! "#$
TIMSS, 2015)
%
&'# ()* +,* ' -./0 1 12 3 * 0! 4
56 7.8 9 0
: 1
%
" # $%
& '( ) 19
05 1440
; '( ,-).
&
16 01 1441
&'2<
0. 1-234 & 2"4 5678 9: ;2 <= "1 >? @A :
TIMSS, 2015 B$C DE -F GHI. JCK-$ &
LMN O F$ GPQ$ M2" R1AS(" . B$ B$C DE -F. T H UV &
" PQ$ ,BUV2 PQ$
,WVM2 PQ$ ,XYZ [
R4- : PQ$
\ ]^ GHI. _K- R1AS(" . G7H- 2"4 5678 ,HK2 `a27 GYb8.
%92 . %94 567^d @Z(e 02 9:
]8. ,HH-f 2"
%8 . %6 ,Hg `a27 GYb8. ,HH-f hi 2" 567^d @Z(e 02 9:
_K- T . -f G7H- 2"4 5678
]^ GHI.
%85 . %86 ]8. ,HH-f 2" 567^d @Z(e 02 9:
%15 . %14 2"4 5678 -T7 ]8. ,HH-f hi 2" 567^d @Z(e
T . -F GHI _K-$ G7H- HH-F hi
%12 . , _K- Y($ Cd8 @7d
%11 G7H- HH-F hi 2"4 5678 -T7 ]8. ,
R1AS(" . _K-$
%8 GHI _K- Y($ Cd8
%6
\
>?< $ 67j ,R4- : PQ$ ,WVM2 PQ$ ,XYZ [" PQ$ ,BUV2 PQ$ ,LMN O F$ GPQ$ :
HH-f hi 567j. ,HH-F 5
\
_________________________________________________________________________
________
Detection of response patterns in international Test of science and Math (TIMSS, 2015) for a sample of Saudi and Singapore students using the person's fit indices
Bandar Nawaf Tawfieq Jarrah(1) King Saud University
(Received 25/01/2019; accepted 15/09/2019)
Abstract: The aim of this study was to recognize the patterns of response in international test Mathematics and Science data (TIMSS, 2015) for the eighth grade of Saudi students and Singapore students using the person fit indices ; (capability index, misconception index, Guessing index, carelessness index),the analyses showed for responses patterns of Singapore data for science and mathematics that 92% and 94% respectively were classified as normal response patterns, 8% and 6% respectively were classified as abnormal response patterns, the analysis showed for the responses patterns of Saudi Arabia data for science and mathematics that 85% and 86% respectively were classified as normal responses patterns, 15% and 14% respectively were classified as abnormal response patterns. The proportion of the abnormal responses patterns of mathematics data to the Saudi state (12%) is more than science data (11%), the proportion of abnormal responses patterns of science data to the state of Singapore (8%) is more than mathematics data (6%).
Key Words: person fit indices, capability index, misconception index, Guessing index, carelessness index, Timss Data.
_________________________________________________________________________
________
1 k2"8 l XO2. mHO
" # $% ,H Hd ,:T (1) Assistant Professor of Educational Measurement and Evaluation, \
College of Education, King Saud University.
n.Uo p :
*(*
0. 1-234
TIMSS
J( l?
GHI u1 ,HEK2 & H Gv4 wxe ya27 z {g J2 VY G1-234 B$ . |j ;} x2T$ 9: 5".j & wh-d
& HVH2 HV ~). Ut _H ,. #t
12M F 2 DE -f B$ wHaN: B
& 1-234 GOZ B$ :V B$C `a2( #t , XY QT O- BU. ,GHI.
( ]8 8 -F JOHO x2T ,C
4. HH-f hi ]Ut -F B: R1E G 2"4 ,C
HV F O ]^d ?JOHO X2T$
_H ,H-$ hi OF %o .8 S .8 WVM2 y7d 1-234 ? H8 ]d1 4 F B$ whCd ]=
u1 ,HEK2 %1 & T2 4 \
H$ ).
Meijer, 1996
-"8 B$ w-"
B$ HH-F hi 2"4 5678 1Yb C$ 3
B$ ]U2 1-234 A
12
T -t$ ROA
ej <= ,Y"j B$ Y2 e
\
@A B 6 :
%1 : ! C ()< DE F G HI. BJ*
:
%12 -(.
K
LM?<
q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 N2 q12
1 0 0 0 1 1 1 1 1 1 1 0 ,"U2 1
2 1 1 1 1 0 0 1 0 0 0 0 WVM2 1
3 1 1 0 1 0 1 0 0 0 1 1
S 1
4 1 1 1 1 1 0 1 1 0 0 0
-t F3 0
5 1 1 1 1 1 1 0 0 0 0 0 Qf-2 0
6 0 0 0 0 1 1 1 1 0 1 1
o 1 Ja(C2"4
7 0 0 1 0 1 1 1 0 1 1 1 H:A R1) & DI 0
E 0.9
0.85 0.83 0.82 0.57 0.55 0.5 0.49 0.3 0.25 0.21 0.15
. I
5678 z. -"8 -" 1
S. WVM2. ,"U2 J HH-F hi 2"4 o. Qf-2. %o kV7 -t & ^F.
H:A R1) B$ BUV2 :. Ja(C2"4 \
(. k=.
g z. -"
A 567j >?
E B$ y7
X)1 LMN %= V7 wCVA ,]UV
LMN. 2
X)1 ?WVM2 B: 8 S B: `t7 , 3
X)1 LMN JH-F hi V( #?d.
1
X)1 LMN.
o B: 8 ,"U2 B: `t7 6
?Ja(C2"4 0. d B: R1E 1O2 <= %
$. G1-23
H6N U$8 & BF" $% & >O
PIRLS International Study Center
&
TIMSS
R1. 1-23 Ot ,O T 1-234 G1.
: ,H7i ,H$ ,Bt1$ ] B$ { 2004
JU".2".'t
(Martin, Mullis, Gonzalez, &
Chrostowski, 2004)
-23 Ot. , GHI 1
: R1.
2004
,Bt1$. H$ ] B$
JU".2".'t ,H7i
Mullis, Martin,
Gonzalez & Chrostowski (2004)
\ 1-23 Ot.
: R1.
