• Tidak ada hasil yang ditemukan

An overview of smart irrigation systems using IoT

N/A
N/A
Protected

Academic year: 2023

Membagikan "An overview of smart irrigation systems using IoT"

Copied!
11
0
0

Teks penuh

(1)

Contentslistsavailableat ScienceDirect

Energy Nexus

journalhomepage: www.elsevier.com/locate/nexus

An overview of smart irrigation systems using IoT

Khaled Obaideen

a

, Bashria A.A. Yousef

b

, Maryam Nooman AlMallahi

b

, Yong Chai Tan

c

, Montaser Mahmoud

a,d

, Hadi Jaber

e

, Mohamad Ramadan

f,g,

aSustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates

bDepartment of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates

cCentre for Modelling and Simulation, SEGi University, Petaling Jaya 47810, Selangor, Malaysia

dDepartment of Engineering, School of Mathematics, Computer Science and Engineering, University of London, London, UK

eMechanical Engineering Department, Abu Dhabi University, United Arab Emirates

fInternational University of Beirut, PO Box, Beirut 146404, Lebanon

gLebanese International University PO Box LIU Beirut 146404, Lebanon

a r t i c le i n f o

Keywords:

Irrigation

Sustainable development goals Iot

Smart irrigation Agriculture Sensors

Water use efficiency SDG 6

a b s t r a ct

Countriesareworkingintomakingagriculturemoresustainablebyintegratingdifferenttechnologiestoenhance itsoperation.Implementingimprovementsinirrigationsystemsiscrucialforthewater-useefficiencyandworks asacontributortoSustainableDevelopmentGoals(SDGs)undertheUnitedNationsspecificallyGoal6andTarget 6.4.ThispaperaimstohighlightthecontributionofSMARTirrigationusingInternetofThings(IoT)andsensory systemsinrelationtotheSDGs.Thestudyisbasedonaqualitativedesignalongwithfocusingonsecondary datacollectionmethod.Automatedirrigationsystemsareessentialforconservationofwater,thisimprovement couldhaveavitalroleinminimizingwaterusage.AgricultureandfarmingtechniquesisalsolinkedwithIoT andautomation,tomakethewholeprocessesmuchmoreeffectiveandefficient.Sensorysystemshelpedfarmers betterunderstandtheircropsandreducedtheenvironmentalimpactsandconserveresources.Throughthese advancedsystemseffectivesoilandweathermonitoringtakesplacealongwithefficientwatermanagement.

Irrigationsystemshavebeendeterminedaspositivecontributortowardoptimizedirrigationsystemsthatcould enhancetheuseofcontinuousresearchanddevelopmentwhichfocusonenhancingthesustainableoperations andcostreduction.Lastly,thechallengesandbenefitsfortheimplementationofsensorybasedirrigationsystems arediscussed.Thisreviewwillassistresearchersandfarmerstobetterunderstandirrigationtechniquesand provideanadequateapproachwouldbesufficienttocarryoutirrigationrelatedactivities.

1. Introduction

Agricultureis animportantindustryaswellasthefoundationof theeconomy. Agricultureautomationisamajorconcernandemerging topicforallcountries.Theworld’spopulationisrapidlyincreasing,and asthepopulationgrows,thedemandforfoodincreases.Thedevelop- ingneedforfood,aswellaschangingconsumerdemands,havemade itextremelydifficultfortheagricultureindustrytodeveloptechniques andpracticesthatwillallowthemtofullysatisfytheincreasingneeds andrequirements[1–3].Oneofthemostessentialsectorsinsocietyis agriculture,whereitfosterstheimprovementsmade.Thus,itisvitalto ensurethatupgradesaremadeinthisindustrytoimproveitsgeneral

Abbreviations:AI,artificialintelligence;GSM,globalsystem formobilecommunication;IoT,internetofthings;LoRa,longrange;MQTT,messagequeuing telemetrytransport;R&D,researchanddevelopment;SDGs,sustainabledevelopmentgoals;WS,waterstress;WSN,wirelesssensornetworks;CSR,corporatesocial responsibility.

Correspondingauthor.

E-mailaddress: [email protected](M.Ramadan).

outcomesandresults.Foodproductiontechnologyshouldfostermajor improvementandinnovationtofulfilthecustomers’advancingneeds [4].Itiscriticaltomakeuseoftheagriculturalresources sincemost ofthecountriesrelyontheagriculturalsector[5].Smartirrigationis emergingasnewscientificdisciplinesthatusedata-intensivemethods toincreaseagriculturalproductivitywhilereducingitsenvironmental impact.Modernagriculturaloperationsgeneratedatafromavarietyof sensors,leadingtoabetterunderstandingofboththeoperationenviron- mentandtheoperationactivities[6–9].Thisenablesmoreaccurateand efficientdecision-making.Inaddition,thisallowsoptimizingresources andachievingtheintendedobjectivesfromthissector.Thewateriscon- servedwhenimplementingthesetechnologiesinirrigationsystemssuch

https://doi.org/10.1016/j.nexus.2022.100124

Received27January2022;Receivedinrevisedform5July2022;Accepted23July2022 Availableonline25July2022

2772-4271/© 2022TheAuthor(s).PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/)

(2)

Fig.1. SMARTirrigationsystem.

thatitplays asanimportantcontributortoSustainableDevelopment Goals(SDGs)undertheUnitedNationsspecificallyGoal6andTarget 6.4.TheSDGsrelatedtowaterandtheenvironmentcouldbeachieved whenimplementingsmartirrigationsystemstoattainsustainableben- efitandbetterplanetforall[10–13].SDG6isaboutcleanwaterand sanitationforall,thedifferenttargetsandindicatorsofSDG6arelinked toallwaterfunctionsandservices,consideringirrigation.Thetarget6.4 dealswithwaterscarcityandreferstotwomainindicatorswhichare wateruseefficiencyandwaterstress(WS)[14–16].Thequalityofthe assessmentofthisindicatordependsprimarilyonthequalityofavail- ablewaterdata.Therefore,thecallforhealthierandmoresustainable foodsystemsisplacingnewdemandsonhowirrigationisdeveloped andmanaged.

However,themisuseofagriculturalelementscanresultinenviron- mentalpollutionandnegativeoutcomes[17–20].Oneoftheprimary reasonscouldbeidentifiedforscarcityoflandreservoirsandlackoffield expertise.Theconstantextractionofwaterfromearthhasresultedin loweringthewaterlevels,whichcontributedtodevelopingun-irrigated landzones.Therefore,improvingagriculturesystemshasbecomeane- cessityandcountriesarenowlookingtoimplementeffectiveframe- workswheresystemscouldbeadequatelyrun[21].

Thesectorofagricultureandsustainableagriculturalpracticesare seeingmodernusesforartificialintelligence(AI)systemsandsolutions [22–25].Forthepastfewdecades,scholarshavebeenparticularlyin- terestedinthemultidimensionalfieldofsustainabilityindifferentdis- ciplines[26–29].Sustainabilitycoversabroadrangeoftopics,includ- ingclimate[30],ecology[31],greeneconomy[32],foodsafety[33], sustainableagriculture[34],cleantechnology[35],etc.,duetoitsmul- tidisciplinarynature.Thus,amorerecentattentionhasfocusedonthe provisionofAIinagriculture.

