jX :

1t 0 ,d+C 0 ,DWf1Q 'C

(Engelbrecht, Harding & Potgieter , 2005)

I=0

2 w1@R I= G@7 oP /X >b ;b Gceb w1@R I= G@7 oP Yc8b O% .{2b ;g 161 7 18&9 2 N

Gceb \g @4 ;b 'C d8=Q

161 7 GVMW OP &9 oP Y®C, ) /X GVMW OP &9 ) Yc=@4 O% fgb DQg dQ 'C d8=Q mWR l1L Gu )0 ;18&9

(Huang, 2011)

@T 4b >?@=' AB D2 I=

Y1 7 oP 68@ wC=

Concept Based

oP

) '+­ 1g ) A0‡ 1% +L ~VT ~L=g 0} .%M= @= 1H Y1 76 ;R G>&9 oP 68@ wC= @X QC@%

Procedure Based

, 'C d8=Q GCkb0 AB

;b

@X .%M= “1H% Y­ D%, O^ ~VX oP 68@ wC=

oP fgb 3C, 0ceb Y1 7

oPb J=L%0 ,3& ‘,% ) .%M= Y1 7% S1/XR @X 'C O^ ~VX QC@% Yc7 O%

'C GCkb ,0 ,G>&9 oP 68@ wC=

(Shepherd, 2006)

.Z ;{7 ~VX ;b AB

h=' „VZ O% .Š AB „› I8&9 O% P

) @‰ P F ) =F ,Y16= AB „› ‰%‡

‰%b &0 P 0b ,.} %<V 1 LŠ G16 G\16R AB „› 12g N

(7)

A7$ "!+

: 2 : ;<= 1rb S/' % „VZ O% Ž{=

GC@% wCR +P 161 7 20 18&9 ,G1H F ) ;<= ^ 1rb vR0

jX ST ) A0‡ 3X€ žB £1F ;18= E 1 R ) a'‡ žb oP c1B ¤+0 ,20 Y .P7=0 “6= “% S2= Yc1 ŒR0 >´+

,K%

oP [C, 7 Ž/? F s^q \= E C@ 0 @R ) c'9 µš¶R + O%0 ,K c+0 “6=

,KR=L% 2M “6= YR F% 18= E F ;“6= z1 ) 0 161= {c+ F%0 ,M70 ,·hW OM= F% žB £1F 16 xQ ;b \ 0 ,jX )0 ,Cc0 18= E F ) oP m/g .MW ‘,=

c1P +=L I= 1''‡ 3v1g † ^ Y Gf€ ±1… ^ Y ;B £1F ; ¤+

AB dc+  b Y& ^ 0 ,K VX GCc0 ,/'+ Y1= 1'0 C=¸ ^ 0 ,161R ‘,%

5 ^ c2 Kg (u O% Y ‡0 K VT mM7R ) 4

2 : ;<= O% F &0 ;ª2 ,Ycg'0 GC@ KLCR +P 161 7 20 18&9 YR <vR I= 6c C%‡ O% µš¶ G1H wCR xV›B ;b \g ,F s^ ) G1H ;6 ;g uB EB S@}= ;b OM6 E G1H

;%@ ' I= G1H [@16P [\c2 Y… c% .%= oP 3C@ Y… ;M0 ,cLC=

cLCR >+4b Q06

McDuffie & Graeber, 2003)

N

I%@ w G>Q O%0 S/' ¥ [,VXQ0 O% F &0 3C0¹ G1H I6 IM%‡

&9 2 : ;<=

J 161 7 20 18

G1H I6%

NCTM, 2000

, K1P Ggb %0

;0Z©0 M1 Ckb £1F ,„ ^ ) G'C

(Baker, Czarnocha & Prabhu, 2004)

;b AB

GCc oP vgR ~VX @¶R I= G1H ,G1H Yc2 oP v1gR O% ‰gb G>&90 g50 ) Y1 7 O% [P ;'C ~VX ;b s^ “% S7=0 ,Yc2 ;0 '+­0 ,f0 ,~LŠ

1%0 „+1/'b ³

(Aspinwell & Miller, 1997)

,

D2R0

(Tufte, 1988)

, wC%0

(Morris, 1999)

;

O=L&g0 ,O=L& 0 ,DWf1Q J0

Engelbrecht, Bergsten, Kagesten & Owe, 2009

.MW vg p „0 Y¤% ) G1H Y1R ;b Y11@= c% ;b0 ,GCc0 G>&9 2% oP m/g c oP vgR % 3P ;6 c%h=L I=

S6 oP v1gR O% ‰gb 18&90 1+1R0 fgb 3C, `V=% AB ~VX 5 % 0 ,I61 7

(8)

oP ,<%0 ,1H GCc “% .%=

2 “% .%= oP Y®C, O% ‰gb G>&90 71k GCkb ? ^ )0 ,161 7

(Shepherd,

2006)

“% .%= ) @‰ ~VX jL=M ;b 1rb AB Zb AB  Q O% „@=QE0 ,18&90 161 7 2

,0 cL f0 K1P gb % 0

(Weber, 2001)

11R'E 2 ~VX 0vR 1rb AB mW ^

Strategic Knowledge

) jX @4 žŒ c2P I=

2 0b 161 7 2 h=L =%0 ‘1g 2%

;WZ0 kC J0 ,18&9

2009

< b ;b

1H Y1R G,%

:2* ¤Q c&0 O% G

P0 ,:@= ~'b oP :6 \=P ) .‰6=R «17}= :6 >7=g0 ,Y= ) ~VX `yB ;Œ [\P ,q1=' 16+R O% [E G1H Y1 7%

W Ki 1H Y1 7 ~1=' O% jX OMœ

c1P „/,90 3 61@

N 2 ^+ mW \1

2004

AB

M6 ) G1H I6% J m/g ‘H &0 ,1H Y1 7 16+R „ ) L 1 2 +›‡ 1LCR °u\Q >+ 3C0¹ º0 oP c+1+@R0 c/t0 GCc%0 Y1 7% O% 1H g O% [,VXQ0 ,~VX O% 3m/g ¬y @2 S/' % .