,Bt1$ ] B$ { 2008
lA ,H$
, h = ,; ,]T.8 ~$
H% ,1.18
, with Olson (
Foy
&
, Mullis , Martin
Preuschoff, Erberber, Arora, & Galia (2008)
,
: R1. GHI 1-23 Ot.
] B$ { 2008
lA ,Bt1$ ,H$
, h = ,; ,]T.8 ~$
0% ,1.18
, with Olson (
Foy
&
, Martin , llis Mu
Preuschoff, Erberber, Arora, & Galia) (2008)
\
1-23 Ot #?d.
: R1.
2011
U72" lA ,H$ ,Bt1$ ] B$ {
Martin,
Mullis, Foy & Stanco (2012)
1-23 Ot. ,
: R1. GHI
,H$ ] B$ { 2012
1.18. lA ,Bt1$
Mullis, Martin, Foy & Arora
(2012)
1-23 Ot. , : R1.
B$ { 2015
. lA ,H$ ,Bt1$ ]
Martin, Mullis, Foy
& Hooper (2016)
: R1. GHI 1-23 Ot. ,
. lA ,H$ ,Bt1$ ] B$ { 2015 Martin,
Mullis, Foy & Hooper (2016)
, 1O2 `a27 @E.
1-234 G1. & O T :j & @%8 J2
H2
2003
. . 2007
. 2011
-f [8 GF"2 2015
. -f [8 GF"2$. T H UV R1AS("
X)1 . & 6d
\2
@A B 6 :
%2 : 02 O! -./0 3 12 $P< 3 Q1 2*
:
−2003
%2015
"S *J K
-./0
12 02 TM<
U<
V8I U<
W#< B 1! V8I
2015 612
1 383
39 39
2011 613
2 394
37 42
2007 593
3 329
46
49 GHI
2003 605
1 332
43 45
2015 597
1 395
35 39
2011 590
1 436
31 42
2007 567
1 403
44
49
. & R `a2( 9: w[( .
]A 2
]d T . B$ -F [8 GF"2$
[8 GF"2$ ]8. ,w% 3^2$ Y-Htt. , wZM($
O2$ Y-Htt. ,wZt$ ]d R1AS(" . B$ -F w%
\ 2" e x$ "1.
& -F G
.j Z( mHO X: & ]HK($ ( 1-234
JV2( J2 :VV wOA. -F G 2" m1{t ]8
;t. , KZ mHO & HO2 (
Classical Testing Theory
]8 nC K(. ,
$ 1 kV( wOA. G 2"4 #t m1t 7 VTt. mHO & C ( ;
ROZ 2"4
Item Response Theory) (IRT)
,
`2( WeKZ p: G 2"4 #t <= {7 $ k=.
p: YH= {7 $ k=. ,ROZ O F$ GPQ$ Y(:
LMN O F$ GPQ$ Y(: `2( GOZ
(Meijer
& Sijtima, 2001)
\
} YHA M2T{t kV( 9: H(- GPQ
k67 B$ W$ kV7 B: v(
XH) Ot & IRT
x$ 9: XUK W$ # ~$ Y271O$. GPQ (. ,kV( ~$ WeKZ G 2" O F$
9: H(- <.j 567j >? "1 f z
J)-
infit
.
outfit
_VT
smith, 1991
H7C. , VH) 9: H(-
V HK%1j
log-likelihood
function
B 1. WZH lo
Levin & Rubin, 1979
,
N B-2 9: H(- CC.
Expected Caution
index
B . dTt2 ECI (Tatsuoka & Linn,
1983)
\ GPQ B$ 3¡ (
:VV wOA. H(-
M2Tt J2. ,WeKZ G 2" YH= JV2(t J2 O2 mHO & HO2 ( B$ v( } YHA PQ Y($. GPQ XH)
Caution index Sato
tT SCI
Sato, 1975
X)1 1
PQ. ,
t" P ¢
Caution Index Modified
MCI
B . t1
Harnisch & Linn, 1981
PQ ,
Norm Conformity and Consistency Index
NCI
dTt2 .
dTt2
Tatsuoka & Tatsuoka, 1983
,
PQ.
Within ability index
2"d W
D’Costa, 1993a, 1993b)
X)1
2
PQ ,
Beyond ability index
:
%B
2"d
(D’Costa,
1993a, 1993b)
X)1
\3
£7 )
(Huang, 2011, 2012
:V F2
HH-F 2"4 5678 B: DNU GPQ B$
2"d 1f J2 GPQ$ 9: w62: HH-F hi.
D’Costa, 1993a, 1993b)
"1 >? Y2¤(-t J2.
. J X)1
. 4
X)1
,5
X)1
6
, X)1
\7
AZE$ 9: GPQ >? T HV: Ot ]62%
Guttman
G1) Htt 9: VaO
OZ Htt. 7j <= 9:j B$ WeKZ B$ G
,ej <= ,Y"j X)1 ,UN
X)1 . ~$ 1
#k ]KI 5
\ 1F2 J¥12 ,TT2 ¦^ 6HA.
GPQ >?
: 8XXXX +,XXXX*
Caution Index Sato
SCI
Sato, 1975
Ht¡ F.
:
1
PQ.
Within Ability Index
2"d W
D’Costa, 1993a, 1993b)
Ht¡ F.
:
2
PQ
Beyond Ability Index
:
%B
2"d
D’Costa, 1993a, 1993b)
:
3
B¢UV2 PQ$
Capability Index
F.
Ht¡
:
4
PQ XYZ [" PQ$
(Misconception
Index)
Ht¡ F.
:
5
PQ R4-$ PQ$
(Carelessness Index)
:
6
PQ.