TheSMARTirrigationsystemenhancestheperformanceandisan emergingtechniquethat automates irrigationsystems andconserves waterusage.Thistechniqueadjustsirrigationbasedonactualsoiland weatherconditions,thereforeitallowsfarmerstomeettheirdemand withanewadoptedtechniquewhichconservesthewaterforirrigation process[36].Fig.1showstheSMARTirrigationsystemincludesdata acquisition(sensor),irrigationcontrol,wireless communication,data processingandfaultdetection.Eachofthesecomponentscanbeused inIoTdevices.

InternetofThings(IoT),smartphonetools,andsensorsaretechnolo- giesthatfurtherenablefarmerstoknowtheexactstatusoftheirfield, includingsoiltemperature,amountofwaterrequired,weathercondi- tions,andmuchmore[37].IoTcan bethoughtofasanextensionof thecurrentinternettoalldevicesthatcancommunicatewithelectronic equipmentandarelinkedtotheinternet,makingdevicesuserfriendly andeasytohandle.Correspondingly,IoTislinkedtoautomationofall areasofagricultureandfarmingprocessesinordertomaketheentire processmoreproductiveandefficient[38].Theuseofsensorsisalso importantforfarmerstobetterunderstandtheircrops,reducetheen- vironmentalimpactsandconserveresources.Thereforebytheusageof SMARTagriculture,farmersaregiventheopportunitytoproduceyields whileusingfewerresources,suchasfertilizers,water,andseeds[39,40].

ThispaperaimstohighlightthecontributionofSMARTirrigationus- ingInternetofThings(IoT)andsensorysystemswithSDGs.Thisreview

willassistresearchersandfarmerstobetterunderstandirrigationtech- niquesandprovideanadequateapproachwouldbesufficienttocarry outirrigationrelatedactivities.

2. Soilandweathermonitoring

Efficientandeffectivemonitoringsystemshaveanimpactonthede- velopmentandgrowthof plantsandarehighlyvitalindesigningan effectiveirrigationcontrolsysteminordertoenhancetheproductionof foodwithminimumwaterloss[41].Monitoringintheparticularcontext ofprecisionirrigationinculcatescollectingdata,whichadequatelyleads toreflectthereal-timestatusoftheplant,soil,andweatherofirrigation areasthroughtheuseoftheInternetofThings(IoT)andWirelessSensor Networks(WSN).Inordertoestablishareal-timesystemofmonitoring, IoThasledtoestablishalow-costtechnologymethodthatleadstoim- provethecontrolandmonitoringsystemfortheirrigationprocess.Also, WSNalsosignificantlycontributesinreal-timemonitoringforprecision farming.Inthistechnique,anetworkofwirelesssensornodesisdevel- opedinordertosense,compute,andtransmitinformationofdifferent parameters[42].

Soilmoistureisregardedasanessentialparameterthatisrequired forthegrowthoftheplant.Theeffectivemonitoringofsoilmoisture contentcould beregarded ascriticaltoensurean optimalirrigation schedule.Thesoilmoisturesensingfocusesonalow-costcapacitance- basedtypewhichisbasicallybasedontheworkingprincipleofadielec- tricdevice[43].Theaimofsoilmonitoringistomeasuresoilmoisture contentthroughtheuseofwell-basedtechnologiesintheSMARTirri- gationsystem.Thesoilmoisturesensorsareburiedintherootzoneof trees,shrubs,orturfswhichleadtopreciselymeasurethelevelofmois- tureinthesoilandtransmitthereadingforwardtothecontroller.With theuseofthismethod,thecriticalinformationiscarriedforwardtoun- derstandhowtherelatedactivitieshavetobedesignedandcarriedout foroptimumresults[44].

Thetwomajorsoilmoisturesensor-basedsystemscouldbeconsid- eredassuspendedcycleirrigationsystemandwateron-demandirriga- tion.Asuspendedcycleismorelikeatraditionaltimercontrollerwhich hasschedulesofwatering,duration,start,andendtime.Thedifference inthisisthatthesystemwouldautomaticallystopthenextscheduled irrigationwhenthesoilhasenoughmoisture[45].Ontheotherhand, waterondemandirrigationdoesnotrequireanysortofprogramming orirrigationduration.Thethresholdissetbytheuserinthistechnique whichstartstheprocessofirrigationwhenthemoistureinthesoilfails tomeettherequiredlevels[46].

Furthermore, weather monitoring is theprocess of assessingthe weatheroftheareaanditssurrounding foralargecroppingarea.In otherwords,theenvironmentalconditionsoftheareaofworkareanal- ysedinordertoidentifytherisksanddevelopstrategiesthroughwhich theadversitiescouldbemitigated.TheimplementationofWSNcould againberegardedasanimperativewayinwhichdifferentsensorsare interconnectedwitheach otherinordertomonitorphysicalenviron- mentalconditions[47].Thereal-timemonitoringtakesplacealongwith theanalysisofdatafromtheinstalledsensorsthroughafeedbackloop whichfurtherleadstoactivatethecontroldevices.AnotherIoT-based weathermonitoringsystemhasbeenestablishedwhichleadstomoni-

(3)

torandassesstheenvironmentofthecropsuchashumidity,airtem- perature,windspeed,solarradiation,andmoisturecontrolinthesoil.

Theuseofweather-basedsensorsistakeninitwhichisinterfacedwith thewirelessstandardofcommunicationfortransferofreal-timedata.

Throughtheuseofthismethod,itbecomesfeasibletoattaindetailed informationregardingtheweatherwhicheventuallyleadstoassistin developingmethodsthatcouldsupporttheprocessofirrigationinthe longrun[48].

3. Watermanagement

Watermanagementcouldbe consideredahighlyimperativecon- ceptwithregardstoirrigation.Thescarcityofcleanwaterhasturned outtobeaconcerngloballyandsotheagriculturalsectorsalongwith otherindustriesmustgivekeenattentionandfocusonthisissue.Water managementcouldbeconsideredasthemanagementofsoilmoisturein ordertomakesurethatoptimumlevelandquantityofwaterisapplied attherighttime[49].Effectivewatermanagementisextremelycrucial fortheagriculturalsectorasitcoulddecreasecostandaugmentcrop production.Watermanagementisalsocriticalasitallowstheorgani- zationsintheagriculturalsectortomanagetheresourcesandcarryout therequiredactivitiesinaccordance.Thefactthatvariousprojectsare beingcarriedoutatdifferentscales,itisessentialtounderstandifthese projectswillbecarriedouteffectivelyornot[50].

Anincreasingnumberoforganizationstodayhavebeenfocusingon conservingnaturalresourcesasthescarcityofthesehaveledtodevelop ahugeconcernforall.Inthisregard,waterisoneofthemostcritical andusefulresourcethatneedstobesavedandprotectedbyallmeans [51].Thefactthatamplewaterconsumptionisinvolvedinirrigation processes,theorganizationsinvolvedandassociatedtotheseactivities mustbe highlykeenandconsiderateaboutdevelopingwaysthrough whichusageofwatercouldbeoptimized.Thus,effectivesolutionsof watermanagementarerequiredtoprovidenumerousbenefitstoagri- cultureindustry[52].