J% oP = 0_ ) 'C MW% G•

J 161 7 20 18&9 2 : ;<=

1 M6 18= E F G1H I6%

K12 345 .%0 ,L N

A7$ UV :

I= ‰Š G tE 'C s^ LR

+R 2 : ;<= O%  Q UFB 3C0¹ 

161 7 20 18&9 N

'C „0b †R

− :‰F/ YP 0F ) −

161 7 20 18&9 2 : ;<= F OP 1 z1/ ) N

;<= 3C0ˆ AB :6 ¤Q 'C K&R

18&9 2 : wCR +P 161 7 20

G1H GC@%

N

F }= Q/=' :‰F/ 'C œ

.%0 161 70 18&9 2 : ;<=

qW% G'C ) c%h=' OM6 c12 345 N

A7$ "WAV :

20 18&9 2 : ;<= J% %

1 7 ) 18= E F G1H I6% J 16

?L 1 M6

2 : ;<= ) 345 .% %

G1H I6% J 161 7 20 18&9

?L 1 M6 ) 18= E F : ;<= ) [18?FB l02 `+ .

(9)

1 M6 ) 18= E F G1H I6%

Gmn= JvR L

,.6 ;M% ,w+

3f€ G+'

?

A7$ 'G":3 :

: OP 18&9 2 fR

„20 S1,0 ;% .MW G>&9 ^17+R ) 3Cc 9 2% O6{=R0 ,Y8V% }Q oP0 G>&

3_  b AB „› O% OMœ I= GX€0 N

\g

I= G160 ,¡0*0 ,<% n OP fR žb

% 1HC 6c% „\g9 c@1/XR OM6 N

XX XX

: 161 7 2 „0+=R

‘1g Yc20 ,1H CM2‡ : G,V oP =

,V s^ /RR ’Vg d=+R IM c{ oP +/R0 G

O6H G1H G@1/XR oP vgR0 ,[X %0 [V%M=%

c&CZ0 G1H .Z G,1' [QM% µš¶R0 N

GVMW “% .%= %<V 1H 26 [ &

1H ‘,0

 CM2‡ Yc2 O6{=R0 ,3

%0 ,G>&90 1H 1''‡ S8@Š 2

N

XXX XXX XXX XXX XXX

: 2 KQŒ [18&B ;<= ‘R OM6

18&9 20 161 7 Y% cM6 I= Q<=

sPLR0 G1H .16 E £1} ,K'0C xy +P

JZ‡ ~LF oP :=2 JF9 N

YZ1 A7$

: £1F ;»1}= I7› dc+ oP 'C 6=R

“¼ AB LR žB : ;<= „F 17› GQ1/

G1H I6% J I61 7 Yc70 18&9 2 .%0 ,L 1 M6 ) 18= E F }= Y4 ,s^ ;<= F oP 345 , 0 ,.1

#Vh='0 GQ1/ s^­ mL7=0 d8=+

N

A7$ 15 :

G\%0 I6% O% 'C “6= ;MR L18C ST+% UV‰ 18= E F G1H 'C +1P C1=Z YR0 ,L 1 M6 7=— ;% UV4 O% 1@/X 18W @X M6 I L 1 :

\g ,._ ,3^7+@ ,`/R

„0 ) ŽH%

:1

[$

- /\1 A7$ 15

\ J"

"

T:1

"

10 '1A

], 2^

LIV D

10 '1A

], 10

'1A ], 2^

LIV D

10 '1A

], 9N

._

23 27

16 34

100

3^7+@

24 12

18 25

79

`/R 26

23 22

23 94

 6 73

62 56

82 273

A7$ $&

: I6% O% +1P oP 'C 3b S1/XR YR

(10)

1 M6 ) 18= E F G1H ‚‰ ½C .?7 ) L 1432

N 1433

A7$ V :

QM% Q/=' Pª ;‰F/ , O%

21

„VZ O% =% O% C1=ZE  Q O% c1¼ 3@2 20 18&9 2 ›€ G1 ‡ AB  &

3CW=' “% ,\c+1 ;<=0 161 7 I6% ¯

I= 3‡ Q='E YR \g ,c12*%0 G1H Pb

Michael & Damon, 2008

C0_ • )

'E

®@20 Q/=

N O% G@7

1

}= LR 7

161 7 20 18&9 2 : ;<= J%

M6 ) 18= E F G1H I6% J O% G@7 \+1 ,L 1

8

LR 21

:=2 : ;<= F oP 345 .% }=

&9 O% gŒ= YR £1F ;:6 J 161 70 18 oP cHP ST OP  ¤ Q/='E l›

wCR lT0 d + „ ) 3^R'‡ O% P6 ¯ >&B YR0 ,w7+ YP „0 G1H

„F ;6M} b I= Gm1n=0 GV=

E G/4 O% gŒ= YR \g ,Q/='E h=' Q/='

G/4 '=% AB .›= YR0 ,¾/Q0g 7b % ¿ .Mg Q/='V /@% G/4 &C I 0 ,0.79

Q/='V N

Z+21 A7$ Y_

:

`%V : [a [ XX +XX21 YXX_

: J% %

J 161 7 20 18&9 2 : ;<=

G1H I6%

1 M6 ) 18= E F

?L :6 G ='E z jL+ ~LF YR J% }= ,Q/='E O% A0‡ “/L G@7 oP J 161 7 20 18&9 2 : ;<=

1 M6 ) 18= E F G1H I6%

L 1= „0 „VZ O% (u c¤0 , :

b [$

- /\2 cV d5 "

'T -

1 /\3 f

$ 4 1

$ 4 1

$ 4 1

% (71+?R 26 0b GCc 1H I=

cF*R

?( VX 67 183

% 14 38

% 19 52

%

% (71+?R 26 0b GCc 1H I=

c%h=L

~VT :6 150 ?OZ¨

% 55 22 60

% 23 63

%

% (71+?R lX I=

c%h=LR ) x*

?( VX 62 169

% 14 38

% 24 66

%

(11)

G@7 oP :6 G =' c¤R

1 3

„0 ) }H

G\%0 I6% .1% 2

F G1H L 1 M6 ) 18= E

,YqVX 18&9 1H GCc0 C Y@R AB GCc0 C xy ) 18&B lT h='0 OZ¨ :6 ;b :6 Y¤% J \g ,1H

C oP v1g AB .1 ) Y­ [qW% [}+% ;}+

9 ,161 7 C h='E Yc1% O% ‰gb 18&

2 1rŒ :6 J P+, &0 g5 % 0 161 7 2 ~LF oP 18&9 N

[$b - /\3 cV d5 "

'T -

4 /\5 DT 'c ,(

D!