WVM2 PQ$
Guessing Index
:
7
]= _H
: ,LMN <= $t i
j
ROZ <= $
\
uij
: KZV § %o V7
,0
1
\
: E G$$ V
p
¨f3 ,UN Y(: ©H%8 J2 GOZ
]Ut J2 0
KZ R1) BVI
\ : E G$$ V
,U P
KZ R1) BVI ]Ut J2 GOZ
\
: G$$ V
q
%= ,UN Y(: ©H%{8 J2 GOZ J2 KHKe
KZ R1) B: RH ]Ut
\ : G$$ V
~HV q
KZ R1) B: RH ]Ut J2 GOZ \
:P.j
ROZ B: %8 B? WeKZ :
j
KHKe w %=
ªU 9: w$TO$ 1
WeKZV
\ :q.j
: %8 B? WeKZ : ROZ B
j
f3 w %=
ªU 9: w$TO$ 0
WeKZV
\
: ROZ 1Zej :
: y w:V Tth
ROZ 1Zej th
KZV T+1
9: w$TO$ i
K2
: %
$
ui
: KZV U ]62% y2$
\i
y2$ `2(
]62%
Guttman
6d U
X)1 ,UN & I$
2" ; l? 1
LMN
Person Response Function
t J. ,
,UN Y(: %o H62. GOZ e W R1O (: HKe
jθ
GOZ e @7d k= ,
LMN R1) B$ pd8 jθ
A HOHO $ .8 ]
l.Tt LMN %=
,0
e @7d k=.
B$ ,)8 GOZ
jθ
l.Tt LMN %= ]A
w.
1
%o V( ; $ 9: ,Eg ?«. ,
kV7 ~$ sA2 4 l? %o V7 ]8 l8 ,0C JH-f hi 2" V7 p2 ]62%
\
Y$#
:
% 1 '#
&
: Person response function
%
GPQ$ Zt O T G"1 `a27 GYb8 KZ JV2( J2 :VV wOA. H(- O F
9: O F hi 2"4 5678 B: DNU & ¬O ,kV( wOA. H(- GPQ mTt 1d "1 &
Karabatsos, 2003
_H
) W YHA ]1
36
wPQ$
9: H(- GPQ Zt y2"1 `a27 GYb8 ,O F hi 567j B: DNU & :V ?.
£7 yH= ,et $ w8
Huang, 2012
K
£7 x%8 _H
W YHA ]1) "1 2012
Ht¡ GPQ
SCI, MCI, NCI, WB
sA. H(-
2 (
Ht¡ GPQ ~$ mHO & HO
OUTFITz, INFITz, ECI2z, ECI4z, Lz
H(-
"1 `a27 GYb8 ,mHO & C ( sA.
GPQ ]8 @ZNd ) WB
%90
5678 B$
jθ
difficulty probability
1
0
;. @g HH-F hi .8 O F hi 2"4 Z2M \ £7 Db. ).
PQ 2012
1 ¢f J2 G
, , , hi 567j B: DNU "1 &
HH-F := B$ 1-234 ~ DE -f x
]Ut ). ,1TU ~I$ & GHI _K- X B$ 1-234
22
9: @O-f ROA
32
,w-f
a27 GYb8.
]8 "1 `
21
XY2 %= @7d w-f
,HH-f 4
,WV 567^d X¬ %= @Z¢( {e f
4
,R4- : 567^d XY2 %= @Z¢( {e f
f 3
-d$ 567^d X¬ %= @Z¢( {e
R4-$. WV
\
GPQ$ @Zb. J2 G"1 R17 H27.
$ B$ sOK2 & LMN O F$
G 2" e x
GHI 0. 1-234 & -F
TIMSS
,
"1 >? @t^A GPQ$ Db2
G7H & 2"4 5678 ;NU2"4 LMN O F$
1-23
TIMSS
\
$#*
:
,HEK2 DI & "1 UN$ LM2t
& Y 6d T . -F 1U2 .
2
0. GHI. l1-23 9:
TIMSS
l?
®p. ,HVH2 HV 9: WVaO 1Q{ ¯ -e8 XY QT
° `t7 ,HEK2 & ZM74 ? ]= , x38 ,$: ( ]8 8 -F x JOHO DI B:
.8 %o & d -F G %= 9: Qt G %o WV
±
?
\
5678 B: DNU "1 >? @.
(H & HH-F hi. HH-F -F G 2"
R1AS(" . -f [8 ~$ 71O$ R12M T p: d1N . W $O2$ t$ ,2 l?.
GPQ$ DHbt 3 B$ #k. ,Z2M G1.
LMN O F$
£7 1 ¢f J2
Huang, 2011
J.
, , , , Ht¡ "j B: %o :
Z :
.j QT :
HH-F 2"4 5678 -T7 $
R1AS(" .. T . B$ -F kV( &
$. nC JCK- ': _C.
0. 1-234 & GHI.
TIMSS, 2015
(:
~F) $:
0.05
?
nC QT :
hi 2"4 5678 -T7 $
& R1AS(" .. T . B$ -F HH-F JCK- ': _C. $. nC kV(
234 & GHI.
0. 1-
TIMSS, 2015
(:
~F) $:
0.05
?
[ :
¦^ 6HA "1 >? H8 ¦^t :
w4.8 : WT -F x x$ A$
GHI. 0. 1-23 XYHOt &
TIMSS
5678 e B$ sOK2 3 B$
F$ GPQ$ M2" -F G 2"
LMN O
R1AS(" . -f [8 ~$ 71O$
\
wH7
: yH%t & "1 `a27 B$ RZ2"4
-ae G1) k & HVH2 HV 9: WVaO 1-234 9: [j x2T$ WTK2
\
M)S*
:
\$PXX +,XX*
:
capability index
% y $ K
V". , KHKE G 2"4 HO y7j #? J
R1) BVI Y2 e x2T$ ]Ut J2 GOZ B:
KZ
i
\ B$ B¢U ) KZ ]8 (V
yt1) B$ ,)8 ]Ut J2 GOZ
\
@XX]? QXX +,XX*
:
Misconception Index
%
y $
HO y7j X"4 #? JV". ,
G 2"4 x2T$ ]Ut J2 GOZ B: f
KZ R1) B$ 9:8 Y2 e
i
y78 (V , HO
F x XYA [" ( l8 F [HV 5O(
GOZ #t B:
\
-*C +,*
:
Carelessness Index
y $ %
G 2"4 HO y7j X"4 #? JV". ,
B: f
BVI Y2 e x2T$ ]Ut J2 GOZ KZ R1)
i
\
XXP' +,XX*
:
Guessing Index
y $ %
G 2"4 HO y7j X"4 #? JV". , Y2 e x2T$ ]Ut J2 GOZ B: KHKE
KZ R1) B$ 9:8
i
\
XX* ^CXXW _XX(
+,XX<
+,XX*
\$PXX
:
capability index
PQ.% @X]? QX +,X*
Misconception Index
JH-F 2"4 V7
e x2T$ @7d [" KZV BVI GOZ
x2T$
R1) x2T$ 13 .8 KZ R1)
x & B¢UV2 x$ <= ]hN 6|A KZ KZ
\ wd HO PQ B$
-XX*C +,XX*
:
Carelessness Index
PQ. % XP' +,X*
:
Guessing Index
JH-F hi 2"4 V7 %
wH .8 KZ R1) BVI ]d [" KZV KZ R1) B:
\
1`
:
− 1
o Gk GOZ 9: "1 1E2) %
RO2(
\
− 2
,e8 B$ k67 9: "1 1E2)
0. 1-234 & w%kV7 ': 18 : l%8 l? GHI.
