Basic building blocks of signals Basic building blocks of signals
Agenda for 01-03-2010
• Signals derived from unit step function
C ti ti (CT) i l
• Continuous-time (CT) impulse
• Some basic CT signal functions
• Pretest results
• Matlab Tutorial-1
• Matlab Tutorial-1
The CT Signum Function The CT Signum Function
1 , t 0
sgn
t 0 , t 0 1 , t 0
2 u
t 1Precise Graph Commonly-Used Graph
h i f i i i di i f
The signum function, in a sense, returns an indication of the sign of its argument.
The CT Unit Ramp Function e C U t a p u ct o
ramp
t t , t 0 0 t 0
u
d
t t u
tp
0 , t 0
Continuous time impulse Continuous-time impulse
• Generation of impulse
• Impulse as a sampler Impulse as a sampler
Introduction to the CT Impulse Introduction to the CT Impulse
D fi f ti
t 1a , t a 2
Define a function, a
t 0 , t a 2
Let g(
t
) be finite and continuous att
= 0.Introduction to the CT Impulse p
a
The area under the product of the two functions is A 1
a g
t dta a
2a 2
As the width of approaches zero, a
t lim0 A g 0
lim0
1
a dt
a
2 g 0
lim0 1a
a g 0
a0 a0 a
a 2
a0 aThe CT unit impulse is implicitly defined by g 0
t g
t dte C u pu se s p c y de ed by
CT Unit Step and CT Unit Impulse CT Unit Step and CT Unit Impulse
As
a
approaches zero, g(t) approaches a CT unit step and g
t Asa
approaches zero, g(t) approaches a CT unit step and approaches a CT unit impulseg
The CT unit step is the integral of the CT unit impulse and the CT unit impulse is the
generalized derivative
of the CT unit stepGraphical Representation of Graphical Representation of
the CT Impulse
The CT impulse is not a function in the ordinary sense because its value at the time of occurrence is not defined It is represented value at the time of occurrence is not defined. It is represented a vertical arrow. Its strength is either written beside it or is represented by its length.p y g
MATLAB function: dirac(t) = d/dt (heaviside(t))
Properties of the CT Impulse Properties of the CT Impulse
The sampling property
g
t
t t0
dt
g
t0p g p p y
The sampling property “extracts” the value of a function at i
The scaling property a point.
a t
t0
1a
t t0
a
This property makes the impulse different from ordinary functions
functions.
The CT Unit Comb The CT Unit Comb
The CT unit comb is defined by The CT unit comb is defined by
comb
t
t n
n an integercomb
t
t n
n
, n an integerThe comb is a sum of uniformly-spaced impulses.
Some basic continuous-time signal functions
• Rectangular pulse
• Triangular pulse Triangular pulse
• Sinc function
• Dirichlet functions
The CT Unit Rectangle Function The CT Unit Rectangle Function
1 , t 1
rect
t , t
2 1
2 , t 1
2
Rectpuls(t)
2 20 , t 1 2
Rectpuls(t,w)
2
The product signal, g(
t
)rect(t
), can be thought of as the signal, g(t
),“turned on” at timeturned on at time,
t t
= -1/2 and “turned back off” at time t = 1/2 1/2 and turned back off at time, t 1/2.The CT Unit Triangle Function The CT Unit Triangle Function
tri
t 1 t , t 1 0 , t 1
0 , t 1
tripuls(t) tripuls(t,2)
tripuls(t) tripuls(t,w)
Th t i l d fi d thi i l t d t th it t l
tripuls(t,w,s) The triangle, defined this way, is related to the unit rectangle through an operation called
convolution
to be introduced in Chapter 3Chapter 3.
The CT Unit Sinc Function The CT Unit Sinc Function
sin
tThe unit sinc
sinc
t sin
tt function is related to
the unit rectangle
f ti th h th
function through the
Fourier transform
, to be introduced ind
i
to be introduced in Chapter 5.
lim
t0 sinc
t limt0
dt
sin
t
d
t limt0 cos
t 1 dt
tThe CT Dirichlet Function The CT Dirichlet Function
drcl
t, N sin
Nt
N sin
t N sin
tF dd
N
h Di i hl f i i d i f iFor odd
N
, the Dirichlet function is a repeated sinc function.Combinations of CT Functions
Ease of questions
Ease of questions
Success in answering questions
Success in answering questions
Election and team roles Election and team roles
0351128 ل لا ا لاف ز ز لا
Team 1
0351128 يولبلا دعاس حلاف زيزعلادبع
Team 1
0453026
يثراحلا دمح يزوف
Team 2
0516835 يكلاملا ةيطع ﷲدبع ريمس
Team 3
0611133 هبيش يماس ميھاربا
Team 1
0611133
هبيش يماس ميھاربا
0611234
ةيطع دمحم نيساي
Team 2
T 3
0611620
يوامربز نب قازرلادبع نميأ
Team 3
0612966
يقشاشن دمحأ ديمحلادبعي
Team 1
0620879 هضيھ دمحم رصان دمحم
Team 2
0704754 د أ ن ن د
Team 3
0704754
دمحأ نينسح دمحم
Team 3
Using m-files in MATLAB Using m files in MATLAB
Open a blank m-file window in MATLAB and type in:
%Generation of step function clear
tmn=-2; dt=0.1; tmx=5;
tmn 2; dt 0.1; tmx 5;
t=tmn:dt:tmx;
t1=0;t2=1; %starting points
B1=1;B2=1.5*B1; %Magnitudes; ; g
u1=B1*stepfun(t,t1);% Generation of 1st step function u2=B2*heaviside(t-t2);%Generation of 2nd step function plot(t,u1,t,u2),axis([tmn tmx -B1 2*B1]),xlabel('Time (s)'),...
ylabel('u(t)'),title('Step function'),grid
•Try to interpret every statement and special character
•Save the file under file name step_function and run it!
•Try to link the features in the figure (plot) to the statements in the file
•Change “dt” to 0.5 and 0.01 and observe its effects
Duties for Wednesday 3/03/2010 Duties for Wednesday 3/03/2010
• Study 2.5 – 2.7 (pages 43 - 63) from Roberts
• Prepare active-learning exercises ALE 4-7 G t d f MATLAB t t i l
• Get ready for MATLAB tutorial