Theexternalenvironmentishighlyuncertain,anditmayleadtoaf- fecttheagriculturalactivitiesinasignificantmanner.Fuelpricesfor instancecouldresultinincreasingtheexpenseofpumpingirrigation water.Ifthereisanincreaseinthefuelprice,thecostsofpumpingir- rigationwaterwillalsoincrease,andthiscouldhaveanimpactonthe overallefficiencyoftheproject.Throughwatermanagement,organi- zationsmaybeabletodevelopmorereservoirsandadapttodifferent strategiesthroughwhichtherelatedrisksandnegativitiescouldbelow- ered[53].Oneofthemostvitalstepsingoodirrigationwatermanage- mentisregardedasknowledgeofbasicsoil,croprelationshipandwater.

Tobeabletocarryouttherequiredactivitiesofagriculture(irrigation) effectively,itisnecessarythatampleinformationabouttheprocesses andproductsareattained.Therequiredactivitieswouldbecarriedout inanadequatemanneronlyifsuchknowledgeisgained.Withlesser knowledgeandinformation,itwouldbenotpossible toexplorehow theirrigationactivitieshavetobemanagedandcontrolledinadverse conditionsandthismayeventuallylowertheoverallperformance[54]. Watermanagementiscriticalforvariousreasonsandoneoftheother reasonscouldbeidentifiedasensuringoptimumworkefficiencylevel.

Throughtheuseofwatermanagement,itmaybecomepossibletomake sureagriculturalcropsattainproperapplicationofwaterindryareas andinperiodsofscarcerainfall[52].Thefactthatvariousprojectsare beingrunin areasthatdo nothaveenoughwater, itis necessaryto focusonwatermanagementsothattimelydistributionandapplication ofwatercouldbecarriedout.Also,inmanygeographicalareas,rainfall isconsiderablylowandsoamplewaterhastobestoredinordertomake surethatthescarcityofrainfallcouldbeovercome[55].

Theuncertaintyandvulnerabilityaugmenttheneedofwaterman- agementsothattherequirementsofwaterinthefuturecouldbemetand thereisnobreakintheoperations.Considerably,largeamountofwater inthecontemporaryenvironmentisbeingwastedthroughdifferentap- plicationssuchasirrigation[56].Thewastageofhugeamountsofwater

whichisnotbeingtakeninanyuseaugmentstheneedofbetterman- agement.Techniquesandmethodsneedtobedevelopedthroughwhich thewastagecouldbelowered,andefficientutilizationoftheresource couldbeensued.Also,thefactthatscarcityofcleanwatercouldbea majorconcerninthefuture,theneedofwatermanagementincreases evenfurther.Differentwaysandmethodsrelatedtowatermanagement arebeingusedintheagriculturalsectorandeachofthesemethodshas hadtheirownbenefits andlimitations[57]. Someofthese couldbe identifiedas:

Measure/metre/manage

Usingwater-smartlandscapingandirrigation

Controlreverseosmosis

Recoverrainwater

Buildreservoirs

Thesecouldbeidentifiedassomeofthemosteffectivewaysofwater managementthat arebeingused byagriculturalsectors.Whilethese methodsmayresultineffectivewatermanagement,ithighlydepends ontheimplementationandefficiencyregardinghowwelltheoutcomes couldbededuced.

4. IoTandsmartsystemsusedinirrigation 4.1. Communicationtechnologies

WithregardstotheimplementationofIoTdevices,theusedcom- municationtechnologiescouldbeconsideredasavitalandimperative pointtoattainsuccessfuloperations.Thecommunicationtechnologies couldfurtherberegardedasbeingusedinaccordancewiththeenvi- ronmentwheretheywillbeapplied[58].Themaintechnologiesthat areusedin IoTfor irrigationcould beclassified intotwocategories.

Onecouldberegardedasthedevicesthatfunctionasnodesandlead toforwardortransmitsmalldataamountatshortdistancesalongwith havinglowconsumptionofenergy.Consequently,theotherdevicesare theonesthathavetheabilitytotransmithugeamountsofdataoverlong distances,havinghigh-energyconsumption.Therearevariouswireless standardsthatcouldbeusedinthecommunicationofIoTdevicesand theycouldgenerallybeclassifiedbetweendevicesthatcommunicateat longorshortdistances[59].

Oneofthemostusedandeffectivecommunicationtechnologieshas beenidentifiedtobeWi-Fiduetothepossibleaccessibilityforit.Ithas furtherbeenidentifiedthatthecurrentlow-costdevicesforIoTmostly leadtosupportWi-Fi,andwhileithasitslimitations(areacoverageand reach),itisregardedaneffectiveoverallmethod[60].GlobalSystemfor Mobilecommunication(GSM)furtherhasbeenidentifiedtobeawidely spreadwirelesstechnologywhichprovideslong-rangecommunication andallitrequiresisamobileplanoftheserviceproviderwhichoperates andfunctionsinthatparticulararea.Twoothernoticeabletechnolo- giesthathavebeenestablishedmorerecentlyareLongRange(LoRa) andMessageQueuingTelemetryTransport(MQTT).LoRaprovidesvery longranges,andthishasledtomakethistechnologyhighlyfeasibleand usefulforsecludedareasthatdonothaveanyservice.Ontheotherhand, althoughMQTThasalsoresultedinbeingawidelyspreadprotocolasit havelowoverheadandlowpowerconsumption,itisnotbeinghighly usedforanirrigationsystemasyet[61].

4.2. Cloudtechnologies

Twoofthemostimperativeandmostlyusedstoragesystemscould be regardedascloudandtraditionaldatabase.These storagesystems arecriticalforvariousorganisationsworkingindifferentindustriesand sectorsastheyprovidetheopportunitytosaveandaccessusefulinfor- mationwhenneeded.Throughsuchstoragesystems,theconceptofbig datahastakenplacewhichdefineshugeamountofdatasetsbeingused forfirmsforvariouspurposes[62].Withregardstotherequiredser- viceswhichareindemandinIoT,itisvitaltousemiddleware.Withthe

(4)

Fig.2. BenefitsofIoTinirrigationsystems.

useofmiddleware,itbecomesfeasibletoconnectprogramsthathave notbeendevelopedinitiallytobeconnectedtoeachother.Theclas- sificationofIoTmiddlewareisfurtherbasedondifferentfeaturesand interfaceprotocolassistance[63].

Consideringtheusageofcloudintheagriculturalsectorandspecifi- callyinirrigation-basedsystems,dataisgatheredandprocessedbythe useofsensors.Inseveralstudies,ithasfurtherbeendeducedthatthe dataisprocessedintheclouditself,andtheusersofitareabletoview theinformationbyconnectingtothecloud.Theusageofcloudinirri- gationismainlytakenintermsofstoringthemonitoreddataandthen retrievingitwhenneeded[64].Cloudtechnologyprovidesbothpaid andfreeoptionstotheusersforstoring,assessing,anddisplayingthe dataonvarieddevicesandplatforms.Thefactthatthistechnologyis beingusedtostoretheinformationrelatedtoworksignificantlycon- tributestoaugmentingtheoverallperformanceefficiency.Thestored dataisaccessedonvariousoccasionsandforvariouspurposesoutof whichresearchanddevelopmentcouldalsobeconsideredasoneofthe mostcriticaluses.Thefacilityofcloudtechnologyhasenabledmany organisationsintheagriculturalsectortostoreandviewinformation thatassistsinimprovingworkefficiencyandeffectiveness[65].