$ PT_

g4I

#

\ DT

J"

,(

D!

$ PT_

# '7Z

% \ ch i j4A

\+1F I6=+

jX (Qf N uB

;g E

;b

C=–

Fb GC1€

,1=

u\2

?.{7R 44 120

% 25 68

% 31 85

%

uB

;g jX E I6=+

(Qf N …Œ2

?.{7R b

; jX NNNNNN:

37 101

% 29 79

% 34 93

%

G@7 oP :6 G =' c¤R \g

4

„0 ) }H 5

3C? ;0@= :6 ;b 3

C +@= ;b ji F s^ ) ~VX ;b 3m/g C O% m| O% fgb 3C? 18&9 GCc0

% ^ 0 ,GCc0 : ;<= F OP Y 7

161 7 20 18&9 2 N

AB 2H9 ^

~VX @¶R I= G1H ;b AB mWR d8=+ ;b oP v1gR O% ‰gb G>&90 GCc oP vgR @R I= 1H C ;ª2 ^ ,G1H Yc2 'b oP +/R E Y­

S16P0 , I61 7% a N

[$b - /\4 cV T d5 "

- /\6

TK kf TK

kf lI

SZ1 T ,m

\+1F

;M Y1R

~VX G1H 3C?

,11/T

%

°C=

1/X I Yc7 177 ?Y…

%65 14 38

% 21 57

%

3@7 oP :6 G =' :/R0

6

„0 ) }H

;b ;0 :6 Y¤% ;b 4

2 b/ ~VX J Yc7 I1/X °C=

161 7 2 AB C0 @R I= 18&9 N

^ 0

;0@= :6 ;b AB mW OP Y†= jX ;b

K Ž=7 % 0 ,[E0b 18&9 2 ~L=g ST

(12)

[@FE 161 7 2 Y= ~/

N 1=+ s^ S7=R0

('00 vQm K1B j u % “%

(Byrnes & Wasik, 1991)

1=+g CX=R 7 161 7 2 ;b O%

0 GCc0 G>&9 “% K%=

G1%<C€

N

[$b - /\5 cV T d5 "

- /\7 J_

% gn

$I^

. jX

Ž+

) (Q Á uB (=%

GCc%

18&B ,3<=¥

K+M 0_

2

?161 7 67 183

% 17 46

% 16 44

%

3@7 OP :6 G =' ŽHR0

7

) }H „0

2b :6 Y¤% ;b 5

18&9 GCc YqVT (=6 ;b ;{7 'C P /LQ Dn £1F ,161 7 2 ~LF oP d% ) ;}+ YqVT ;b ;0 O^ :6 Dn 3<=¥ 18&B GCc% M=% uB G1H

%67

/L+ s^ Dn :F ) , %17

26 /L+

,161 7 %16

;}+ YqVT ;b ;0 :6 O%

161 70 18&9 :=2 : ;<R Y… ;g uB N

G@7 oP :6 G =' .1• „VZ O%0 '=% ;b Ž{= c1¼ ;<= F >?@=' ›€

) ;<R Y… O^ :6 P 2 h='

161 7 20 18&9

/L+ ,[6%0 [\% 66

AB .?R z%

N%24

DQC, % uB 1zH /LQ s^ R0

2 h=' AB ;16 O^ :6 P /L+

AB D›0 I=0 18&9

7 .

%56

;b (^g Ž{=0 ,

;16 O^ :6 P /LQ 2 h='E

AB .?R 161 7

3 .

%19

, (u ŽH ƒ= .MW0 :

0N00 56N70

24 % 19N30 %

%

!+

- / 1

oP 18&9 2 AB :6 .1% Jv ,0 ~LF .‰% h=' c' AB :=2 : ;<=

xy ;b \g ,cFy0 1H C O%  + ^ Y O% °=¬ 161 7 C

m{•0 I+ u c& AB

cML ;b ji I= /'+ @X ) mM7=0 ,S/L%

K1P “{ ¥ ,~VX /'+% @X 2 s^ .?=

(13)

O%  + ^ „rB „VZ O% c/+t J , 3& [>/Pb AB 18&9 2 }Q .1 ^ Jv ,0 ,2

2 O%  + ^ ;b AB :6 O% m‰g @=P

jX oP ;M KQB £1F ;18= E F ) Yc 1g Œ Y4 ,c+% OM6=0 G>&9 ;@RB oP v

@FE 6P F% ) 161 7 2 N

‘{ ;b \g

¯ J 16 3 O% OM6= P0 I6 2 oP Y v1gR ) C0 K ;M , :6 G1H GC@% „T AB [{b “& \ C0 ,18&9 ,1 „?7 2‰g 0b ,cLC= ;%@ I=

X=%0 ,;6 K6}= ^ m/M >j0 .6 G/

: x* +P ;<= O%  Q 'C¥ Y­ Ž1= E ¥ 161 7 20 18&9 2 N

1=+ s^ S7=R0 ;0Z©0 M1 K1B j u % “%

(Baker et al., 2004)

