• Tidak ada hasil yang ditemukan

Ehrenasterol and biemnic acid; new bioactivecompounds from the Red Sea sponge Biemnaehrenbergi

N/A
N/A
Protected

Academic year: 2025

Membagikan "Ehrenasterol and biemnic acid; new bioactivecompounds from the Red Sea sponge Biemnaehrenbergi"

Copied!
7
0
0

Teks penuh

(1)

See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/276212195

Ehrenasterol and biemnic acid; new bioactive compounds from the Red Sea sponge Biemna ehrenbergi

ARTICLE in PHYTOCHEMISTRY LETTERS · MAY 2015

Impact Factor: 1.54 · DOI: 10.1016/j.phytol.2015.04.024

DOWNLOADS

11

VIEWS

31

5 AUTHORS, INCLUDING:

Diaa Youssef

King Abdulaziz University

102PUBLICATIONS

916CITATIONS

SEE PROFILE

Jihan Badr

27PUBLICATIONS

77CITATIONS

SEE PROFILE

Lamiaa A Shaala

King Abdulaziz University

34PUBLICATIONS

182CITATIONS

SEE PROFILE

Gamal A. Mohamed Al-Azhar University

68PUBLICATIONS

198CITATIONS

SEE PROFILE

Available from: Diaa Youssef Retrieved on: 05 July 2015

(2)

Ehrenasterol and biemnic acid; new bioactive compounds from the Red Sea sponge Biemna ehrenbergi

Diaa T.A. Youssef

a,b,

*, Jihan M. Badr

a,b

, Lamiaa A. Shaala

c,d

, Gamal A. Mohamed

a,e

, Faida H. Bamanie

f

aDepartmentofNaturalProducts,FacultyofPharmacy,KingAbdulazizUniversity,Jeddah21589,SaudiArabia

bDepartmentofPharmacognosy,FacultyofPharmacy,SuezCanalUniversity,Ismailia41522,Egypt

cNaturalProductsUnit,KingFahdMedicalResearchCenter,KingAbdulazizUniversity,Jeddah21589,SaudiArabia

dSuezCanalUniversityHospital,SuezCanalUniversity,Ismailia41522,Egypt

eDepartmentofPharmacognosy,FacultyofPharmacy,Al-AzharUniversity,AssiutBranch,Assiut71524,Egypt

fDepartmentofClinicalBiochemistry,FacultyofMedicine,KingAbdulazizUniversity,Jeddah21589,SaudiArabia

ARTICLE INFO

Articlehistory:

Received2March2015

Receivedinrevisedform11April2015 Accepted28April2015

Availableonline11May2015

Keywords:

Biemnaehrenbergi Sterols

Hopanoid Antimicrobial Cytotoxic

ABSTRACT

IncontinuationofoureffortstoidentifybioactivecompoundsfromtheRedSeamarinesponges,wehave recentlyinvestigatedtheorganicextractofthespongeBiemnaehrenbergi.Thisstudyresultedinthe isolationofeightcompoundsincludinganewsterol,ehrenasterol(1),anewC24-acetylenicacid,biemnic acid(2),togetherwithsixknowncompoundsincludingahopanoid,threesteroidsandtwonucleosides.

Theisolatedcompoundswereidentifiedas(22E)-ergosta-22-ene-8,14-epoxy-3,7-dione(1),(E)-tetracos- 8-en-5-ynoicacid(2),(22E)-ergosta-5,8,22-trien-7-one-3b-ol(3),32,35-anhydrobacteriohopanetetrol (4), (24R)-ergosta-6,22-diene-5,8-epidioxy-3-ol (5), melithasterol B (6), thymidine (7) and 20- deoxyuridine(8).Thestructuresoftheisolatedcompoundswereassignedbydifferentspectraldata including1Dand2DNMR(COSY,HSQC,andHMBC)andhigh-resolutionmassspectrometry.Compound1 displayedinhibitionzoneof20mmat100mg/discagainstEscherichiacoliinthediscdiffusionassay.

Similarly,compounds2and4displayedinhibitionzonesof20and18mmrespectivelyagainstCandida albicansatthesameconcentration.Compounds1–3displayedweakcytotoxicactivityagainsthuman colonadenocarcinoma(HCT-116)cancercellline.

ã2015PhytochemicalSocietyofEurope.PublishedbyElsevierB.V.Allrightsreserved.

1.Introduction

Marineinvertebratesprovidedsignificantbioactivecompounds includingtheanticanceragentspsammaplins(QuiñoàandCrews, 1987;Rodriguezetal.,1987),didemnin B(Rinehartetal.,1987;

Nuijenetal.,2000),dolastatin-10(Lueschetal.,2001),ecteinasci- din-743(Rinehartetal.,1990;Wrightetal.,1990)andhalichondrin B(Baietal.,1991).Currently,62.5%(10outof16)ofthemarine- derivedmarketeddrugsorintheadvancedphasesofclinicaltrials (PhaseI–PhaseIII)areproducedbymarineinvertebrates,mostly sponges(Mayeretal.,2010).Themajorareaofapplicationofthese drugsincludescancer,painandviralinfections(Mayeretal.,2010).