\ 2015
Q6a :
XX b]0XX*
`Y( 9: "1 GV2::
"1 "8 B: %³ ªHK2 JZe \
XX -1 4 ,UN:
0. 1-23
GHI.
TIMSS, 2015 (Trends In International
Mathematics and Science)
l? G7H- 1E$
?($ 1-234 ? O. ,"1 >? yH: GV2:
: 1995
;« ,G(" ~ 18 ,d l1. ,UN
JCK-$ & -F Xt WTg & } . R:T$
% ?S2 .t 3 B$ GHI.
m1 [1$. WV [1´. -F [8 9:
\
JVHHO2 1fo 1-234 GOA 2d (: J:.1 G1-23 0. d B: 1E 1-234 GZe
BF" Hd & >O$. H.
(Boston College,
TIMSS & PIRLS International Study Center)
Bt1$. $ ] B$
(Mullis, I.V.S. & Martin,
M.O. (Eds.) 2013).
]U2.
B B$
:
J. GHI & G4 18 BV2 x2K G7H-. "(. p. :j & G4 Tµ.
:. [HZ. [HVHU. [Hj 1j
H-.
. GHI & JFS & -.
2(2"4. sH-F2. A
& T( sA. :®$ ,
X)1 .
3
X)1 .. ,
\4
B 6 :
%3 : < 4M< Bc Y$ -1M< Z< V20 K
4M<
20
<
20
:o %30
A
% 35
p
%30 sH-F2
% 40
"(
%20
2(2"4 %25
G7H-
% 20
B 6 :
%4 : < 4M< Bc Y$ -1M< Z< V20 K
4M<
20
<
20
[Hj
% 35 A
%35
[HVHU %20
sH-F2 %35
[HZ
% 25
2(2"4 %30
14 : %20
dPc :
DE -f G7H B$ "1 ~V2 ]Ut & 0. 1-234 XO2 .h23 B? B$C
GHI.
TIMSS
: R1.
3´ |d ;2015
R1.
,R1AS(" .. T . -f t 0. 1-23 It B? -F V £ _H
T . B$ k6( ~HV GHI.
:
%4344
Z( It B? -F V £ . R1AS(" . B$ 1-234 :
11854
`a27 Gh23. ,%
AS(" . -f |j ;T . `a27 71O R1
B$ GHI. 1-23 & .j d @2
G7H 9: (E. ,R1. #t & d1N . W Ht¡ GF sA. 1-234 :
− 1
n.Uo ~) B: G7H- ,(t :
https://timssandpirls.bc.edu/timss2015/internatio nal-database
− 2
,Vg J2 F G %= GZ 1H23
$1
BAS….
\
− 3
. D$ & GZ ~HVv \
− 4
kV( X)1 T G7H- ®A
\
− 5
D$ 3 B$ R 9: kV7 ,d HKEt
HKE2
BSASCRM6
\
− 6
d1N . T GZ ®A \
− 7
%o Gk GOZ -2"
iE \
0!
: ]Ut ]8 G1-234 k67 1H23 (: J:.1 ) kV( h23 _H R:-2$ )18. Z2· f8 Gk
': _C. ,$. ,nC f8 @S .
1-23 ¦¡ K( 9: G1-234
, 27
, 17
,15
GHI.
,20
,15
\20
V( ]Ut.
B$ nC k
B$ 1H23 ROA 27
_K- 2$
, . 2$ B$ 1H23 ROA 20
WeKZ : £ . ,GHI _K-
270
w-f
B$ yTZ7 h23. ,T . B$ -f.
R1AS(" .
270
-f. w-f \
B$ $ kV( ]Ut.
$ 1H23 ROA 17
B
_K- 2$
, . 2$ B$ 1H23 ROA 15
WeKZ : £ . ,GHI _K- w-f 258
B$ yTZ7 h23. ,T . B$ -f.
R1AS(" .
\258
B$ ': _C kV( ]Ut.
1H23 ROA 15
_K- 2$ B$
$ B$ 1H23 ROA 20
_K- 2
WeKZ : £ . ,GHI
-f. w-f 270
R1AS(" . B$ yTZ7 h23.
270
-f. w-f \
eS>f g<
:
¦^ $ -t GPQ XH) TK HO :
− 1
G7H @$M2"
TIMSS, 2015
&
Gh23. ': _C. $. nC kV(
GOA
o Gk GOZ -2". 2$ B$ 1H234 Gk %
,ROZ$ G7H BV2t J2 2"4 5678. iE B$ R1AS(" . G7H B$ HaN: G(H: 1H23 X
`$7 M2" Gh23 J2 k6(
:^ SPSS
]8 #k. ;T . G7H : ~$ .T2$
:8 B$ Cd8 R1AS(" . -f B$ Wd1N :8 T . B$ Wd1N -F
\
−2
(H G7H ~$ T (H G7H `$
1AS(T \
−3
`$7 & G7H- 3=
WBstar
LMN O F$ GPQ$ XH) T
\
b*O :
WBstar
% :
XH) @-T
LMN O F$ GPQ$
, , ,
`$7 F"
WBStar
] B$ 2d l?
£7.
Lu & Huang, 2010
`$7 M2"
#TH HA
Visual Basic 6.0
\ . I.
X)1 KZe 2d B$ wk3^$ wHIA w4C$ 5
77
£7® T.. ,(d ,BU71
2004 Rankin, Knezek,
Wallace & Zhang
yH: s-f.