O%

GCc oP vgR ~VX @¶R I= G1H ;b G1H Yc2 oP v1gR O% ‰gb G>&90 N

`_

: oXL [ +21 Y_

: .% %

20 18&9 2 : ;<= F ) 345 ) 18= E F G1H I6% J 161 7 ?L 1 M6 :6 G ='E z jL+ ~LF YR

O% G@7 oP

8

}= (u0 ;Q/='E O% 21

18&9 2 : ;<= F ) 345 .%

F G1H I6% J 161 7 20 ) :/% \g ,L 1 M6 ) 18= E „0

:6

[$

- /\6 cV 'T d5 "

pq c3TA & #

\

f

$5 T W 4 1 'NA%

$5 W 4 1 'NA%

$5 W 4 1 'NA%

% 8 (71+?R j=M G1H

F

?18= E 23 63

% 58 158

% 19 52

%

9

% (71+?R

GFV›9 )

j=g G1H

F

?18= E 22 60

% 61 167

% 17 46

%

10

% (71+?R GvMR jC=

^

K=1@R ) F

1%

„F d + lT0 167 ?wC=

% 61 22 60

% 17 46

%

11

% (71+?R GvMR jC=

^

K=1@R

>+4b

„F d + lT0 147 ?wC=

% 54 23 63

% 23 63

%

12

% (71+?R GvMR J=_

GC@%

G1H 172 ?1%

% 63 19 52

% 28 76

%

% (71+?R GvMR J=_

GC@

?1%

% 58

% 24

% 28

(14)

rK [$

- /\6 f

$5 T W 4 1 'NA%

$5 W 4 1 'NA%

$5 W 4 1 'NA%

14

% (71+?R j=M 1'C I=

[/|

% DQg h=LR

oP C%

G+'

?(='C 84 229

% 8 22

% 8 22

%

15

% (71+?R lX I=

c%h=L {P z1 wC=

)

xy GC@%

G1H 156 ?1%

% 57 22 60

% 21 57

%

16

% (71+?R lX I=

c%h=L {P z1 wC=

)

xy GC@

150 ?1%

% 55 25 68

% 20 55

%

17

% (71+?R GvMR Y11@=

) J=_

GC@%

G1H 172 ?1%

% 64 14 49

% 22 52

%

18

% (71+?R GvMR Y11@=

) GC@

147 ?1%

% 57 27 60

% 16 66

%

19

% (71+?R

@X I=

Y=

q Y11@R

~VX F

?18= E 71 194

% 15 41

% 14 38

%

20

% (71+?R GvMR jC=

^

@R K=1

>+4b F

1%

„F G16P

?Y11@=

70 180

% 15 60

% 15 33

%

21

% (71+?R GvMR jC=

^

K=1@R

>+4b

„F G16P

?Y11@=

73 161

% 18 66

% 9 46

%

OP :6 G =' „VZ O% Ž{=

45R I= .% O% &0 @ L G@7 L 2 : ;<= F oP ~i90 j G1H I6% J 161 7 20 18&9

L 1 M6 ) 18= E F N

O62

3@7 „VZ

;b Ž{= 8

%58

;b ;0 :6 O%

: ;<R 18= E F ) 1Š G1H j=g 9 2 3@7 „VZ O%0 ,161 7 20 18&

;b :/= 9

%61

j=g ) GFV›9 ;b ;0 Yc+%

oP ŽH0 .MW GvgC 18= E F6 G1H s^ mWR0 ,18&90 161 7 2 : ;<R iB I= GFV›90 G1H j=g ;b AB 1=+

D/ c1P G&

;<= O% F iB ) [1 iB [C0

GP'0 ,161 7 20 18&9 2 : Q<=% @X 1H 2 Y@R oP :6 Q0 `V=% oP Y®PL% „VZ O% ~VX CX% ;b AB mWR \g ,I61 7 S60 18&9 F G1H j=g ) 18= E

1 M6

(15)

IPR £1} 1'C j=M >+ oP 6P L 18&90 161 7 :=2 Y1¤+R ŽH0 .MW ”/ @140 “% 1=+ s^ S7=R0 ,;<=% .MW ) G1H I6 I%@ w C›b I=

1M%‡ 3}= GE

(NCTM, 2000)

, I=

[%b Y1 70 G>&9 : .%M= ;b AB mWR 1'C G1H ) [vg%

N

:R@7 „VZ O% c¤0

, 10

:6 ;b 11

„F % .Z s@R ^ jC= ;b ;0 >+4b s@R ^ jC=0 wC= lT0 d + ;< p %€

;g0 ,161 70 18&9 2 :

18&9 2 oP m/g .MW [vg%

N s^ mWR0

0b % .Z :6 jCR d% ;b AB d8=+

GCc oP :6 jCR oP vgR %€ >+4b ,G1H Yc2 oP v1gR O% ‰gb G>&90 5 % 0 .%= oP fgb 3C, `V=% AB :6

O% ‰gb G>&90 <%0 1H GCc “%

JvR ,0 ,161 7 2 “% .%= oP Y®C, >{Pb O% d%f s^ oP :68@ ;b AB 1=+ s^

) : :2* 0b G% ) wC= z1 ;X E aC 161 7 26 )M \= E

3‰g j/L GCc0 18&9 jQ oP ;0vg0 jCR d%f 0 1 G1M :@}= /X d– ) Ã}+ 1 G1g C0 „< \2 ,:6

&C : 5 m| :6 ~VX O% 3m/g Pb

@X 0Pb O^0 12g 16 1@R ¤Q

Y ;b AB 1=+ s^ JvR , \g ,wC=

 1/C= GC0 “% ;V%= E ~C0 { .1@4 )HB >jP Y6 /L+ Ic2 ;12M w10 , <1=& Yc0 ,K T+ 3m‰M >/P‡ AB c+% 3& 387 oP „?Š

N

R0 „F GE³L= O% [P 1=+ s^ m‰

GCkb £1F ;1% G1H GC@% J=_

3@7 ) ŽH0 \g d8=+

;b AB 12

%63

O%

1% G1H GC@% J=_ ;b ;0 :6 2 O% ‰gb 18&9 2 AB 3m/g 3C? .1œ

Dn I= 161 7 c=/LQ

%28

&0 AB GCkb \g ,

s^ J=_ ) 161 70 18&9 :=2 : ;<R AB .?R 1zH /L+ GC@

%19

@2 N “& \ C0

fgb 3C? 18&9 2 GC@ s^ ) \= E OM0 ;cL7Q GC@ J=_ AB w1 ,;<= „rB0 } @T AB z1 >{Pb 1/| c/= I= 3ˆ

vgR I= 16 3 xy +P G% ) wC=

,.Š GXZ ;@RB0 ,G1%<C€0 ,G>&9 oP j=g J=_ : 32 &0 oP 1=+ s^ g5R0 žb AB :6 Y¤% Ckb I= 3CX G1H