This fact clearly demonstrates and reflects the importance of phylumPorifera(sponges)as apotential sourceforfuturedrug

discovery and development. The current international marine pharmaceuticalpipeline includethree FDA-approveddrugs and one EU-registered drug: Cytarabine1 and Trabectedin1 – anti- tumorals, Vidarabine1 –antiviral, and Ziconotide1 – analgesic;

twoundergoingPhaseIIItrials:eribulinmesylateandsoblidotin– antitumorals; seven undergoing Phase II trials: DMXBA – antidementia,pseudopterosins–woundhealing,andplinabulin, plitidepsin,elisidepsin,PM1004andTasidotin–antitumorals;and three undergoing Phase I trials: bryosatin, hemiasterlin and marizomib–antitumorals(Mayeret al.,2010).Membersof the genusBiemnahaveproventobearichsourceofbiologicallyactive secondarymetabolitesincludingsteroids(Xiaochunetal.,2008;

Huangetal.,2006;Delsethetal.,1979;Bensemhounetal.,2008) andalkaloids(Aokietal.,2003;Soreketal.,2006;Zengetal., 1993).

ThepyridoacridinealkaloidsisolatedfromthespongeBiemnafortis displayed neuronal differentiation in a neuroblastoma cell line (Aokietal.,2003).Inthecourseofourcontinuousefforttoidentify bioactive compounds from Red Sea marine sponges, we have studiedthespongeBiemnaehrenbergi.Thisstudyresultedinthe identification of two new compounds including one sterol,

*Correspondingauthorat:DepartmentofNaturalProducts,FacultyofPharmacy, KingAbdulazizUniversity,Jeddah21589,SaudiArabia.Tel.:+966548535344;

fax:+96626951696.

E-mailaddress:[email protected](D.T.A.Youssef).

http://dx.doi.org/10.1016/j.phytol.2015.04.024

1874-3900/ã2015PhytochemicalSocietyofEurope.PublishedbyElsevierB.V.Allrightsreserved.

ContentslistsavailableatScienceDirect

Phytochemistry Letters

j o u r n a lh o m e p ag e :w w w . e l s e vi e r . c o m / l o c a t e / p h y t o l

(3)

ehrenasterol(1),andanacetylenicacid,biemnicacid(2)together withthepreviously reportedcompounds; (22E)-ergosta-5,8,22- trien-7-one-3

b

-ol(3)(Luoet al.,2006), 32,35-anhydrobacterio- hopanetetrol (4) (Bradley et al., 2010; Cooke et al., 2008;

Costantino et al., 2001), (24R)-ergosta-6,22-diene-5,8-epidioxy- 3-ol(5)(Xiaochunetal.,2008),melithasterolB(6)(Xiaochunetal., 2008),thymidine(7)and20-deoxyuridine(8)(Zhouetal.,2005;

Ralifoet al.,2007; Hammodaet al., 2007;Abou-Hussein etal., 2007;Dengetal.,1998).Thestructuresofthecompoundswere achievedbasedondifferentspectroscopicdataincludingHRESIMS, 1D(1HNMRand13CNMR)and2D(COSY,HSQC,andHMBC)NMR spectroscopy.

2.Resultsanddiscussion

2.1.Purificationofcompounds1–8

Thefrozenspongewascutintoverysmallpieces,followedby extraction with a mixture of MeOH:CH2Cl2 (1:1) at room temperature.ThetotalextractwassuspendedinH2Oandextracted withCHCl3.TheCHCl3layerwasconcentratedundervacuumand theresultingresiduewassubjectedtovacuumliquidchromatog- raphyonsilicagel,followedbyseveralstepsofpurificationusing

different techniques including partition and size exclusion chromatography. Finally, eight pure compounds were isolated includingtwonewcompounds(1–2)togetherwithsixpreviously reportedcompounds(3–8).

2.2.Structureelucidationofcompound1

Themolecularformulaofcompound1(Fig.1)wasdeducedas C28H42O3 asdeduced from theHRESIMSdata, suggesting eight degreesofunsaturation.Anextensiveexaminationof1HNMRand

13C NMR spectra data, together withthe data of 1H–1H COSY, multiplicity-edited HSQC and HMBC experiments, allowed the establishment of a sterol skeleton witha 22(23)-double bond.

Investigationof13CNMRspectrumandHSQCexperimentallowed theassignmentofsixmethyls,eightmethylenes,eightmethines includingtwoprotonatedsp2carbonsinadditiontosixquaternary carbons.The1HNMR,13CNMRandHSQCexperimentconfirmed thestructureofa steroidpossessinganergostaneskeleton.This wasprovedfromthesignalsat

d

H/C0.75/15.3and1.27/23.3,which were attributed to H3-18/C-18 and H3-19/C-19 respectively. In addition,fourmethyldoubletswereresonatingat

d

H/C1.14/24.1, 0.81/19.6,0.79/20.0and0.88/17.5assignableforH3-21/C-21,H3- 26/C-26,H3-27/C-27andH3-28/C-28respectively.Thesp2carbons

Fig.1.Structuresofcompounds1–8.