`$7
Wbstar
X)1 . & 6d `a2( @7d.
\5
,HK2 & R )1j. ®$ hNt _H
¦^ $ <=
:
: C,M Bi0
:
Wi1
X) yH: 2T JH-f V( 7 :
.1
: B Bi1
V( 7 X) yH: 2T WVM2
:
\ 2
Wi0: W
X) yH: 2T 0-$ 4 V( 7 :
\ 3
W or B
:
Wi0 or Bi1
D(e l8 d$ V( 7
X) yH: 2T 0-$ 4 .8 WV V(d :
K 4
@A B 6 :
%5 : b* ' YM be WBstar
Id q1 q2 q3 q4 q5 hP< Category W B C M
1 1 1 1 1 1 5 H 1 0 0 0.6667 0
2 1 1 1 0 0 3 H 1 0 0 0.2708 0.125
3 1 1 1 0 0 3 H 1 0 0 0.2708 0.125
4 1 1 0 0 0 2 M 1' 0 0 0.1667 0.2292
5 1 1 0 0 0 2 M 1' 0 0 0.1667 0.2292
6 1 0 0 1 0 2 M 2 0.0208 0.0625 0.1458 0.1667
7 1 0 0 1 0 2 M 2 0.0208 0.0625 0.1458 0.1667
8 1 0 1 0 0 2 M 1 0.0208 0.0208 0.1458 0.2083
9 0 1 1 0 0 2 L 3' 0.1458 0.0208 0.0208 0.2083
10 0 0 0 1 1 2 L 4' 0.1667 0.2083 0 0.0208
11 1 0 0 0 0 1 L 1 0 0 0.0625 0.5417
12 0 0 0 0 0 0 L 1 0 0 0 0.7917
V 9 6 5 4 2 26 -
P.j .75 .50 .42 .33 .17 -
q.j .25 .5 .58 .67 .83 -
X)1 . I
GPQ$ ,Hg `a27 5
LMN O F$
W, B, C, M
HIA G7H-
`$7 M2"
Wbstar
. B$ 2 _H ,
5678 ( ]8 567^d @Z(e
HH-f Z BVI
H ,H1
Z BVI HH-f 567^d Z(e WFV7.
F"2 y-
M1'
& WV 567^d Z(e WFV7. , F"2 Z
,M2
Z & HH-f 567^d WFV7.
H7 ,L1
H7 y- Z BVI 0-$ hi V7.
,L3'
H7 Z BVI d$ V7.
L4'
\
&.
X)1 .
I 6
HZHd & H¡
GPQ T
, , ,
@A B 6 :
%6 : @A UP0 &'# ()* +,* i2>
:
%6 K
j3 j3 DE
R1O B: wH R1O BVI
X)1 . I
f 6
GPQ T O
, , , RF G4 sA.
X)1 &
, 4
,5
, 6
X)1 2"4 V( 7
y2%1. 6
\2
_H
= ]
VH) l.Tt q*
:
\
b*O YP! ?W :
WBstar
% :
. wH®(t w-Htt ]eKZ t H(H t sA
percentiles
PQV C
HOHO R1O JF y7j ;
B$ H3
R4-$ ,WVM2
O X , DH(E2
J. ;(e8 <= WeKZ :
H R1O
$. ,H72. F"2.
H, M, L
sA.
Ht¡ G(H
:
W$
9:8.0.67
:H~
: R1) H
\
W W$
−0.33 0.67
:M~
F"2$ R1) \
W$
,)8. 0.33
:L~
H72$ R1)
\
Ht¡ GPQ XH) tt X
W, B, M
w-Htt
W$ 9: ,Eg J2 GPQ XHOA ,wH®(t
95
9:8. (
]Ut 2"4 567j VH) T .8 O F$ hi w6H)
12 J2 W
\ .8 PQ B$ ,d 9: : XU (
W, B
6Y2VH) @7d kA B$ pd8
wf678 p2t 0.03
PQ B$ ,d XH). ,HH-f hi pd8 C, M
0.3
HH-f wf678 p2t
\
]#A0* be :
X)1 . BV2
QT %= B$ w[% 7
4 5678 DH(Et B: ^T l?. ,.j 2"
HH-F ^T l?. ,nC QT %= B$ w[%.
_K- HH-F hi 2"4 5678 DH(Et B:
B$ nC kV( & T .. R1AS(" . G7H
TIMSS, 2015
\
B 6 :
%7 : X 1 X* YXW X X X X "0SX8
-./0XX kXXJ lmXXP0 12XX :
%27 -XX(.
540
^nM?*
K
12 -./0 Z?
17 156 H1
0 12 H3
89 69 M1
9 3 M2
2 4 M3
22 2 L1
109 19 L1'
2 0 L2
15 4 L2'
4 0 L3'
1 1 L4
237 246 JH-f
26 7 WV
6 16 R4-$ 4
1 1 d$
270 270 V
I X)1 .
2"4 5678 DH(Et 7
-F `a27. R1AS(" . -F `a27 B$ ,U B$ ]U 1-234 T .
ROA 27
WeKZ :.
`a2( @7d. ,-f. w-f 540
R1AS(" . ¦¡ K( 9:
@Z(e wFV7 246
-T( . HH-f 2" 567^d %91
GZ BVI
Ht¡
: . ,H Z & wFV7 156
Z & wFV7 69
]FV7. ,F"2
. ,H7 Z & 2
19
& wFV7
H7 y- Z \
. -T( WV 567^d @Z(e 5678 7
%2
Ht¡ GZ BVI :
678 3
,F"2 Z & 5
Ze.
. ,H7 Z BVI 0
Z BVI 5678 4
H7 y-
\ . -T( H-$ hi 567^d @Z(e wFV7 16
%6
Ht¡ GZ BVI :
Z BVI wFV7 12
. ,H Ze. ,F"2 Z BVI 5678 4
0
. 2" V7. ,H7 y- A BVI
1
d$
R4-$4. WV
-T( . %0.4
H7 Z BVI \
¦¡ K( 9: WT -F `a27 @7d :
-T( . HH-f 2" 567^d @Z(e wFV7 237
%88
Ht¡ GZ BVI :
,H Z & wFV7 17
. ,F"2 Z & wFV7 89
7 Z & wFV7 22
,H
. H7 y- Z & wFV7 109
\
. -T( WV 567^d @Z(e wFV7 26
%9
Ht¡ GZ BVI :
,F"2 Z & 5678 9
]FV7.