Consideringtheprocessofirrigation,cloudtechnologyhasalsobeen usedtogeneratealertsthroughdevelopingalgorithms.Thesealertshave beenusedtomitigatevariousrisksandhazardsthatcouldhavetaken placeotherwise.Withtheuseofthesealerts,itbecomesmorefeasibleto amendtheworkactivitiesandtakethenecessaryprecautionsthrough whichanyadversities couldbe mitigated[66].Manyprogramshave beendevelopedrelatedtocloudtechnologiesthathavebeenproviding assistanceintheworkperformanceandwhilealloftheseprogramshave theirownsignificance anduse,theyareimplemented inaccordance withtheircost,applicability,services,andotherfactors.Theirrigation systemcouldbeconsideredasacomplexactivitythathastobecarried outintermsofitsrelatedrisks,damages,andintricacies.Havingsaid this,cloudtechnologiesareusedbyindividualsinvolvedintheirriga- tionalactivitiestonotonlyreducerisksbutalsoimprovetheoutcomes ofworkinordertoattainthesetobjectives[67].

4.3. BenefitsofIoTsysteminirrigation

TherearevariousbenefitsassociatedwithIoTsystemsinirrigation andsomeofthemcouldbeconsideredasoverallwaterconsumptionre- duction,highcost-efficiency,highperformanceefficiency,lesserenergy consumption,lesserwastageofcrops,andmore[68].Fig.2showsthe benefitsofusingIoTinirrigationsystems.

OneofthemainbenefitsofIoTsystemsinirrigationisassociated withthelowerwaterconsumption[69].Also,mostoftheworkrelated toirrigationisautomatedthroughsuchanapproach,onlytherequired amountofwaterisutilizedfortheirrigationprocessandlesserwastage takesplace.Intraditionalwaysofirrigationwheremostofthehandling andoperationswerecarriedoutmanually,anampleamountofwater waswastedintheirrigationprocesswherehumaninterventionwasre- quired[2].WithSmartirrigation,thereisnoorlesshumaninvolvement andtheresourceofwaterisonlyusedtotheextenttowhichitisrequired only.Further,highcost-efficiencyisoneoftheotherbenefitslinkedto itaslesserwaterutilizationandprecisionintheprocessallowssaving costsandoverallexpenses[70].Energyconsumptionis alsoreduced significantlythroughtheapproachasmachineshavetorunforalower

amountoftimeandplannedintervalstakeplaceduringtheprocessthat lowerstheutilizationofoverallenergy[71].

Moreover,resourcesarelimitedandbusinesseshavetolimittheir coststoacertainextent,itisimperativetocontrolthecostsandsave resources.WithSmartirrigation,thefactorofcostistakenintoconsid- erationanditbecomesfeasibletocarryoutrelatedactivitiesinaneffec- tivemannerwithlesserexpensesincurred[72].Lastly,oneoftheother advantagesisthatwithhigherefficiencyintheirrigationprocessand watermanagement,theplantsandcropsareonlyprovidedtheneeded amountofwater,andthisreducesthewastageofcropsduetolesseror overtheprovisionofwater[73].

5. Discussion

5.1. UseofIoTandbigdataforoptimisationofirrigationsystems

IthasbeenidentifiedthatIoTsystemsingeneralproduceahuge amountofdatabecauseofmonitoringvariedparametersinreal-time andIoTirrigationsystemsdevelopsbigdataaswell.Understandingthe presenceofbigdata,ithasbecomeessentialandimperativetodevelop mechanismsthatadequatelyassessandmanagethedata[74].Thatfact thatmanagingbigdatacouldbeadifficultactivityonthewholeand mayover-utilisenatureresources,ithasbeensuggestedthatthereisa direneedoffocusingmoreonsustainablemanagementofbigdata.Some ofthesuggestionsthathavebeenunderstoodinthisregardhavebeen identifiedtobe usingblockchaintechnology,discardingunnecessary dataandonlyselectingtheusefulinformation,poweringthedevices throughtheuseofsolarenergy[75],implementclusteringtechniques tolowertheoverallinformationvolume,employingefficientalgorithms andutilisingsustainableresources.Whilebigdatacouldbeofimmense usageintheoverallirrigationprocess,itishighlyvitaltoensureeffec- tivemanagementandcontroloftheinformation[76].

Ithasfurtherbeenexploredthatwhilethecollecteddatafromthe sensorsprovideampleinformationthatcouldbeused,thedataanaly- sisiscriticaltooptimisetheirrigationprocessinaccordancewiththe weatherandcropconditions.Variousorganisationsinvolvedandrelated totheactivityofirrigationarerightlyabletogathertherequiredinfor- mation,buttheyfailtoproperlyassessthedataanddeducetheuseful outcomesoutofit.Thisinabilityofanalysisactsasahugebarrierinim- provingworkefficiencyandloweringtherelatedriskstotheactivities [77].Fig.3showsthebarriersofsmartirrigation.

Moreover,artificialintelligence(AI)isregardedasthetechnology which is being used by most the organisationsfor varied purposes.

ThroughtheuseofAI,optimisationofavailableresourcesbecomesmore feasiblealongwithgatheringinformationrelatedtothecropssuchas diseases orcorrectedgrowthofplants.Arelatedtechniquein thisto assessthecollecteddatafromthesensorstocarryouttheirrigationre- lated activitiesisfuzzylogic.Thistechniqueis employedtoenhance irrigationschedulingandmanagingthedrainage[78].

Oneoftheothertechniquesthatisusedinirrigationsystemstocarry outpredictionsismachinelearning.Thetechniquesofpredictionare usedtoassesstheamountofavailablewaterforirrigation.Thisallows improvingtheirrigationprocessthroughforeseeingtheprobableadver- sitiesthatcouldtakeplaceandhowtherisksmustbemanagedinorder toensureoptimumworkefficiency.Someofthebenefitsthatcouldbe linkedwithmachinelearningcouldthereforeberegardedaswaterusage reduction,increasedprofits,andenhancedcropyields.Withlowering

(5)

Fig.3. Barriersofsmartirrigationsystems.

therisksrelatedtoirrigationthroughtheuseofmachinelearning,itmay becomemorefeasibletoattaineffectiveperformancealongwithprovid- ingfinancialbenefits[79].Therearevariousissuestoagriculturefield likecropdiseases,lackofstoragemanagement,pesticidecontrol,weed management,lackofirrigation,andwatermanagementandallthese issuescanberesolvedbyusingvariousartificialintelligencemethods.