(4)

of the olefinic moiety at C-22 and C-23 were detected at

d

C

135.2 and 131.9, respectively. The presence of two carbonyl functionalities was proved from the signals resonating at

d

C

207.7and214.8 in13CNMR spectrum.FromHMBC,crosspeaks werenoticedfromH2-1,H-2a,H-6atothecarbonyl signalat

d

C

207.7confirmingitslocationatC-3(Table1andFig.2).Thecross peakobservedfromH-6bat

d

H1.96tothesecondcarbonylsignalat

d

C214.8confirmeditslocationatC-7.The13CNMRspectrumand HSQC experiment declared the presence of two quaternary oxygenated carbons resonating at

d

60.0 and 65.6, suggesting

epoxy functionalities, completing the degrees of unsaturation (Xiaochunetal.,2008).TheirsituationwasconfirmedfromHMBC throughthecrosspeaksfromeachof H-6b(

d

H1.96),H3-18(

d

H

0.75)toC-8(

d

C60.0)andalsofromH-6a(

d

H2.95),H-6b(

d

H1.96), H3-18(

d

H0.75)toC-14(

d

C65.6).Thesecorrelationsprovedthe placementoftheepoxyfunctionalityatC-8/C-14.Theconfigura- tionatC-8andC-14wasconfirmedfromcomparisonofNMRdata withcloselyrelatedcompoundspreviouslyisolatedfromB.fortis (Xiaochunetal.,2008).Fromthepreviousdiscussion,compound1 was assigned as(22E)-ergosta-22-ene-8,14-epoxy-3,7-dioneand reportedhereasanewnaturalproductnamedasehrenasterol.

2.3.Structureelucidationofcompound2

Compound2wasisolatedasawhiteresidue.Combinedspectral dataincludingHRESIMS,HSQC,1HNMRand13CNMRestablished itsmolecularformulaasC24H42O2.The13CNMRspectrumtogether withHSQCexperiment revealedthepresenceoftwo acetylenic carbons(

d

C77.9and80.9),twosp2carbons(

d

C127.7and131.3),one carbonylfunctionality(

d

C176.7),onemethyl(

d

C14.1),inaddition toeighteen methylene carbons.1H–1H COSYand HSQC experi- mentsallowedtheassemblyoftheC-2/C-4and C-7/C-24units.

HMBC experiment confirmed the terminal carboxylic moiety.

HMBCrevealedthatH-2(

d

H2.56)iscorrelatedwithC-1(

d

C176.7), C-5(

d

C77.9)andH-3(

d

H2.47)iscorrelatedwithC-1(

d

C176.7),C-5 (

d

C77.9),C-6(

d

C80.9),alsoH-4(

d

H2.16)iscorrelatedwithC-5(

d

C

77.9),C-6(

d

C80.9);whichisafurtherconfirmationoftheC-2/C- 4 unit. Similarly, HMBC correlations illustrated in Table 2, confirmed the second unit (C-7/C-24). The connection of the twounitsthroughC-5/C-6wasconfirmedfromHMBCwherecross peakswerenoticedfromeachofH-2(

d

H2.56),H-3(

d

H2.47),H-4 (

d

H2.16)toC-5(

d

C77.9)andfromeachofH-3(

d

H2.47),H-4(

d

H

2.16),H-7(

d

H2.21)toC-6(

d

C80.9).Theconfigurationatthedouble bondbetweenC-8andC-9wasdeterminedtobeEbasedonthe large coupling constant between H-8 and H-9 (J8,9=15.5Hz) (Shaalaetal.,2011).Therefore,compound2wasassignedas(E)- tetracos-8-en-5-ynoic acid and was given the generic name biemnicacid.

Table1

NMRspectroscopicdataof1(CDCl3,600and150MHz).

Position dC(m)a dH(m,JinHz) HMBCb

1 35.8(CH2) 2.84(m),2.20(m) 3,9

2 34.0(CH2) 2.32(m),2.14(m) 3

3 207.7(qC)

4 36.7(CH2) 2.30(m),2.21(dd,16.2,6) 3,9

5 53.2(CH) 3.05(brt,8.4) 6,10

6 40.5(CH2) 2.95(d,13.2) 1.96(d,13.2)

3,5,7,8 9,14

7 214.8(qC)

8 60.0(qC)

9 50.0(CH) 2.90(brd,13.2)

10 39.9(qC)

11 27.2(CH2) 2.00(m),1.64(m) 13 12 38.5(CH2) 2.81(m),2.37(m) 11

13 45.3(qC)

14 65.6(qC)

15 29.7(CH2) 1.29(m) 16 25.5(CH2) 2.31(m),2.10(m)

17 45.4(CH) 1.97(m) 8,14,20

18 15.3(CH3) 0.75(s) 8,13,14,17

19 23.3(CH3) 1.27(s) 1,5,6,9,10

20 36.8(CH) 2.42(m)

21 24.1(CH3) 1.14(d,6) 13,20,22,23

22 135.2(CH) 5.20(m) 20

23 131.9(CH) 5.20(m) 20

24 43.2(CH) 1.84(m) 22

25 33.0(CH) 1.47(m) 26,27

26 19.6(CH3) 0.81(d,7.2) 24,25,27 27 20.0(CH3) 0.79(d,7.2) 24,25,26 28 17.5(CH3) 0.88(d,1.8) 22,23,24,25

aMultiplicitieswerededucedfrommultiplicity-editedHSQC.

b HMBCcorrelationsarefromproton(s)statedtotheindicatedcarbons.