(16)

2 : ;<= S@•

161 7 20 18&9

3C? .1œ I= 1% G1H GC@% J=_0 @ L 3C? S/X+R0 ,18&9 2 AB }H0 oP 1% G1H GC@% J=}6 @=

d8=+ GCkb £1F ;1% GC@ J=_

3@7 )

;b AB 13

GC@ J=_ ;b 0gb :6

18&9 2 AB 3m/g 3C? .1œ 1%

/L+

%58

;b ;0 O^ :6 /LQ Dn :F ) ,

161 7 :=2 : ;<R GC@ J=_

18&90

%24

) ¤+ 3PB AB PR 1=+ s^ 0 ,

s^ J=_

:6 0vR žb 7 O% I= GC@

Y PL ^ ;<=0 j'+ Á J=}

Y­ @R0 ,2 O% :P+ Vg O% OM6= oP “% .%= O% Yc+Mœ I= G11R'E0 G0‡

,0 ,18&9 2 “% <= 161 7 2 1=+ s^ JvR j=g ) UF ^ CX= ;b AB

) .4¥ CXR K/F? p 18= E F6 G1H GC@ J=_0 1% G1H GC@% J=_

GC@ s^ J=_ j'+= £1} ,1%

G1H j=g ) 3 GFV›9 “%

cLCR G11R'0 N

3@7 c¤R0

F ‘{ Z© [//' 14

G1H j=g J=_ ;b AB GCkb £1F ;;<=

Gb Yc='C G+' C% oP ;6 c'C I=

2 : ;<= F OP :6 ) [\'F [C0 I= G1H j=g Y¤62 ,161 70 18&9 C G+' C% oP ;6 c'C Y= Yc='

AB .?R 3m/g /L+ 18&9 2 =_

%84

) ,

/LQ . @%

%8

cL7Q /L+0 ,161 7 26

:=2 : ;<=

N +1P :6 “1¼ ;b \ 0

6@ G1H j=g 'C 'C

3CX m|

= AB j=M (R @=2 AB mW (u ;ª2 : ;<

161 70 18&9 2 N

EB (u O% Y| oP0

G&=+=' AB „› +P W C^Š O% E KQb \+1F :6 ;b £1F ,j=M s^ J=_ „F 3_

AB ;0mW % 3P Yžª2 s'C ^ J=} 61@

J=} AB 3C0¹ w10 Y­ , ^ J=}

) ;<= F OP / ;ª2 ƒ= 0 ,j=M »7 , ^ J=} ;b AB “& , j=M s^ J=_

.rb0 3m/g 3C? 18&9 2 oP vgC :66 161 7 2 N

O% c1P „?Š YR I= d8=+ GCkb \g „VZ 3@7 OP :6 G ='

AB 15

;b %57

) %h=L wC= lT ;b ;0 :6 O%

3C? .1œ % ) G1H GC@% wCR J \+1 ,18&9 2 AB 3m/g %21

:6 O%

(17)

J0 ,161 7% lX s^ ;b %22

:6 O% @2

18&9 2 : ;<= IPR lX s^ ;b 70 wC= lT AB :6 3¤Q K W=R0 ,161 wCR ) wC= z1 >{Pb c%h=L I=

wC= lT AB Y®¤Q “% GC@

GCkb @2 ;G1H GC@% wCR ) %h=L 3@7 ) d8=+

;b AB 16

%55

;b ;0 :6 O%

) %h=L wC= lT GC@ wCR

J \+1 ,18&B lT c6¤% 0b cg % ) %20

J0 ,161 7% lX s^ ;b :6 O%

%25

O%

2 : ;<= IPR lX s^ ;b :6 161 70 18&9 N

;b AB 1=+ s^ JvR ,0

1 G1M :@}= ~VX ~VX O% 3P

;M=6 E0 % Q‰ ) ‚= .1?}= 0u AB wC= z1 >{PŒ 5 ¥ ,, 1HC 3P, XW+ gCW j+=R 3y/% wCR lT h=' ;b O% [E 0 ,;1F‡ O% m‰g )0 ,~VX P70

› ~VX Œ wC= z1 {P ^ZŒ

AB „

.@0 KR,R O% ¯7¸ 3 O% ,=  ‡ j'+=R £1} ,Q‡ Š AB Y­ %@ 16 3 „rB AB [/| 5 (u0 ,Y­ ‚= J=L “%

G,V 2%0 ”/0 Y1 76 @16 2 s^ ;b C/=P oP c+1 \12 Z=

l7R 2 O% 161 7 2 „rB Jv ,0 ,~VX J=L%

AB G% ) wC= z1 >{Pb O% m‰g ./, O% ?7+% P6 žb oP G1H AB 3¤+

;0 ~VX c+@= ;b ji I= G>&90 GCc

 %0 .%M=% >+ G1H ;b C/=PE : ^Z‡

S1, .MW Y1 7 : G,V K12 +/R N

3@7 OP Y® =' „VZ O% ;6 mW0 ,% .Z Y11@= G16P GvMR% ;b 17

2 m/g .MW Y=® G1H GC@6 ›€0 ;<=0 161 7 2 O% Ä.g ~LF oP 18&9 @2 ,:=2 : ;b ;0 O^ :6 /LQ Dn

6=R % G1H GC@6 Y11@= G16P Dn 18&9 2 oP m/g .MW

%64

:F ) ,

Dn %22

+P 161 7 2 \= V /L+

G16P ) :=2 : ;<= /LQ DQg0 ,Y11@=

Y11@=

%14

¸ E %‡0 , OP £Š +P [m‰g ‘=

ce I=0 , GC@ ›€ Y11@= G16P 3@7 OP :6 G =' „VZ O%

Y=® žb 18

AB .?R /L+ 18&9 2 %57

+1P >C© O%

I=0 161 7 2 ~LF oP (u0 ,'C c=/LQ Dn %16

^ g5R0 ,@2 c% ;b oP 1=+ s

) wC= z1 >{Pb c%h=L I= Y11@=

vgR G%

ŽH0 .MW 0

− 1+1R0 c oP

(18)