Machinelearningimprovestheoverallactivitiesandprocessesrelatedto irrigationthroughalgorithmsandallowachievingtheperformanceob- jectives.Themachinelearningfurthersupportspredictionsforirrigation patternswhicharemainlybasedonweatherandcropscenarios.Predic- tionscouldbedirectlyassociatedwiththeusageofmachinelearning asitassistsintakingmeasuresandadoptingstrategiesconsideringthe probableactivitiesthatmaytakeinthefuture.Thesepredictionsthere- foreeventuallyallowtakingnecessarymeasureswhichcouldsupport theirrigationprocessinthelongrun[80].Bannerjeeetal.[81]classi- fiedAIbreakthroughsandprovidedaquicksummaryofmajorAItech- niquesandsmartirrigation.Also,Chlingaryanetal.[82]demonstrated amachinelearningexpertsystemthatprovidesaflexiblearchitecture fordatadrivendecisionmaking.Similarly,thedevelopmentofasus- tainableprecisionirrigationsystemwasdemonstratedthroughtheef- fectivemanagementofsenseddataaboutsoil,plants,andweather[83–

86].Correspondingly,Elavarasanetal.[87]investigatedtheintegration ofdifferentmachinelearningmodelstofindtheoptimalirrigationde- cisionmanagement.Theprecisionirrigationsystemscouldbeusedto controlthechangingenvironmentalcircumstancesinanadaptiveman- ner.Variousmachinelearningapplicationshavebeenstudiedinlitera- ture,namelycropmanagement[72],livestockmanagement[88],water management[89]andsoilmanagement[46].

5.2. Irrigationsystemsandsustainability

Sustainabilitycouldbeconsideredasanessentialaspectthatisre- latedtoirrigationsystems.Tomaintainthesustainabilitywithin any

system, balancebetweenthethree pillarsofsustainabilityshould be ensured.The threepillarsof sustainabilityareeconomic,social, and environment.Fig.4showsthepotentialeconomic,environmental,and socialimpactofirrigationsystems.

Theelementsofsustainabilitycouldbeassessedindifferentcontexts andmediumsandsotheseconsiderationsneedtobemadebytheorgan- isationsinvolvedintheparticularsectorandrelatedwork.Oneofthe aspectsofsustainabilityisrelatedtoensuringthattheirrigationactivi- tiesdonotleadtonegativelyimpacttheenvironment[90].Ithasbeen identifiedthatseveralsortsofnegativeenvironmentalimpactsarecre- atedthroughtheactivityofirrigationsuchaswaterlogging,augmented incidentsofwater-bornediseases,salinisationofsoils,issuesofreset- tlementandmanymore.Eventhoughirrigationisavitalpartof the agriculturalsector,itiscriticalthattheactivitiesdesignedforirrigation aredevelopedinawaythattheydonotnegativelyaffectthehealthof humansorwildlife.Also,watermanagementcouldbeconsideredasa partofsustainableirrigationsystems.Duetowaterinvolvementinthe processofirrigation,ithastobemadesurethattheresourceisman- agedandcontrolledeffectivelythroughwhichwaterwastagecouldbe minimised[91].Therefore,thecallforhealthierandmoresustainable foodsystemsis placingnewdemandsonhowirrigationisdeveloped andmanaged.Fromindividualirrigationsystemstonationallevels,all havethepotentialtoimproveagriculturalproductivity,enhancewater securityandcontributetoinclusivegrowthanddrivepositivechange towardsdifferentSDGs.

Dripirrigationsystemsneedpumpingpowertooperate.Inorderto provide pumpingpower,different energysourcesareutilisedfor the process,andthisalsoleadstonegativelyaffecttheenvironmentonthe whole.Consideringsustainableirrigation,itneedstobemadesurethat theenergyusageandimpactonenvironmentisminimisedthroughin- culcatinggreenmethodsofoperations[92].Carryingoutirrigationac- tivities,theorganisationsneedtoincreasinglyfocusontechniquesthat lowertheaspectssuchaspollution,diseases,costs,andotherfactors.

Highirrigationalsustainabilitycanbeattainedwhenirrigationdoesnot consistofthedepletionofhumanornaturalcapital.Sustainabilityin thisregardcouldbeassociatedtomainlyeconomicandenvironmental aspects[93].

Withregardstoeconomicsustainability,ithastobeensuredthatthe irrigationcostdoesnotexceedthevalueofmarginalproductivityofirri- gation.Ifthecostsoftheirrigationprocessareconsiderablyhigh,itmay notbe regardedassustainableoperationsandmayrequireamending theapproachestorelatedactivities[94].Furthermore,waterdepletion isoneoftheotherconceptsthatcouldberegardedhighlyimperative inirrigationandsustainability.Waterisascarceresourceandthecon- cernsrelatedtoithavebeenaugmentingalot.Thelackofavailabilityof freshwaterhasturnedouttobeahugeissuefortheagriculturalsector andforthissustainabilitybecomesevenmoreimportant.Inthisregard, reducingwastageofwaterandimplementingeffectivemethodsforir- rigationmayleadtosavewaterthatcouldeventuallybeusedforthe requiredactivitiesinthelong-run[95].

Agriculturalcroppingsystemsirrigationisnecessaryandconsidered asoneofthemainreasonsthatcauserapidincreaseinwaterscarcityin manyregions[96].Inordertoconservewater,smartirrigationiscrucial andplayskeyroleinprovidingtherequiredwateramounttoeachcrop.

Theprocessofirrigationmayreachtheplantlate,causingthecropsto getdried.Anoptimalsolutionforthisproblemisanautomaticcontroller builtbasedondripirrigationsystem.Thus,theintegrationbetweenthe recenttechnologyandirrigationcanimprovetheuseofirrigationwa- terinmanyregions,thedevelopedtechnologyInternetofthings(IoT)is proposedinthisstudy.TheIoTapplicationcangiveobjectiveinforma- tionrelatedtowaterresources,theiruse,andmanagement,assistingin theachievementofSDG6.Asanexample,Khelifaetal.[48]developed asmartirrigationsystemforsouthofAlgeriacombiningICTandIoT technologies.Theirresearchensuredthattheirrigationisdesignedto optimizethecost,minimizethewaterusageinirrigation,andreduce thecostoftheworkingforce.

(6)

Fig.4. Potentialeconomic,environmentalandsocialbenefitsoftheirrigationsystem.

5.3. Securityandacquisition

Theimprovementsandadvances madeintechnology haveledto developwaysthroughwhichnewmethodforcollectingdatafromthe sensorsdeployedinthefieldhavebeenestablished.Whilevariousad- vancementshavebeenmadeandapplied,oneofthesuccessfulmeansof datacollectionfromsensornodesisthroughdrones.Thetechnologyof droneshasfurtherallowedgatheringnewdatathatcouldnototherwise beattainedinotherwayslikeaerialimagesoffields[97].Oneofthe otherwaysofdatagatheringhasbeenidentifiedtoberobotsthatlead toinculcateactuatorsandsensorstocarryoutdifferentactivitiessuch assprayingwater,soilmoisture,scaringawayanimalsorweeding.This technologyofrobotscouldthereforebeusedfortheirrigationofareas becauseoftheirabilitytotraveltotherequiredlocations.Therobotsare alsoabletoassessthesoilmoistureandincludesensorsthatmitigatethe probabilityofcollision[98].

Robotshavebeenidentifiedtobeoneofthemostefficientwaysof carryingoutactivitiesrelatedtoirrigationandmanyorganisationsin thecontemporaryenvironmenthavebeentakinguseofthistechnology.

Improvementsinrobottechnologyarealsobeingmadealongwiththeir utilityandimplications.Thewirelessrobotcomprisesbothsoilmoni- toringandenvironmentalmonitoringtobeabletocarryouttaskssuch aswaterspraying,movingthroughthefield,andmuchmore[99].To enhancethenavigationofrobotsforirrigation,thecoveragepathplan- ningalgorithmcouldbeusedwhichconsistsofamapofstaticelements andenvironmentaldata.Robotoperatingsystemcouldbefurtherused todevelopthecontrolsystemoftherobotthatisdividedintothreemain layers.Thefirstlayerleadstoreadingthedatafromsensors,thesecond layercarriedoutcommunicationandthethirdlayerfocusesonperform- ingpathplanninganddecisionmaking.Furthermore,inordertoensure sustainabilityandefficiency,therobotscanbepoweredthroughtheuse ofsolarpanelsandensureautonomy[100,101].