HO O

2

10

O

1

COSY HMBC O

O

1 2

12

9 8

7 13 14

17 18

11

15 16

10 5

20

19

21 22

23

4

24 25

3

6

1

23

6 8

4 5

22 24

2 3

7 9

27 26

Fig.2. Key1H–1HCOSYandHMBCcorrelationsfor1and2.

Table2

NMRspectroscopicdataof2(CDCl3,600and150MHz).

Position dC(m)a dH(m,JinHz) HMBCb

1 176.7(qC)

2 33.6(CH2) 2.56(t,7.2) 1,5

3 14.5(CH2) 2.47(brt,7.2) 1,5,6

4 19.1(CH2) 2.16(t,6.6) 5,6

5 77.9(qC)

6 80.9(qC)

7 26.8(CH2) 2.21(t,7.2) 6,8,9

8 127.7(CH) 5.37(dt,15.5,7.2) 7,10

9 131.3(CH) 5.43(dt,15.5,7.2) 7,10

10 27.3(CH2) 2.02(q,7.2) 8,9,11,12

11 22.6–31.9(CH2) 1.26–1.33(m) 8,9

12 22.6–31.9(CH2) 1.26–1.33(m) 13 22.6–31.9(CH2) 1.26–1.33(m) 14 22.6–31.9(CH2) 1.26–1.33(m) 15 22.6–31.9(CH2) 1.26–1.33(m) 16 22.6–31.9(CH2) 1.26–1.33(m) 17 22.6–31.9(CH2) 1.26–1.33(m) 18 22.6–31.9(CH2) 1.26–1.33(m) 19 22.6–31.9(CH2) 1.26–1.33(m) 20 22.6–31.9(CH2) 1.26–1.33(m) 21 22.6–31.9(CH2) 1.26–1.33(m) 22 22.6–31.9(CH2) 1.26–1.33(m)

23 22.6–31.9(CH2) 1.26–1.33(m) 24

24 14.1(CH3) 0.88(t,7.2) 23

a MultiplicitieswerededucedfromDEPTandmultiplicity-editedHSQC.

b HMBCcorrelationsarefromproton(s)statedtotheindicatedcarbons.

(5)

2.4.Structureelucidationofcompounds3–8

InterpretationofNMRdataofcompounds3,5and6confirmed theiridentityastheknownsteroids(22E)-ergosta-5,8,22-trien-7- one-3

b

-ol (3) (Luo et al., 2006), (24R)-ergosta-6,22-diene-5,8- epidioxy-3-ol and melithasterolBrespectively(Xiaochun etal., 2008). The structure of 4 was proved as 32,35-anhydrobacter- iohopanetetrol(Bradleyetal.,2010;Cookeetal.,2008).Itisworthy tomentionthathopanoidderivativeshavebeenisolatedmainly frombacterialsourcesinadditiontosponges(Neunlistetal.,1988;

NeunlistandRohmer,1985;Inatomietal.,2000;Costantinoetal., 2001).Similarly,afterinvestigationofthedifferentspectraldataof compounds7and8,theywereidentifiedastheknownnucleosides thymidine and 20-deoxyuridine respectively, which were previ- ouslyisolatedfromdifferentmarineorganisms(Zhouetal.,2005;

Ralifoet al.,2007; Hammodaet al., 2007;Abou-Hussein etal., 2007;Dengetal.,1998).

2.5.Biologicalactivitiesoftheisolatedcompounds

Thecompoundswereevaluatedfortheirantimicrobialactivity against three pathogens. Compound 1 displayed significant inhibitionzoneof20mmataconcentrationof100

m

g/discagainst

EscherichiacoliATCC25922inthediscdiffusionassay.Similarly, compounds2and4displayedinhibitionzonesof20and18mm respectively against Candida albicans ATCC 14053 at the same concentration (100

m

g/disc). Other compounds were inactive

againstthesepathogens.Nystatinwasusedasapositiveantifungal controlinthisassayandshowedinhibitionzoneof22mmagainst C. albicansATCC 14053 at a concentrationof 25

m

g/disc,while

ciprofloxacinwas usedas a positive control against E.coli and showedinhibitionzoneof20mmat25

m

g/disc.Inaddition,the

compoundswereevaluatedfortheircytotoxicityagainsthuman colon adenocarcinoma (HCT-16) cells. Compounds 1–3 showed weakcytotoxicitywithIC50of45,60and40

m

Mrespectively.Other compoundswereinactiveagainstthiscellline.

3.Experimental

3.1.Generalexperimentalprocedures

OpticalrotationsweremeasuredonaJASCOdigitalpolarimeter.

HRESIMS was recorded on a LTQ Orbitrap (ThermoFinnigan, Bremen,Germany).TheIRspectraweremeasuredonaShimadzu Infrared-400spectrophotometer(Kyoto,Japan).UVspectrawere measuredonaHitachi300Spectrophotometer.1Dand2DNMR spectra(chemicalshiftsinppm,couplingconstantsinHz)were recorded on BrukerAvance DRX 600MHz spectrometers using CDCl3andCD3ODassolvents.NMRspectrawerereferencedtothe residualprotonatedsolventsignals (CHCl3:7.26ppmfor1Hand 77.0ppmfor13C;CH3OD:3.30ppmfor1Hand49.0ppmfor13C).