0 ,I61 7 S6 oP v1gR O% ‰gb 18&90 “% .%= oP fgb 3C, `V=% AB ~VX 5 % G>&90 ,<%0 ,1H GCc O% ‰gb

;b «FV \g ,161 7 2 “% .%= oP Y®C, @= I= GC@ ) Y11@= G16P 161 7 2 : ;<= OP 31 ;6 žb GC@ s^ ) 7 O% KQB £1F ;18&90 C C% Y@R 171M :6 0v= D66›

1H

G11R'0 G0Œ Y 0vR0 ,YqVX Q<=%

161 7 2 Y11@R oP Y PLR P2 Y11@R ;b (u O% °=+='E OM60 ,YqVX 18&90 171M Y 0vR Y= p 1% Yc='C „VZ :6 ,  b |1› „VZ O% 161 7 C Y11@R a1@

 ‡ ;B £1F ;2 O%  + ^q S=R [T/RC :6 O% m‰g +P /RR a1@ @ ;B „@ AB P % (u0 ;18&9 2 [y/%

GCc oP G% ) wC= z1 >{Pb v1gR 26 ŽH Y­rB0 G>&90 1H C 161 7 0^¬ IM :66 E }H0 '

YqVT Y11@R +P Y 0^F N

1=Q “% 1=+ s^ S7=R0

'C

(Engelbrecht et.al, 2009)

;b AB D›R I=

m/g .MW vg p „0 Y¤% ) G1H Y1R I= Y11@= c% ;b0 ,GCc0 G>&9 2% oP 6 c%h=L

1+1R0 c oP vgR % 3P ;

I61 7 S6 oP v1gR O% ‰gb 18&90 N

2 : ;<= OP / JR @0 lT0 ,1% GC@ J=_ 161 70 18&9 ) wC= z1 >{Pb c%h=L I= wC=

Z Y11@= 16P GvMR%0 ,G%

G% .

„F ;6 @= I= 1/C= GC0 AB .?1 £1F ,%€ >+4b0 % .Z Y11@= G16P ;b AB d8=+ GCkb %70

'C +1P :6 O%

G16P „F % ) s@R ^ jC= ;b ;0 ,18&9 2 oP 3m/g &C vgC Y11@=

vR0

AB .?= /L+ s^

%73

jC= OP £Š +P

Y11@= G16P „F %€ >+4b s@R ^

N JvR ,0

j?+ G/C= s^ .‰% ) v1g ;b AB 1=+ s^

\+1 ,wC= lT0 I6 J=} oP 3m/g &C

Q‡ sF ) Y11@= G16P oP jC= ;M N

\g

;0@=7 jC= ^ oP :68@ ;b AB (u Jv , C Y11@R oP :6 jCR G11R' ) 2 O%  + ^ „rB AB Y P ¥ ,161 7 18&9 2 Y11@R oP v1g . @%

N

2 : ;<= OP / ;M %+P0 0 18&9 GvMR% ) 38L 6L 161 7

GC@6 ›€ % .Z Y11@= G16P

(19)

1/C= GC00 , GC@ 0 ,G1H %€ ./, Y11@= G16P „F ;6 @= I=

Y11@R q Y= I= lX ;MR ;b “,= O62 ,c8+4b0 F ~VX >b ^ OP [{b 31 18= E

3@7 d8=Q KRceb % ^ 0 ,;<=

19

£1F ,

;b Gceb %71

Y11@= G16P ;b ;0 :6 O%

18&9 2 m/g F AB Y=® 18= E F :=2 : ;<=0 ,161 7 2 ~LF oP 161 70 18&9 N

;b AB 1=+ s^ JvR ,0

GC00 1% Yc='C „VZ 00v p :6 Yc+M6 ^ )M jC= ­ HR I= 1/C=

O% m‰g )0 ,Q<=% @X YqVT >b Y11@R O%

:6{R AB :6 ¯ Œ %+P ,;1F‡

z'‡ O% [V1, [P Y®C/=Z I=

Yc7 w1@R

„c+R0 ,YqVT J ‚=% .1?• jL+ ;z&7 ;Œ 'C 3CB0 C%‡ >10b O% G%®E Yc1P IPR E0 ,~VX J=L% l7R0 ,v1R Yc=z'b `' AB Yc+% m‰g P ¥ ,Yc+1 7 l07 y/% 18&B z'b “H0 „VZ O% O%¨ SX ,3

1P G&C oP ­VZ O% ~VX .?¬

N

) 1Š G1H j=g ;B „@ ›VZ0 Gb c1P Dœ I= GFV›90 18= E F 2 : ;<= O% F iB ) [1 iB [C0 ) Ž7 p (u OM0 ,161 7 20 18&9

) :6 `' m1nR : ;<R 1HC 2% Y@R

Q<=% lT h=' 0b ,161 70 18&9 2 .% O% & (u0 ;YqVT YR Y11@R ) O% ;<= F OP / st D2 I= 1/L crb : @= 1% F ) jC= GvMR%

= lT0 d + >+4b jC= GvMR%0 ,wC

J=_0 ,wC= lT0 d + S= %€

GC@ J=_0 ,1% G1H GC@%

h=LR DQg % [/| I= 1'C j=M0 ,1%

I= lX0 ,:6 'C G+' C% oP xy ) wC= z1 >{Pb c%h=L GC@%

,1% GC@0 1% G1H G1H GC@% J=_ ) Y11@= GvMR%0 Y= I= @X0 ,1% GC@0 1%

GvMR%0 ,18= E F ~VX Y11@R q „F 1% F >+4b ;6 s@R ^ jC=

s@R ^ jC= GvMR%0 ,Y11@= G16P Y11@= G16P „F %€ >+4b ;6 N

s^ mWR0

I= X= G16P ;b AB ŽH0 .MW 1=+

p 18= E F6 G1H j=g oP D4F S= \12 JZ‡ Å+ ) <% CXR c@2 2 : Q<

GC@2 ,161 70 18&9

(20)

I= Y11@= G11R'0 wC= lT0 1%

p0 ­F oP D< % wC= z1 >{Pb c%h=L Gm1nR b c1P .Z N

1/C= GC0 D< %0

) 31 , 0 %€ ./, :6 ­ “{¸ I=

P ®11R'0 =_

‘{ ¡@Q0 Gn‰ ' O

D• ;F< < % O^ ;6 c+% ‚ I=

I= 1@= 1LC= G'C\ O% .1@4 UCB Yct0 ,X=0 m1n= %0@% }Q 3@ Y WR Y8@ “H ;ML6=

N

`L : FXL [ +21 Y_

: `+ .