. ,H7 Z BVI 2
Z BVI wFV7 15
H7 y-
\ -T( H-$ hi 567^d @Z(e 5678 6
%2
Ht¡ GZ BVI :
V7 ]F Z BVI 2
. ,F"2
V7. ,H7 y- Z BVI 5678 4
. 2"
d$ 1
WV
. R4-$4
-T(
%0.4
H7 Z BVI
\
X)1 . BV2
QT %= B$ w[% 8
2"4 5678 DH(Et B: ^T l?. .j HH-F QT %= B$ w[%.
B: ^T l?. nC
_K- HH-F hi 2"4 5678 DH(Et & T .. R1AS(" . GHI G7H B$ nC kV(
TIMSS, 2015
\
B 6 :
%8 : -./0X X 1 X* Y$ "0S8
kJ lmP0 12 :
%20 -(.
^nM?* 540 K
1 -./0 Z?
4 185 H1
90 55 M1
3 0 M2
9 6 M3
12 2 L1
116 15 L1'
3 0 L2
24 0 L2'
6 6 L3'
3 1 L4'
222 257 JH-f
30 0 WV
15 12 R4-$ 4
3 1 d$
270 270 V
X)1 . I 5678 GZH(Et 8
`a27 B$ ,U 2"4 R1AS(" . B$ -F
GHI 1-234 T . B$ -F `a27.
B$ ]U WeKZ :. ROA 20
w-f 540
K( 9: R1AS(" . `a2( @7d. ,-f.
¦¡
: ,HH-f 2" 567^d @Z(e wFV7 257
-T( . %95
Ht¡ GZ BVI :
Z & wFV7 185
. ,H ]FV7. ,F"2 Z & wFV7 55
& 2
. ,H7 Z
H7 y- Z & wFV7 15
\
]d WV 567^d @Z(e 2" 5678 % 4 wZe l.T WVM2 5678 : \
. @Z(e wFV7 12
-T( H-$ hi 2" 567^d
%4.4
Z BVI G
Ht¡
: . ,F"2 Z BVI 5678 6
5678 6
H7 A y- BVI \
. 2" V7.
d$ 1
R4-$4. WV
-T(
%0.4
H7 Z BVI \
¦¡ K( 9: WT -F `a2( @7d :
-T( ,HH-f 2" 567^d @Z(e wFV7 222
%82
Z BVI Ht¡ G
: Z & 2" 5678 4
. ,H . ,F"2 Z & wFV7 90
wFV7 12
&
. ,H7 Z
. ,H7 y- Z & wFV7 116
30
-T( WV 567^d @Z(e wFV7
%11
GZ BVI
Ht¡
: . ,F"2 Z & 5678 3
Z & 5678 3
,H7 . H7 y- Z & wFV7 24
\ . wFV7 15
-T( H-$ hi 2" 567^d @Z(e
%5.6
BVI
Ht¡ GZ :
. ,F"2 Z & 5678 9
5678 6
H7 y- A &
\ . 2" 567^d @Z(e 5678 3
-d$
R4-$4. WV
-T(
%1
y- Z BVI
H7 \
X)1 . BV2
QT %= B$ w[% 9
HH-F 2"4 5678 DH(Et B: ^T l? .j DH(Et B: ^T l? nC QT %= B$ w[%. . _K- HH-F hi 2"4 5678 B$ $ kV( & T .. R1AS("
G7H
TIMSS, 2015
\
B 6 :
%9 : -./0X X 1 X* YXW X X "0S8
_*o lmP0 12 :
%17 -(.
^nM?* 516 K
1 -./0 Z?
17 152 H1
76 60 M1
6 1 M2
7 17 M3
0 1 M4
23 1 L1
105 23 L1'
24 3 L2'
221 236 j3
30 4 Pp
7 17 -*
0 1 VW*
258 258 hP<
X)1 . I
2"4 5678 DH(Et 9
. -F `a27. R1AS(" . -f `a2(
]U 1-23 & T
:. ROA 17
WeKZ . `a27 @7d. ,-f. w-f 516
¦¡ K( 9: R1AS("
: 567^d @Z(e wFV7 236
-T( . ,HH-f 2"
%91
Ht¡ GZ BVI :
. ,H Z & wFV7 152
Z & wFV7 60
V7. ,F"2
. ,H7 Z & 1
Z & wFV7 23
H7 y-
\ -T( WV 567^d @Z(e 5678 4
%2
BVI
Ht¡ GZ :
. V7
. F"2 Z & 1
3
H7 y- Z BVI 5678 \
567^d @Z(e wFV7 17
-T( H-$ hi
%7
Ht¡ GZ BVI :
wFV7 17
. V7. ,F"2 Z BVI
d$ 1
WV
R4-$4.
-T(
%0.4
Ht¡ GZ BVI :
. V7
F"2 Z & 1
\
@7d.
¦¡ K( 9: T . `a2(
:
-T( . HH-f 2" 567^d @Z(e wFV7 221
%86
Ht¡ GZ BVI :
,H Z & wFV7 17
. . ,F"2 Z & wFV7 76
Z & wFV7 23
. ,H7 H7 y- Z & 5678 105
\
567^d @Z(e wFV7 30
-T( WV
%12
Ht¡ GZ BVI :
. ,F"2 Z & 5678 6 24
H7 y- Z BVI wFV7 \
567^d @Z(e 5678 7
-T( H-$ hi
%3
Ht¡ GZ BVI :
5678 3
567^d 2" 5678 D(E{t }. ,F"2 Z BVI -d$
R4-$4. WV
\
BV2 X)1 .
QT %= B$ w[% 10
HH-F 2"4 5678 DH(Et B: ^T l? .j
DH(Et B: ^T l? nC QT %= B$ w[%. . GHI _K- HH-F hi 2"4 5678 B$ $ kV( & T .. R1AS("
G7H
TIMSS, 2015
\
B XX6 :
%10 : XX 1 XX* YXXW XX XX XX XX "0SXX8
_*o lmP0 12 -./0 :
%15 -(.