Columnchromatographicseparationswereperformedonsilicagel 60(0.04–0.063mm)andSephadexLH-20(0.25–0.1mm,Pharma- cia).TheHPLCseparationwasperformedonaRP18,250mm10 mm,5

m

mPhenomenexLunacolumnusingCH3CN:H2Oasmobile

phase at 220nm and at a flow rate of 2.0mL/min. TLC was performedonprecoatedTLCplateswithsilicagel60F254(0.2mm, Merck).SpotswerevisualizedbyUVabsorptionat

l

max255and 366nmfollowedbysprayingwithP-anisaldehyde/H2SO4. 3.2.Animalmaterials

TheSpongewascollectedatadepthof9metersoffJeddahin May2012.The spongeforms a basal masswith broadgrooved digitations and hard consistency. The sizes of the voucher fragments are up to 8cm height with individual digitations

measuring5cm2cm.Thespongeisdarkbrowncolorinlive.The skeleton isdense,course,vaguelyplumose butlargelyconfused withloosebundlesof10ormorestylewithoutvisiblespongin.The spiculesrobuststylesmeasureupto810

m

m20

m

m,andthree

sizes of sigmas, 48–51

m

m, 30–36

m

m and 15–18

m

m were

recorded.Themicrozeasmeasure50

m

mandthetrichodragmas measure120–225

m

m12–24

m

m.Thesecharacterscomplywith

thespecimenandsubsequentdescriptionsofthiscommonspecies.

ThevouchersareregisteredinthecollectionofNetherlandsCenter forBiodiversityNaturalisundernumberZMAPro.16622.Another specimen was kept at the Department of Natural Products at FacultyofPharmacy,KingAbdulazizUniversityundernumberDY- 9.

3.3.Extractionandpurificationsofcompounds1–8

The frozen sponge was cut into very small pieces (640g) followedbyextractionwithamixtureofMeOH:CH2Cl2(1:1)(3 2000mL)atroomtemperature.Thetotalextractwassuspendedin H2OandextractedwithCHCl3.TheCHCl3layerwasconcentrated undervacuumandtheresultingresidue(5.50g)wassubjectedto vacuum liquid chromatography on silica gel using n-hexane:

EtOAc:MeOH gradientstogivesevenmain fractions. Fraction 3 (350mg) was chromatographedon silicagel column usingpet.

ether:CHCl3:MeOH gradient to give 8 main subfractions. Sub- fraction 4 (69mg) was purified on Sephadex LH-20 using 20%

CHCl3inMeOHtoobtain25mgofimpure2.Thecompoundwas purifiedonRPHPLCcolumnusing70%ACNinH2Otoaffordpure2 (7mg).Similarly,subfraction7(120mg)waspurifiedonSephadex LH-20using20%CHCl3inMeOHtoobtainimpure4(45mg)and5 (33mg).Thesecompoundsweresubjectedtofinalpurificationon ODSHPLCcolumn(250mm10mm)using80%ACNinH2Otogive thepurecompounds4(11mg)and5(8.5mg).Fraction5(500mg) wasfractionatedonsilicagelcolumnandelutedwithpet.ether:

CHCl3:MeOH gradient to give five subfractions. Subfraction 3 (73mg)wassubjectedtoSephadexLH-20columnelutedwith20%

CHCl3inMeOH.Thefractioncontainedcompounds1,3and6was purifiedonODSHPLCcolumn(250mm10mm)using70%ACNin H2Otogivecompound1(5.3mg),3(7mg)and6(13mg).Fraction 7(610mg)waspurifiedonsilicagelcolumnandelutedwithCHCl3: MeOH gradient toafford fivemain subfractions. Subfractions 3 (51mg)and5(44mg)werepurifiedseparatelyonSephadexLH- 20usingMeOH.FinalpurificationwasperformedonC18Sep-Pak cartridges(1.0g)elutedwithH2O:ACNgradienttogivecompound 7(11mg)and8(9mg).

3.4.Biologicalevaluationofthecompounds 3.4.1.Evaluationofcytotoxicactivities

Cytotoxicityofthecompoundswasevaluatedagainsthuman colonadenocarcinoma(HCT-116)cancercelllinebyusingtheMTT (Soria-Mercadoetal.,2005;Youssefetal.,2014).Thecellswere incubated overnight at 37C in 5%CO2/airin microtiter plates.

Testedcompound,etoposide(positivecontrol),andDMSO(nega- tive control)wereaddedtothetoprowofa96-wellmicrotiter plateandseriallydiluted(1:4)downward.Aftera72hincubation, cellviabilitywasdeterminedcolorimetricallyusingaMolecular DevicesEmaxmicroplatereader(490nm),recordingtheamount of MTS(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy phe- nyl)-2-(4-sulfophenyl)-2H-tetrazolium) reduced to formazan usingtheCell Titer96Aqueousnonradioactivecellproliferation protocol(Promega).Minimuminhibitoryconcentration(IC50,

m

M)

values were calculated using the program SOFTmax PRO ( MolecularDevices).Etoposidewasusedasapositivecytotoxicity control inHCT-16 assayand displayedcytotoxicity withIC50 of 2.0

m

M.
(6)

3.4.2.Evaluationoftheantimicrobialactivity

The in vitro antimicrobial activity was evaluated using disc diffusionmethodaspreviouslydescribed(Kiehlbauchetal.,2000).