F ) l02 G1H I6% : ;<=

JvR L 1 M6 ) 18= E F Gmn=

.6 ;M% ,w+

, 3f€ G+'

?

~L} ;‰F/ , „5L ^ OP &Æ g O% G@7 oP :6 G ='E 2

1

O% 7

ƒ= „0 ) :/% \g ,Q/='E :

b [$

- :/7 I 2 ,2

s1b t G " u % ,

J" T:1 ,

]q '1A

\

T 91

2 $ I

%$ 2

T:1 J"

2 $ I

%$ 2

'1A

$ ]q 2

I

%$ 2

Y%

._ 26 10 22

.,Œ2 29

3^7+@

15 1

6%

33 0.831 0.362

m|

`/R 22

661 , 1 0.436

m|

O%‰gb

10 30

0.017 0.896

m|

Y%

._ 20 10 17

.,Œ2 21

3^7+@

13 2

6%

20 0.00 1.00

m|

`/R 10

6.65 0.056

m|

O%‰gb

10 19

0.100 0.752

m|

Y%

._ 35 10 21

.,Œ2 25

3^7+@

17 3

6%

25 1.667 0.197

m|

`/R * 22

0.700 0.705

m|

O%‰gb

10 35

1.667 0.197

m|

Y%

._ 13 10 11

.,Œ2 11

3^7+@

5 4

6%

10 0.391 0.532

m|

`/R 7

2.435 0.296

m|

O%‰gb

10 12

0.043 0.835

m|

Y%

._ 18 10 13

.,Œ2 18

3^7+@

6 5

6%

14 0.5

0.48 m|

`/R 13

3.062 0.216

m|

O%‰gb

10 14

0.50 0.48

m|

(21)

rK [$

- /\7

T 91

2 $ I

%$ 2

T:1 J"

2 $ I

%$ 2

'1A

$ ]q 2

I

%$ 2

Y%

._ 33 10 23

.,Œ2 30

3^7+@

19 6

6%

34 0.015 0.903

m|

`/R 25

0.836 0.658

m|

O%‰gb

10 37

0.731 0.392

m|

Y%

._ 12 10 10

.,Œ2 9

3^7+@

6 7

6%

11 0.043 0.835

m|

`/R 7

1.13 0.568

m|

O%‰gb

10 14

1.087 0.297

m|

* E J=L%

0.05

<

Nα

Y1, „VZ O%0 S L „0 „VZ O% Ž{=

g 3@2 b ) :6 : l02 &0 P ®EE0 2

O%

20 18&9 2 : ;<= G@2 0b ,Y1= @X+% 0b ,w+ mn= JvR 161 7

g Y1, DF0R £1F ,3f€ G+' G@7 .g ) 2

: ,0.00

6.65

: ­ 18?F9 E DF0R0 ,

0.056

, 1.00

O% fgb c1¼0 , oP „ ¥ ,0.05

E &0 P P Jv ,0 ,l07 18?FB

@X+ 0b ,w+ :6 : ;<= ) l02 &0 “1¼  {Z AB 3f€ G+' P 0b ,161=

.% UV‰ 161= ST+ ) G\0 :6 jLQ oP ~i90 jL G4b I= cL7Q @ L 9 2 : ;<=

;Y… 161 7 20 18&

,wC= lT (^g0 , C@=% G% d +62 ,m/g F AB qW=% KRvMR%0 jC= G16P0 aC0 G% .Z K/1'b0 Y@= lT ^g0

C O% m| ;0 18&9 2 oP vgR

‰% &0 P “& \ C0 ,È}% .MW s^ .

ST+% Y¤% oP X1LR I= vg AB l07 oP >{@0 ,J³ 1FR AB 5R I=0 ,Y1=

‘H AB (u “& \ C0 ,X=0   9 GE0_

I8= E Y1= .8?2 Y¤% : 1+c 16+=

: ;<R Y… O^ :6 P , AB 0b M6 161 7 20 18&9 2 N

'p :

I= ‰Š wC= lT h=' 3C0ˆ

161 7 20 18&9 2 : [Q<R U•

,7=h .F ) G1H GC@% wCR +P c1P wC= Gz1 >{Pb0 :6 jCR0 N

= 16P vgR ;b 3C0ˆ

.Z Y@

(22)

20 18&9 2 oP aC0 G%

“% ,rF9 „rB ;0 ,>' F oP 161 7 s^ .‰% oP wC= Gz1 >{Pb0 :6 jCR Y@= G16P O% 1P+

N

„ ) :66 %=L 1+c 16+=

Y®% O% +M6= =F Yc??–

1X=L0 ,16

2 : ;<= O%  + G1H wCR rFB oP v1g ;0 ,161 7 20 18&9 N

'&vT :

“1¼ }= JZb 1}L% G'C 1@

: ;<= oP ~i9 0b jL 45R I= .%

161 7 20 18&9 2 N

: ;<= É@Q ~/'b °V d%Q PB

s^ ) Gce I= 161 7 20 18&9 2 'C N 161R .F% ) cL7Q 'C 1@

JZb N ;<= oP G11R'E ¯ 4b 'C

161 70 18&9 2 : N

< AB … I61R d%Q PB

;<= 3

161 70 18&9 2 : N

G1H GC@ ) J=} .1•

161 7 20 18&9 2 &0 jLQ }=

N

$TK !w :

vg @=0 MW I‰}/ S7 @=

G1H0 Y1R XR ) I‰}/ v16=

( % O6H £}/ ^ <QB Kœ oP '

YR0 Y1= ›€ 1‰}/ P6 „\Pb 18= E F ) G1H N

* * * r 2

`%V : r :

Z ,;WZ0 ;Y1 B ,kC N

2009

G1H d +% N

1''‡ 7? cLCR j1'b0 N

C+ C

“<=0 *+

:

;C‡ ,;\P N

6_ ,^+

N 2004

wCR X= x@% d%Q N

X'= F ) G1H N

m| sC=g 'C

, ,' ( %& ,1 1g ,3CW+%

L 1 M6 N

`_

: 41a r :

Aspinwell, L., & Miller, D. (1997). Students’ positive reliance on writing as a process to learn first semester calculus. Journal of Institutional Psychology, 24, 253-261.