TheimplementationofIoTsystems,ensuringsecuritycouldbecome adifficulttaskasvariedtypesofthreatsmayleadtotakingplace.Some ofthesecuritythreatsthatmaytakeplaceandhaveadverseimpactsare cloning,vulnerablesoftware,leakageofprivateinformation,firmware attacks,routingattack,denialofserviceattacks,eavesdroppingattacks, andmanymore.Withregardstoallofsuchthreats,ithasbecomeessen- tialtodevelopsecuritymeasuresthatmaymitigatetheoveralladversi- ties[102].Thefactthatdataregardingtheoperationsandfunctionality oforganisationsintheparticularsectorishighlyimperativeandcrit- ical,protectingitbecomesextremelyvital.Whiledifferenttechniques havebeendevelopedtolowerthelinkedissues,oneofthemosteffective methodsisrelatedtotheblockchaintechnique.Thisisatechniquethat isappliedtosecurethesystemsofIoT,allowingsafercommunication anddatastorage[103].

Consideringtheindustryofagriculture,ithasbeenunderstoodthat technologiessuchasblockchainareusedtosecuremainlythesupply

chain.Withregardstoblockchain-relatedtoIoTirrigationsystemsfor agriculture,itisusedfortrackingandtracinginformationexchangeof proposedsmartwateringsystem.Asmuchasthesecurityconcernshave beenrisingoverthepastduetoimprovementsintechnology,theneedto ensurebettersecurityisalsoequallycritical[56].Throughtheuseofin- creasedresearchanddevelopment,organisationshavebeenfocusedon controllingthethreatsandmakingsurethatmaliciousactivitiescould beloweredinasignificantmanner.Further,theneedforasecurestor- agesystemhasaugmentedovertheyears,andasactivitiesrelatedto agriculturearebecomingmoreautomatedinculcatingtechnology,the probability andincidence ofattackarealsoincreasingmajorly.Even thoughvariousorganisationshavesuccessfullybeenabletocontrolthe threats,acontinuousimprovementapproachthroughR&Dmayfurther providethedesiredresults[57].Fig.5showsdifferenttypesofsensors thatcanbeusedinsmartirrigationsystem.

5.4. Generalarchitectureandlayoutofthesensoryirrigationsystemsbased onIoT

Ithasbeenidentifiedthatmulti-agentarchitecturesareprettyevi- dentandfamousinirrigationmanagementanditsIoTsolutions.These particulararchitecturetypesleadtoestablishingadistinctioninthevar- iedelementsofwhichtheyarecomprised.Inmostcases,thearchitec- turaldistinctionisdevelopedinaccordancewiththelayerofarchitec- turalelements.Forinstance,hitherpositionnodesinthehierarchymay leadtoactingasabrokerfortheonesthatareplacedlowerinthehi- erarchy[58].Majorityofthearchitecturesarefurtherconsideredtobe dividedintofunctionalblockswhichleadtorepresentthespecificfunc- tionsandactionsthathavetobecarriedout.Someofthemajorelements ofsucharchitecturesareidentifiedasmanagement,devices,communi- cations,security,services,andapplication.TheIoTsystemsconsistof differentdevicesthatarelocatedtoconductnumerousdifferentactivi- tiessuchascontrol,monitoring,detection,andaction.Suchparticular devicesarefurtherconsideredtobehavinginterfacesthroughwhich connectionisdevelopedwithotherdevicesinordertotransmittheim- perativedata.Further,thegathereddatathroughvarioussensorswill generallybetreatedandtheresultsattainedfromitwillbeappliedto variedactuators[59].

ThearchitectureofIoThastraditionallybeenconsideredtobedi- videdintothreemajorlayers.Theselayersareclassifiedasperception, network,andapplication.Withregardstotheselayers,anotheronehas beenaddedwhichhasbeenplacedbetweennetworkandapplication layersknownastheservicelayer.Thisparticularlayerisimplemented inordertostoreandprocessthedatathroughtheuseoffogandcloud computing [60].Moreover,different researchershaveledtodevelop andpresentvariednewarchitectureproposalsandoneofthemostevi- dentonehasbeenofFerrández-Pastorwhohasestablishedfourlayered architectures.Thesefourlayersarethings,edge,communication,and

(7)

Fig.5. Smart irrigationsystem sensors,pic- turestakenfromWikipedia.

Fig.6. Smartirrigationsystemstructures,iconstakenfromflaticon.com.

cloud.Theedgelayerinthisproposalhasbeenidentifiedtolocatecriti- calapplicationsandconductbasiccontrolprocesses.Withregardstothe IoTsystemsforirrigation,differentlayeredapproacheshavebeenused andimplementedattainingvariedresultsfromeach[61].Incommon cases,thelowerlayercomprisesactuatorsandsensornodewhereasthe middlelayerconsistsofagatewayandsupportstransmissionofdata.

Lastly,thethirdlayerofthearchitectureiscomprisedofcloudservices, applications,ordatabases.Whilethesethreearethemostcommonlyes- tablishedlayers,theycouldbeuniqueandvariedhavingdifferentchar- acteristicsaswell[104].Fig.6showstheoverallstructuresofsmart irrigationsystem.

6. Currentchallengesandfutureprospects

Thechallengesandprospectsofapplyingmachinelearningarecov- eredinthissection.Thereareseveralobstaclestoovercomeinthede- velopmentofmachinelearninganddigitalsoftwareprogramsforsmart irrigationsystemsformanagingvariouscropsspeciallytohelpattain

sustainableagriculture.Theoverallfoodproductionmustbeincreased toaddressthe foldshortages.In addition,morecash crops likecot- tonandrubberneedtobegrowntomeetindustrialdemands,particu- larlyifmixedwithasustainablematerialstorefrainfrompollutingthe soil[105].Moreover,theseproblemspresentanumberofdifficulties, includingthedeclineinagriculturalmanpower,theshrinkingareaof arableland,thescarcityofwatersupplies,theeffectsofclimatechange, etc.Thepopulationofruralareasisageingquicklyanddecliningasthe worldmovestowardurbanization.

IoTtechniquesintegratedinirrigationsystemshaveawiderange ofpossibleusesinfarmingandfoodproduction.Therearenumerous factorsassociatedwithIoTinsmartirrigationthatneedsfurtheratten- tionwhichincludes,cost,autonomousoperation,portability,lowmain- tenance,effectiveness,robustarchitecture,andreliability.Wheninte- gratedsystemsrecognizethecapabilitiesofartificialintelligence and bigdata,itisanticipatedthatagriculturewillevolveintoadynamicin- dustry.Theseintegratedsystemswillcombineavarietyofagricultural tools,equipment,andmanagementtechniquesthatcanbeusedforvar-

(8)

Table1

Comparativereviewofworkcarriedoutbyresearchers.