Varietiesof test microorganismswere used including a Gram- positive bacteria (Staphylococcus aureus ATCC 25923), a Gram- negative bacteria (Escherichia coli ATCC 25922) and yeast (C.

albicansATCC14053).Adjustedinoculumofeachmicroorganism, equivalenttoaturbidityof0.5McFarlandstandards,werestreaked separatelyusingsterileswabsoverthesurfaceofMullerHinton agarplates.Sterilediscs(6mmdiameter)wereimpregnatedwith 100

m

gofeachcompoundandappliedtotheinoculatedplates.The

plateswereincubatedat37Cfor24h.Solventcontroldiscswere usedtodetermineanysolventeffect.Gentamycinandciprofloxa- cinwereusedasantibacterialstandards,whilenystatinusedasan antifungal standard. Theactivityof each compound was deter- minedbymeasuringthediameteroftheinhibitionzoneinmm.

Thetechniquewasperformedinduplicateandthemeandiameter ofeachinhibitionzonewasrecorded.

3.5.Spectroscopicdataofthecompounds

3.5.1.Ehrenasterol[(22E)-Ergosta-22-ene-8,14-epoxy-3,7-dione](1) White residue;[

a

]D=10.6 (C0.8,CHCl3);UV(MeOH)

l

max

(log

e

)=221(4.05)nm;IR(KBr)

g

max2986,2870,1720(br),1450, 1233,1172,1136cm1;HRESIMSm/z427.3212(calcdforC28H43O3, [M+H]+,427.3221);NMRdata,seeTable1.

3.5.2.Biemnicacid(2)

Whiteresidue;IR(KBr)

g

max3200(br,weak),3026,2918,2848, 2110,1711,1635,1408,1212,1072cm1;HRESIMSm/z363.3260 (calcdforC24H43O2,[M+H]+,363.3263);NMRdata,seeTable2.

3.5.3.(22E)-Ergosta-5,8,22-trien-7-one-3

b

-ol(3)

White powder;[

a

]D=18.5 (C0.8,CHCl3);UV(MeOH)

l

max

(log

e

)=248(4.5)nm;IR(KBr)

g

max3420,2960,2932,2844,1676, 1625,1456,1370,1268,1180,1050cm1;ESIMSm/z411.3[M+H]+. Molecularformula:C28H42O2.1HNMR(600MHz,CDCl3):

d

H2.06 (m,H-1a),1.28(dd,13.8,4.2,H-1b),1.97(m,H-2a),1.71(m,H-2b), 3.67(m,H-3),2.60(dd,4.8, 1.8,H-4a),2.53(m,H-4b),6.04(d,J=1.2, H-6),2.47(m,H-11a),2.42(m,H-11b),2.07(dd,7.2,3.6,H-12a), 1.49(m,H-12b),2.23(m,H-14),2.55(m,H-15a),1.24(m,H-15b), 1.84(m,H-16a),1.27(m,16b),1.23(brd,13.2,H-17),0.65(s,H-18), 1.34(s,H-19),2.07(m,H-20),1.05(d,6.6,H-21),5.18(dd,15.2,8.0, H-22),5.24(dd,15.2,8.5,H-23),1.85(m,H-24),1.48(m,H-25),0.84 (d,6.6, H-26), 0.82 (d, 6.6, H-27), 0.92 (d, 7.2, H-28).13C NMR (150MHz,CDCl3):

d

C34.8(C-1),30.8(C-2),72.1(C-3),42.0(C-4), 161.2(C-5), 126.9(C-6), 186.5(C-7),134.2(C-8),161.8(C-9),43.0(C- 10),24.8(C-11),35.7(C-12),42.1(C-13),51.4(C-14),24.9(C-15), 29.6(C-16),53.6(C-17), 12.1(C-18),23.9(C-19),40.5(C-20),21.1(C- 21),135.6(C-22),132.3(C-23),42.5(C-24),33.3(C-25),19.8(C-26), 19.1(C-27),17.8(C-28).

3.5.4.32,35-Anhydrobacteriohopanetetrol(4)

White needles;ESIMSm/z529.4[M+H]+.Molecularformula:

C35H60O3.1HNMR(600MHz,CDCl3):

d

H1.34(m,H-1a),1.12(m,H- 1b),1.35 (m, H-2a),1.34 (m, H-2b), 1.52 (m, H-3), 0.71 (brd, J

=2.7Hz,H-5),1.52(m,H-6a),1.30(m,H-6b),1.46(m,H-7a),1.23 (m,H-7b),1.23(m,H-9),1.72(m,H-11a),1.52(m,H-11b),1.45(m, H-12a),1.38(m,H-12b),1.31(m,H-13),1.33(m,H-15a),1.24(m,H- 15b),1.25(m,H-16),1.27(m,H-17),1.65(m,H-19a),0.77(m,H- 19b),1.78(m,H-20a),1.52(m,H-20b),1.75(m,H-21),1.50(m,H- 22),0.84(s,H3-23),0.79(s,H3-24),0.82(s,H3-25),0.94(s,H3-26), 0.93(s,H3-27),0.70(s,H3-28),0.95(brs,H3-29),1.51(m,H-30a), 1.17(m,H-30b),1.58(m,H-31a),1.52(m,H-31b),3.60(m,H-32), 3.75(brd,H-33),4.24(m,H-34),4.12(dd,J=10.2,5.4Hz,H-35a), 3.68(dd,J=9.6,3.6Hz,H-35b);13CNMR(150MHz,CDCl3):