Attorps, L. (2003). Teachers' images of the equation concept.

European Research Mathematics Education 3.

Retrieved April, 23 , 2012 from: http://www.erme.tu- dortmund.de/~erme/CERME3/Groups/TG1/TG1_at torps_cerme3.pdf

Baker, W., & Czarnocha, B. (2002). Written meta-cognition and procedural knowledge. Proceedings of the 2nd International Conference on the Teaching of Mathematics (at the undergraduate level).

University of Crete, Hersonissos, Crete.

Baker, W., Czarnocha, B., & Prabhu V. (2004). Procedural and conceptual knowledge in mathematics.

(23)

Proceedings Annual Conference of the North American Chapter of the International Group for the Psychology of Mathematics Education. Toronto, Ontario, Canada.

Baroody, A., Lai, M., & Mix, K. (2006). The Development of number and operation sense in early childhood.

In O. Saracho & B. Spodek (Eds.) Handbook of Research on the Education of young children (187–

221). Mahwah, NJ: Erlbaum.

Byrnes, J., & Wasik, B. (1991). Role of conceptual knowledge in mathematical procedure learning.

Developmental Psychology, 27(5), 777-786.

Engelbrecht, J., Harding, A., & Potgieter, M. (2005).

Understanding students performance and confidence in procedural and conceptual mathematics. International Journal for

Mathematics Education in Science and Technology, 36(7), 701-712.

Engelbrecht, J., Bergsten, C., Kagesten, O. (2009).

Undergraduate students' preference for procedural to conceptual solutions to mathematical problems.

International Journal of Mathematical Education in Science and Technology, 40(7), 927-940.

Haapasalo, L., & Kadijevich, D. (2000). Two types of mathematical knowledge and their relation. Journal for mathematics, 21(2), 139-157.

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory Analysis. In J. Hiebert (ED.), Conceptual and procedural knowledge: The case of mathematics (1-27).

Huang, C. (2011). Conceptual and procedural abilities of engineering students to perform mathematical integration. Word Transactions of Engineering and Technology Education, 9(1). Retrieve March 15, 2012, from:

http://www.wiete.com.au/journals/WTE%26TE/Pag es/Vol.9,%20No.1%20(2011)/07-Huang-C-H.pdf Mahir, N. (2009). Conceptual and procedural performance

of undergraduate students in integration.

International Journal of Mathematical Education in Science and Technology, 40(2), 201-211.

Mastorides,E., & Zachariades,T. (2004). Secondary mathematics teachers' knowledge concerning the concept of limit and continuity. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education,4, 481-488.

McDuffie, R., & Graeber, O.(2003). Institutional norms and policies that influence college mathematics professors in the process of changing to reform- 103(7), 331-344.

Michael, B., & Damon, B. (2008). The state of balance between procedural knowledge and conceptual understanding in mathematics teacher education.

Retrieved October 3, 2012, from

http://www.cimt.plymouth.ac.uk/journal/bossebahr.

pdf

Morris, A. (1999). Developing concepts of mathematical Structure: Pre-arithmetic reasoning versus extended arithmetic reasoning. Focus on learning problems in Mathematics, 21(1), 44-71.

National Council of Teachers of Mathematics (NCTM).

(2000). Principles and standards for school mathematics. Reston, Va.: NCTM.

New York State Education Department. (2005). Learning standards for mathematics. Retrieved September, 3, 2012, from:

http://www.engageny.org/resource/new-york-state- p-12-common-core-learning-standards-for- mathematics

Rittle-Johnson, B., Siegler, R., & Alibali, M. (2001).

Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93, 346–362.

Schneider, M., & Stern, E. (2010). The developmental relation between conceptual and procedural knowledge: A multi method approach.

Developmental Psychology, 46(1),178-192.

Schwartz, J. (2008). Elementary mathematics pedagogical content knowledge: Powerful ideas for teachers.

Pearson Allyn & Bacon Inc.

Shepherd, M. (2006). Some calculus 2 students seem to prefer procedural approaches to exercises over conceptual ones. Retrieved February 2, 2012, from http://coolessay.org/download/docs-

84665/84665.doc

Siegler, R., & Stern, E. (1998). Conscious and unconscious strategy discoveries: A micro genetic analysis.

Journal of Experimental Psychology, (127), 377- 397.

Star, J. (2002). Developing conceptual understanding and procedural skills in mathematics: an interactive process. Journal of Educational Psychology, 93(2), 346 - 362.

Tall, D., Gray, E., Bin Ali, M., Crowley, L., De Marois, P., McGowan, M., Pitta, D., Thomas, M., & Yusof, Y.

(2000). Symbols and the bifurcation between procedural and conceptual thinking. Canadian Journal of Mathematics, Science and Technology

(24)

Toh, T. (2009). On in-service mathematics teachers' content knowledge of calculus and related topics. The Mathematics Educator, 12(1), 69-86.

Tufte, F. (1988). Conceptual vs. procedural knowledge in introductory calculus - programming effects.

Electronic proceedings of the first annual conference on technology in collegiate

mathematics, Columbus, Ohio. Retrieved 3, 2012, from:

http://archives.math.utk.edu/ICTCM/i/01/A274.html Weber, K. (2001). Student difficulty in constructing proofs:

The need for strategic knowledge. Educational Studies in Mathematics, (48), 101-119.

Zakaria, E., & Zaini, N. (2009). Conceptual and procedural knowledge of rational numbers in trainee teachers.

European Journal of Social Sciences, 9(2), 209- 217.

* * *

Referensi

Dokumen terkait

Journal of Research and Advances in Mathematics Education, 53, October 2020, 317-330 327 http://journals.ums.ac.id/index.php/jramathedu According to Graham 2015, the inhibiting