Si. No Year Methodology Remarks Reference

1 2020 TelosB and the IRIS motes Full-scale smart irrigation system was developed in a strawberry greenhouse environment in Greece

Reference network architecture aimed primarily towards smart irrigation

[111]

2 2019 Arduino microcontroller A low-cost automated irrigation system for green walls has been designed.

System reduces energy consumption, increases irrigation efficiency and saves time

[112]

3 2020 AgriSens Design of a dynamic irrigation scheduling system based on IoT (farmer-friendly user interface)

Based on farmer requirements, an algorithm for autonomous dynamic-cum-manual irrigation is designed

[113]

4 2018 Generic IoT framework for improving agriculture irrigation To transmit this information to farmers in their native language, a user-friendly smartphone application has been developed.

chilli farming irrigation system was used to validate the general framework.

[114]

5 2018 Arduino Uno and Raspberry pi The smart irrigation system was designed using photovoltaic panels and a combination of control devices.

The designed system is sustainable, efficient and reliable.

[115]

6 2019 Radial Basis Function Network, RBFN Solar powered smart irrigation system is designed using IoE environment.

The irrigation system predicts the expected water level values, weather forecasts, humidity, temperature, and irrigation data.

[116]

7 2017 MATLAB, Neural Network Toolbox Water usage optimization as part of the Smart Farm Automated Irrigation System to ensure optimum water resource.

[117]

8 2019 Fuzzy Logic based The valve control commands using a fuzzy logic-based weather condition modelling system that considers various weather situations.

[41]

iousactivitiesrangingfromplantingtoyieldforecasting.Aneweraof IoTinthefarmingindustrymaybeintroducedbyadvancedmachines likeagriculturalrobots,cloudcomputing,artificialintelligence,andbig data.Thesetoolsaredeemedwithhighimportancetoensuresustainable agriculture.

Thereareseveralprospectsforfarmersandstakeholderswhocom- binemachinelearningforecastingwithportablesoftwaresolutions.Wa- teruseefficiencycanbeenhancedbyimprovingthepredictionsonir- rigationneeds,matchingtimingandvolumetoplantwaterneeds,and adaptivelycompensatingforwaterloss.

Wateruseefficiencycanbeenhancedbyimprovingthepredictions onirrigationneeds,matchingtimingandvolumetoplantwaterneeds, andadaptivelycompensatingforwaterloss.Thiswillresultinincreased yieldwhileusinglessirrigationwater.Asthesystembecomesmoread- vancedandintelligent,abettertrainedmodelwillbedeployedforbetter irrigationdecisionmaking.Thus,muchofthestressandburdenassoci- atedwithirrigationcanbereducedforfarmersandusers.

7. Casestudies

Differentcasescouldbetakenintoconsiderationthathasbeenable tosuccessfullyinculcateandimplementelementsofSMARTirrigation systems.Organisationsallaroundtheworldrelatedtoagriculturalsec- torandothersthathavebeeninvolvedinirrigationactivitieshavebe- comekeenregarding implementationofSmart irrigationmethodsin ordertolowerthecostsandaugmentworkefficiency.Oneofthecases thatcouldbeidentifiedisofWaterBit,whichisacompanyintheindus- trialsector.Theorganisationisaninnovativetechnologyfirmthathas collaboratedwithAT&T(onethelargesttelecommunicationscompany intheworld)inordertoprovidesecuredwirelessconnectivitytoitsau- tonomousirrigationsolution,allowingmanagementandcontroloflocal irrigation.Thishasallowedthefarmerstonotonlyaugmenttheirover- allyieldbutalsosaveresourcesinaconsiderableway[106].WaterBit gatewaysendsin-fielddatagatheringofsoilmoisturethroughwireless technologytothecloudinasecureandreliablemanner.Thisparticular dataisupdatedaftereveryfewminutesregularlythroughwhichusers aregiventheopportunitytoaccessandcontrolviaamobile-friendly application[107].

TheothercaseifofIpswichcity-Australiancouncilwhichhasde- pictedthat usinganautomatedsoil-moisturemonitoringsystemasa driverofirrigationleadstosignificantlyconservewateralongwithsav-

ingcosts.Theautomatedweb-basedsystemhasresultedinbeinghighly efficientincomparisontoarainfall-basedallocationmethod.Thepartic- ularmethodappliedbythecouncilnotonlyenhancestheperformance butalsoallowshavinglessersoil-knowledgeandlesserneedoflabour toruntheparticularirrigationsystem[108].Further,theusageand wastageofwaterhasalsobeenreduced throughtheimplementation thathasallowedsavingtheresourcewithbetterqualityresultsoverall.

Inanotherwork,smartfarmusingsolarenergywasbuiltinMaejo Universityin Thailand, toprovide alternativeelectrical supply fora smartmushroomfarm.IoTtechnologywasadoptedtoenhancetheper- formanceandcontroltheirrigationautomatically.IoTcontrolstheenvi- ronmentofmushroomlight,temperature,humidity,andairflowthatis allneeded.Garciaetal.[109]reducedenergyconsumptionbynetwork sectoring,achievingenergysavingsofbetween20%and29%.During thedaylighthourstheirrigationwaterwillbe suppliedtotheplants withinthebalance.Eitherthewaterstoredinthesoilorbyextending thedurationofirrigationeventswhennecessary.Therefore,theusage ofsolarenergytopowerirrigationsystemscouldreduceorremovethe energycostsforfarmers.Theusageofrenewableenergieswilllowerthe greenhousegasemissionscomparedtoconventionalelectricenergyor dieselenginesusedinirrigationsystems.Smartirrigationmanagement modelintegratedwithsolarphotovoltaictodirectlysupplytheirriga- tionwatertothenetwork,withoutintermediatestorageelementssuch aswatertanksorbatteries[110].Table1presentsasummaryofthe providedcases.

8. Theroleofirrigationinachachievingthesustainable developmentgoals

IrrigationaddressesvariousSDGsforthepurposeoffoodsecurity andreducingpoverty.However,smartirrigationindicatesawiderrange ofSDGsforthepurposeofindustryinnovationandprovidingamorere- sponsibleconsumptionandproductionforfoodsecurity.Ithasadirect influenceonthecurrentprogressinSDGs.Table2providesthecontri- butionofthesmartirrigationsystemintothesustainabledevelopment.

Thewaterresourcesarebasedonirrigationexpansioninordertoen- hancefoodgrainproduction.

Moreover,waterandfoodaretwoofthemostessentialcommodities in theworld,henceagricultureisvitaltohumanitysinceituseswa- tertoprovidefood.Climatechangeandrapidpopulationgrowthhave putalotofstrainonagriculture,whicheffectsthewaterresourcesthat

(9)

Table2

TheroleofirrigationinachievingtheSDGs.

SDGs Smart Irrigation contribution to the SDGs

SDG 1: No Poverty Supports communities in rural areas in developing countries.

SDG 2: Zero Hunger Fights hunger and enhances the productivity of farms.

SDG 3: Good Health and Well-being Reduces the risk of pesticides and other diseases originated from the soil.

SDG 6: Clean Water and Sanitation Provides access to sanitation by utilities and crop irrigation.

SDG 7: Affordable and Clean Energy Contributes to reaching a clean energy solution in farms when coupled with a solar system.

SDG 8: Decent Work and Economic Growth Accelerates the growth of rural economies and contributes to other sectors.