d

C41.8

(C-1),18.6(C-2),41.6(C-3),33.2(C-4),56.1(C-5),20.9(C-6),33.1 (C-7),42.1(C-8),50.4(C-9),37.3(C-10),22.7(C-11),23.9(C-12), 49.3(C-13),41.7(C-14),33.6(C-15),29.7(C-16),54.4(C-17),44.3 (C-18),40.3(C-19),27.6(C-20),46.0(C-21),36.7(C-22),33.4(C-23), 21.5(C-24), 15.9(C-25), 16.5(C-26),16.6(C-27), 15.8(C-28),20.1(C- 29),31.6(C-30),29.9(C-31),83.0(C-32),75.8(C-33),71.1(C-34), 72.6(C-35).

3.5.5.(24R)-Ergosta-6,22-diene-5,8-epidioxy-3-ol(5)

Silvery white needles; ESIMS m/z 431.3 [M+H]+. Molecular formula:C28H46O3.1HNMR(600MHz,CDCl3):

d

H2.11(dd,J=13.8, 3.6Hz,H-1a), 1.92(dd,J=13.8, 1.8,H-1b), 1.59(m,H-2a), 1.25(m,H- 2b),3.97(m,H-3),1.95(m,H-4a),1.23(m,H-4b),6.5(d,J=9.0Hz, H-6),6.23(d,J=9.0Hz,H-7),1.54(m,H-9),1.59(m,H-11a),1.40(m, H-11b),1.96(m,H-12a),1.70(m,H-12b),3.62(m,H-14),1.5(m,H- 15a),1.23(m,H-15b),1.77(m,H-16a),1.38(m,H-16b),0.70(brd,H- 17),0.81(s,H3-18),0.88(s,H3-19),2.02(m,H-20),1.00(d,J=6.6Hz, H3-21),5.14(dd,J=15.0,7.8Hz,H-22),5.22(dd,J=15.0,7.8Hz,H- 23), 1.84(brt,J=7.2,H-24), 1.46(m,H-25),0.82(d,J=6.0Hz,H3-26), 0.81 (d, J=6.6Hz, H3-27), 0.90 (d, J=6.6Hz, H3-28); 13C NMR (150MHz,CDCl3):

d

C36.9(C-1),30.1(C-2),66.4(C-3),39.3(C-4), 79.4(C-5),130.7(C-6),135.4(C-7),82.1(C-8),51.0(C-9),36.9(C- 10),20.6(C-11),34.6(C-12),44.5(C-13),51.6(C-14),23.3(C-15), 28.6(C-16),56.1(C-17), 12.8(C-18), 18.1(C-19),39.7(C-20),20.8(C- 21),135.1(C-22),132.2(C-23),42.7(C-24),33.0(C-25),19.6(C-26), 19.9(C-27),17.5(C-28).

3.5.6.MelithasterolB(6)

Whitepowder; ESIMSm/z429.3[M+H]+.Molecularformula:

C28H44O3.13CNMR(150MHz,CDCl3):

d

C30.1(C-1),31.9(C-2),68.1 (C-3),39.3(C-4),66.4(C-5),63.0(C-6),68.7(C-7),130.7(C-8),135.1 (C-9),36.8(C-10),23.3(C-11),34.6(C-12),42.7(C-13),50.9(C-14), 24.7(C-15),29.7(C-16),51.6(C-17), 12.8(C-18),22.7(C-19),39.7(C- 20),18.1(C-21),135.3(C-22),132.2(C-23),43.3(C-24),33.0(C-25), 19.9(C-26),19.6(C-27),17.6(C-28).

3.5.7.Thymidine(7)

Whitepowder; ESIMSm/z243.1[M+H]+.Molecularformula:

C10H14N2O5.1HNMR(600MHz,CD3OD):

d

H7.80(s,H-4),1.93(s, CH3),6.27(t,J=6.6Hz,H-10),2.23(m,H-20),4.39(m,H-30),3.90 (brd,J=3.6Hz, H-40), 3.73(dd,J=12.0,3.6Hz, H-5a0),3.77(dd,J

=12.0,3.0Hz,H-5b0);13CNMR(150MHz,CD3OD):

d

C166.4(C-2), 111.5(C-3),138.2(C-4),152.4(C-6),12.2(CH3),86.2(C-10),41.2(C- 20),72.2(C-30),88.8(C-40),62.8(C-50).

3.5.8.20-Deoxyuridine(8)

Whitepowder; ESIMSm/z229.0[M+H]+.Molecularformula:

C9H12N2O5.1HNMR(600MHz,CD3OD):

d

H5.69(d,J=7.8Hz,H-3), 7.98(d,J=7.8Hz,H-4),6.27(t,J=6.6Hz,H-10),2.24(m,H-2a0),2.20 (m,H-2b0),4.38(m,H-30),3.91(m,H-40),3.76(m,H-5a0),3.71(m, H-5b0).13CNMR(150MHz,CD3OD):

d

C152.28(C-2),102.6(C-3), 142.5(C-4),166.3(C-6),86.6(C-10),41.3(C-20),72.3(C-30),89.0(C- 40),62.8(C-50).