^nM?*516 K
12 -./0 Z?
4 171 H1
72 68 M1
4 0 M2
4 15 M3
17 0 L1
123 4 L1'
32 0 L2'
1 0 L3'
1 0 L4'
216 243 JH-f
36 0 WV
5 15 R4-$4
1 0 d$
258 258 V
X)1 . I
5678 DH(Et 10
-F `a27. R1AS(" . -f `a2( 2"4 B$ ]U GHI 1-23 & T .
15
WeKZ :. ROA
@7d. ,-f. w-f 516
9: R1AS(" . `a27
¦¡ K(
: wFV7 243
-T( . ,HH-f 2" 567^d @Z(e
%94
BVI
Ht¡ GZ :
. ,H Z & wFV7 171
wFV7 68
. ,F"2 Z &
H7 y- Z & 5678 4
\ }.
WV 567^d 2" 5678 D(E{t \
-T( H-$ hi 567^d @Z(e wFV7 15
%6
Ht¡ GZ BVI :
,F"2 Z BVI wFV7 15
-d$ 567^d 2" 5678 DH(Et D(Et }.
WV
R4-$4.
K( 9: T . `a2( @7d. ,
¦¡
: ,HH-f 2" 567^d @Z(e wFV7 216
-T( . %84
Ht¡ GZ BVI :
Z & 5678 4
. ,H V7. ,F"2 Z & wFV7 72
& 17
. ,H7 Z
H7 y- Z & wFV7 123
\
-T( WV 567^d @Z(e wFV7 36
%14
Ht¡ GZ BVI :
. ,F"2 Z & 5678 4 32
H7 y- Z BVI wFV7 \
567^d @Z(e 5678 5
H-$ hi -T(
%2
Ht¡ GZ BVI :
4
5678
V7. ,F"2 Z BVI
,H7 y- Z BVI 1
. V7.
d$ V(d D(e 1
R4-$4. WV
H7 Z BVI \
X)1 . BV2
QT %= B$ w[% 11
HH-F 2"4 5678 DH(Et B: ^T l? .j w[%. DH(Et B: ^T l? nC QT %= B$
. _K- HH-F hi 2"4 5678 B$ _C kV( & T .. R1AS("
G7H
TIMSS, 2015
\
B 6 :
%11 : -./0X X 1 X* YXW "0S8
J lmP0 12 q! T
: %17 -(.
^nM?* 540 K
12 -./0 Z?
28 147 H1
0 2 H3
88 60 M1
3 0 M2
14 11 M3
17 6 L1
86 40 L1'
29 3 L2'
3 1 L3'
2 0 L4'
219 253 JH-f
32 3 WV
17 14 R4-$4
2 0 d$
270 270 V
X)1 . I 678 DH(Et 11
2"4 5
. -F `a27. R1AS(" . -f `a2(
]U 1-234 T :. ,ROA 17
KZ
. `a27 @7d. ,-f. w-f 270
¦¡ K( 9: R1AS("
: 567^d @Z(e wFV7 253
-T( . ,HH-f 2"
%94
Ht¡ GZ BVI :
. ,H Z & wFV7 147
Z & wFV7 60
. ,F"2
. ,H7 Z & 5678 6
& wFV7 40
H7 y- Z \
-T( WV 567^d @Z(e 5678 3
%1
BVI
. ,H7 y- Z
H-$ hi 567^d @Z(e wFV7 14
-T(
%5
Ht¡ GZ BVI :
]FV7 & 2
Z
,H D(Et }. ,F"2 Z BVI wFV7 11
-d$ 2" 5678
R4-$4. WV
\
¦¡ K( 9: T . `a27 @7d.
:
-T( . ,HH-f 2" 567^d @Z(e wFV7 219
%81
Ht¡ GZ BVI :
,H Z & wFV7 28
. Z & wFV7 88
. ,F"2
Z & wFV7 17
. ,H7 H7 y- Z & wFV7 86
\
-T( WV 567^d @Z(e wFV7 32
%12
Ht¡ GZ BVI :
. ,F"2 Z & 5678 3 29
. 2" V7. ,H7 y- Z BVI wFV7
1
d$ V(d D(e
R4-$4. WV
BVI Z
H7 \ -T( H-$ hi 567^d @Z(e wFV7 17
%6
Ht¡ GZ BVI :
,F"2 Z BVI wFV7 14
. WFV7 @Z(e ,H7 y- Z BVI 5678 3
-d$ 567^d 2" 2
R4-$4. WV
-T(
%0.7
\(
X)1 . BV2
QT %= B$ w[% 12
HH-F 2"4 5678 DH(Et B: ^T l? .j DH(Et B: ^T l? nC QT %= B$ w[%.
. GHI _K- HH-F hi 2"4 5678 B$ ': _C kV( & T .. R1AS("
G7H
TIMSS, 2015
\
B XX6 :
%12 : XX XX "0SXX8 XX 1 XX* YXXW XX XX
q! TJ lmP0 12 -./0 :
%20 -(.
^nM?* 540 K
1 -./0 Z?
7 169 H1
0 13 H3
77 65 M1
2 0 M2
4 4 M3
16 2 L1
145 14 L1'
11 0 L2'
4 2 L3'
4 1 L4'
245 250 JH-f
13 0 WV
8 19 R4-$4
4 1 d$
270 270 V
X)1 . I 5678 DH(Et 12
`a27. R1AS(" . -F `a27 B$ ,U 2"4 ]U GHI 1-234 T . -F WeKZ :. ,ROA 20
,-f. w-f 540
¦¡ K( 9: R1AS(" . `a27 @7d.
:
250
-T( . ,HH-f 2" 567^d @Z(e wFV7
%93
Ht¡ GZ BVI :
. ,H Z & wFV7 169
65
]FV7. ,F"2 Z & wFV7 ,H7 Z & 2
. H7 y- Z & wFV7 14
\
WV 567^d 2" 5678 D(Et }.
\
567^d @Z(e wFV7 19
-T( H-$ hi
%7
Ht¡ GZ BVI :
. ,F"2 Z & wFV7 13
4
. 2" V7. ,F"2 Z BVI 5678
1
d$ V(d D(e
R4-$4. WV
y- Z BVI
H7 \
¦¡ K( 9: T . `a27 @7d.