SDG 9: Industry, Innovation and Infrastructure Promotes sustainable industrialization and foster innovation.

SDG 11: Sustainable Cities and Communities Building sustainable cities through efficient use of smart irrigation systems.

SDG 12: Responsible Consumption and Production Ensuring a responsible management of resources and lowering the amount of waste generated.

SDG 13: Climate Action Enhancing the agricultural yields, and ultimately altering the rainfall patterns.

SDG 14: Life Below Water Moderate amount of water used compared to traditional irrigation systems.

SDG 15: Life on Land Creates a reliable food supply and increases the quality and quantity of the farm production.

iscriticalforsustainabledevelopment.Thus,smartirrigationsystems havebeenshowntosignificantlyincreasecropoutputandagricultural profitability.Thisapproachsupportsthesectorforamoreproductive, equitableandsustainableirrigationmanagementandpromotesthede- velopmentoftheSDGs.

9. Conclusionandrecommendations

Technologicalinnovationshavebecomeessentialforbusinessesin today’senvironment,andorganizationsin everyindustryaremaking improvementstothriveandexpandin size.Inthisregard,irrigation anditsimplementationscanbeimprovedtoprovidemaximumoperat- ingefficiencywhileachievingthenecessaryperformanceresults.While IoThasbeenassociatedwiththeautomationofallaspectsofagriculture andfarmingmethodstomaketheentireprocessmuchmoreeffective andefficient,sensorysystemshavebeenidentifiedasbeingdeployed byfarmerstobetterunderstandtheircrops,reduceenvironmentalim- pact,andconserveresources.Thesetechnologieshavebeenestablished overthepast,notallorganisationshavebeenabletosuccessfullyim- plementthemandmakeuseofitinthemostadequateway.Intheother hand,waterscarcityisacriticalissuethatinvolveswaterstress,water shortageordeficitsandwatercrisis.Theconceptofwatermanagement hasoccurred,andorganizationshavebeenattractedtowarddiscover- ingsolutionstosavetheresourcewhilealsoimprovingtheirworkef- ficiency.SMARTirrigationsystemhasbecomeaneedintoday’senvi- ronmentwhenorganizationsareutilizingtechnologytoachievetheir performancegoals.TheconsequencesofbothIoTandsensorsystems havebeenextremelyimperative.IoTreducesthetotalcostoftechnol- ogywhichallowstheopportunitytomanage themonitor systemfor irrigationprocesses.Wirelesssensornetwork(WSN)alsocontributesto realtimemonitoringforprecisionfarmingandirrigationactivates.

Thistechniqueconsistsof anetworkof wirelesssensor nodesde- signed tosense, compute, andcommunicate information on various characteristics.However,thesetechniqueshavetheirownsetofadvan- tagesanddisadvantages,anadequateapproachwouldbesufficientto carryout irrigationrelatedactivities.Moreover,recommendation for implementingaSMARTirrigationsystemforagriculturearedescribed furtherbelow:

OneoftherecommendationsislinkedwiththesubstantialR&Dto identifythecurrentinefficienciesinprocessesandapproachesand establishabettertechniqueforbetterresults.TheR&Dbenefitsare significantandmayallowtheorganizationtoensurelongtermeffec- tiveness.Therefore,theorganizationmaybegiventheopportunity toidentifyareasofimprovementinIoTandWSNtechniques.

Morefocusshouldbe directedtowardsmanagementandsecurity issues,indeployingSmartirrigationsystems.Aneffectivecommu- nicationsystemishighlycrucialinmakingsurethatthenodesper- formtherequiredactivities.Thesystemisusuallyinterconnected withdifferentsensors,anditiscriticaltomaintainthecommunica-

tionbetweenthepoints.Improvementsincommunicationwillallow betterresultsandfewererrorsandadversities.

Elementsofsecuritystrategiesandsystemsplayavitalroleinop- erationsofirrigationalongwiththeorganization.Itisnecessaryto maintainthesecurityofthesystemandprotecttheassessabledata.

Thismayleadtoincreasethecostoftheorganization,however,in thelongrunstrongsecuritysystemsarealwaysbeneficialandad- visable.Securitymayalsoleadtomitigatetherisksassociatedwith digitalthreats.

Focusonenhancingthesustainableoperationsandcostreduction.

Theenvironmentalimpactsoftheirrigationsystemshouldbecon- sidered andwell aligned withSustainable Development Goals to achieveultimate benefitofthethreepillars(environment, social, economic).Naturalresourcesmustbepreservedfromoveruse,which can be accomplishedthrough effective planning. Furthermore, it mustbeassuredthatthecostofoperationalactivitiesisnotgreater thantheperceivedoutcomestoensuresustainability.Thiscontinu- ousimprovementinautomationanduseoftechnologyishighlyef- fectiveandefficient,andassociatedcostscouldbefurtherreduced.

Inclinationtowardgreenactivitiesandfunctionsmayassistthefirm toachievetheintendedgoals,andagreateremphasisonCSRmay allowtheorganizationstoaccomplishgreatachievements.

DeclarationofCompetingInterests

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

References

[1] K.G. Liakos, P. Busato, D. Moshou, S. Pearson, D. Bochtis, Machine learning in agriculture: a review, Sensors 18 (8) (2018) 2674 .

[2] K. Jha, A. Doshi, P. Patel, M. Shah, A comprehensive review on automation in agriculture using artificial intelligence, Artif. Intell. Agric. 2 (2019) 1–12 . [3] N. Khan, R.L. Ray, G.R. Sargani, M. Ihtisham, M. Khayyam, S. Ismail, Current

progress and future prospects of agriculture technology: gateway to sustainable agriculture, Sustainability 13 (9) (2021) 4883 .

[4] A. Nasiakou, M. Vavalis, D. Zimeris, Smart energy for smart irrigation, Comput.

Electron. Agric. 129 (2016) 74–83 2016/11/01/, doi: 10.1016/j.compag.2016.09.

008 .

[5] T. Ojha, S. Misra, N.S. Raghuwanshi, Wireless sensor networks for agriculture:

the state-of-the-art in practice and future challenges, Comput. Electron. Agric. 118 (2015) 66–84 2015/10/01/, doi: 10.1016/j.compag.2015.08.011 .

[6] H. Van Es and J. Woodard, "Innovation in agriculture and food systems in the digital age," The global innovation index , pp. 97–104, 2017.

[7] N. Tantalaki, S. Souravlas, M. Roumeliotis, Data-driven decision making in preci- sion agriculture: the rise of big data in agricultural systems, J. Agric. Food Inf. 20 (4) (2019) 344–380 .

[8] O. Elijah, T.A. Rahman, I. Orikumhi, C.Y. Leow, M.N. Hindia, An overview of In- ternet of Things (IoT) and data analytics in agriculture: benefits and challenges, IEEE Internet Things J. 5 (5) (2018) 3758–3773 .

[9] A. Weersink, E. Fraser, D. Pannell, E. Duncan, S. Rotz, Opportunities and challenges for big data in agricultural and environmental analysis, Annu. Rev. Resour. Econ.

10 (1) (2018) 19–37 .

Referensi

Dokumen terkait

The same principle is applied in the automatic irrigation system, with the concept of two threshold used in a flow cycle within irrigation Jorolot Dam Cisangkan River Jorolot Smart