:
2" 567^d @Z(e wFV7 245
-T( . ,HH-f
%91
Ht¡ GZ BVI :
,H Z & 5678 7
. . ,F"2 Z & wFV7 77
Z & wFV7 16
. ,H7 H7 y- Z & wFV7 145
\
-T( WV 567^d @Z(e wFV7 13
%5
Ht¡ GZ BVI :
]FV7 ,F"2 Z & 2
. ,H7 y- Z BVI wFV7 11
@Z(e 5678 4
d$ V(d
R4-$4. WV
y- Z BVI
H7 \ X)1 . BV2
QT %= B$ w[% 13
HH-F 2"4 5678 DH(Et B: ^T l? .j DH(Et B: ^T l? nC QT %= B$ w[%.
hi 2"4 5678 . _K- HH-F
$. nC kV( & T .. R1AS("
G7H B$ ': _C.
TIMSS, 2015
\
B 6 :
%13 : 1!
F ) DE ) O!
lmP kJ _*o TJ q!
K hP<
9 = ,61 t
= 1596
mP0 q! TJ l
9 = ,17 t = 540
_*o lmP0 9
= t ,17 = 516
kJ lmP0 9 = ,27 t = 540
1 -./0 1 -./0 1 -./0 1 -./0 Z?
677 735 219 253 221 236 237 246 JH-f
88 14 32 3 30 4 26 7 WV
30 47 17 14 7 17 6 16 R4-$4
3 2 2 0 0 1 1 1 d$
798 798 270 270 258 258 270 270 V
X)1 . I -f `a2( 567j : 13
k6( p: T . -F `a27. R1AS(" . 1-234 ': _C. $. nC Z2M 1-234 ]U
OA 61
WeKZ :. ,R
w-f 1596
-f.
\
¦¡ K( 9: R1AS(" . `a27 @7d.
:
-T( HH-f 2" 567^d @Z(e wFV7 735
%92
,
. -T( WV 567^d @Z(e wFV7 14
%2
. ,
47
-T( R4-$ : 567^d @Z(e wFV7
%6
]FV7. ,
2
-d$ 567^d Z(e
R4-$4. WV -T(
\%0.3
¦¡ K( 9: T . `a27 @7d.
: -T( HH-f 567^d @Z(e wFV7 677
%85
. ,
88
-T( WV 567^d wZ(e
%11
. , @Z(e wFV7 30
-T( H-$ 4 567^d
%4
. , 567^d @Z(e 5678 3
-d$
R4-$4. WV
-T(
\%0.4
X)1 . BV2
QT %= B$ w[% 14
HH-F 2"4 5678 DH(Et B: ^T l? .j DH(Et B: ^T l? nC QT %= B$ w[%. . GHI _K- HH-F hi 2"4 5678 $. nC kV( & T .. R1AS("
C.
G7H B$ ': _
TIMSS, 2015
\
B 6 :
%14 : 1!
F ) DE ) O!
lmP kJ _*o TJ q!
K hP<
9 = ,55 t = 1596
q! TJ lmP0 9 = t,20 = 540
_*o lmP0 9 = t ,15 = 516
kJ lmP0 9 = ,20 t = 540
1 -./0 1 -./0 1 -./0 1 -./0 Z?
683 750 245 250 216 243 222 257 JH-f
79 0 13 0 36 0 30 0 WV
28 46 8 19 5 15 15 12 R4-$4
8 2 4 1 1 0 3 1 d$
V
)1 . I X
`a2( 567j : 14
p: T . -F `a27. R1AS(" . -f ': _C. $. nC Z2M 1-234 k6(
B$ ]U GHI 1-234 :. ,ROA 55
WeKZ
-f. w-f 1596
\ . `a27 @7d.
¦¡ K( 9: R1AS("
: 567^d @Z(e wFV7 750
-T( HH-f 2"
%94
WV V7 l8 D(E }. ,
%0
. , 46
-T( R4-$ : 567^d @Z(e wFV7
%6
]FV7. ,
-d$ 567^d Z(e 2
WV
R4-$4.
-T(
\%0.3
¦¡ K( 9: T . `a27 @7d.
:
H-f 567^d @Z(e wFV7 683
-T( H
%86
. ,
79
-T( WV 567^d wZ(e
%10
. @Z(e wFV7 28
-T( H-$4 567^d
%3
. , 567^d @Z(e 5678 8
-d$
R4-$4. WV
-T(
\%1
be0 #A0*
: ^ @Z(e :
%92
.
%85
2" 5678 B$
-f 567^d 02 9: T. R1AS("
2"
#t ]8 l8 ,C G1-234 k67 p: HH-f & WeKZV HOHO G 2"4 ,C 567j & & BUV2 <= #k x ). , _K-$
y($ 9:8 R1AS(" -f x . _K-$
T . B$ -F x
\ : ^u
@Z(e
%94
.
%86
678 B$ % 2" 5
-f 2" 567^d 02 9: T. R1AS("
#t ]8 l8 ,C G1-234 k67 p: HH-f & WeKZV HOHO G 2"4 ,C 567j & BUV2 <= #k x ). ,GHI _K-$
9:8 R1AS(" -f x . GHI _K-$ &
y($
T . B$ -F x
\
^Ju @Z(e :
%8
.
%15
-f 2" 5678 B$
567^d 1-234 02 9: T. R1AS("
,C 4 567j #t ]8 l8 ,HH-f hi 2"
Zt1 x ). ,WeKZV HOHO G 2"4 F x HH-F hi 567j -T7 & WT -
BUV2 :. ,1-234 624 : <= _K-$
"j B: G %o WV <= -F ~A ¸ ,&
\
: ^XX @Z(e
%6
.
%14
2" 5678 B$
1-234 02 9: T. R1AS(" -f #t ]8 l8 ,HH-f hi 2" 567^d GHI WeKZV HOHO G 2"4 ,C 4 567j \
).
-F x HH-F hi 567j -T7 Zt1 x
624 : <= GHI _K-$ & WT WV <= -F ~A ¸ & BUV2 :. 1-234
"j B: G %o
\
^2*
hi 2"4 5678 -T7 ]= : & HH-F