4.Conclusion

Onenewsterol, ehrenasteroland anewC24-acetylenicacid;

biemnicacid,togetherwithsixknowncompoundswereisolated and identified from the Red Sea sponge B. ehrenbergi. The compounds were identified by interpretation of their spectral dataincluding1D,2DNMRandHRESIMS.Compound1showed antimicrobialactivityagainstE.coliATCC25922whilecompounds 2 and 4 displayed activity against C. albicans ATCC 14053.

Compounds1–3displayedweakcytotoxicactivityagainsthuman colonadenocarcinoma(HCT-16)cells.

(7)

Conflictsofinterest

Theauthorsdeclarenoconflictofinterest.

Acknowledgements

ThisprojectwassupportedbytheNSTIPstrategictechnologies programintheKingdomofSaudiArabia–ProjectNo.(11-BIO1556- 03). The authors also, acknowledge with thanks Science and TechnologyUnit,KingAbdulazizUniversityfortechnicalsupport.

WearethankfulforDr.RobvanSoestfortaxonomicidentification ofthesponge.

AppendixA.Supplementarydata

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.

phytol.2015.04.024.

References

Abou-Hussein,D.R.,Badr,J.M.,Youssef,D.T.A.,2007.Nucleosideconstituentsofthe EgyptiantunicateEudistomalaysani.Nat.Prod.Sci.13,229–233.

Aoki,S.,Wei,H.,Matsui,K.,Rachmat,R.,Kobayashi,M.,2003.Pyridoacridine alkaloidsinducingneuronaldifferentiationinaneuroblastomacellline,from marinespongeBiemnafortis.Bioorg.Med.Chem.11,1969–1973.

Bai,R.L.,Paull,K.D.,Herald,C.L.,Malspeis,L.,Pettit,G.R.,Hamel,E.,1991.

HalichondrinBandhomohalichondrinB,marinenaturalproductsbindingin thevincadomainoftubulin.Discoveryoftubulin-basedmechanismofactionby analysisofdifferentcytotoxicitydata.J.Biol.Chem.266,15882–15889.

Bensemhoun,J.,Bombarda,I.,Aknin,M.,Vacelet,J.,2008.5a,8a-Epidioxysterol fromthemarinespongeBiemnatriraphisTopsent.Nat.Prod.Commun.3,843.

Bradley,A.S.,Pearson,A.,Sáenz,J.P.,Marx,C.,2010.Adenosylhopane:thefirst intermediateinhopanoidsidechainbiosynthesis.Org.Geochem.41,1075–

1081.

Cooke,M.P.,Talbot,H.M.,Farrimond,P.,2008.Bacterialpopulationsrecordedin bacteriohopanepolyoldistributionsinsoilsfromNorthernEngland.Org.

Geochem.39,1347–1358.

Costantino,V.,Fattorusso,E.,Imperator,C.,Mangoni,A.,2001.Abiosynthetically significantnewbacteriohopanoidpresentinlargeamountsintheCaribbean spongePlakortissimplex.Tetrahedron57,4045–4048.

Delseth,C.,Kashman,Y.,Djerassi,C.,1979.Ergosta-5,7,9(11),22-tetraen-3,b-oland its24-ethylhomolog,twonewmarinesterolsfromtheredseasponge,Biemna fortis.Helv.Chim.Acta62,2037–2045.

Deng,S.,Li,F.,Peng,S.,1998.ChemicalconstituentsofmarinespongeGelliodes spinosellainSouthChinaSea.ZhongguoHaiyangYaowu17,31–32.

Hammoda,H.M.,Badr,J.M.,Youssef,D.T.A.,2007.Threeantioxidantcompoundsof theRedAlgaLiagorafarinosa.Nat.Prod.Sci.13,140–143.

Huang,X.C.,Guo,Y.W.,Song,G.Q.,2006.Fortisterol,anovelsteroidwithanunusual seven-memberedlactoneringBfromtheChinesemarinespongeBiemnafortis Topsent.J.AsianNat.Prod.Res.8,485–489.

Inatomi,Y.,Inada,A.,Murata,H.,Nishi,M.,Nakanishi,T.,2000.Constituentsofa fern,DiplaziumsubsinuatumIII.Fournewhopane-triterpenelactoneglycosides.

Chem.Pharm.Bull.48,1930–1934.

Kiehlbauch,J.A.,Hannett,G.E.,Salfinger,M.,Archinal,W.,Monserrat,C.,Carlyn,C., 2000.UseoftheNationalCommitteeforClinicalLaboratorystandards guidelinesfordiskdiffusionsusceptibilitytestinginNewYorkstate laboratories.J.Clin.Microbiol.38,3341–3348.

Luesch,H.,Moore,R.E.,Paul,V.J.,Mooberry,S.L.,Corbett,T.H.,2001.Isolationof dolastatin10fromthemarinecyanobacteriumSymplocaspeciesVP642and totalstereochemistryandbiologicalevaluationofitsanaloguesymplostatin1.J.

Nat.Prod.64,907–910.

Luo,X.,Li,F.,Pramod,B.,Shinde,P.B.,Hong,J.,Lee,C.O.,Im,K.S.,Jung,J.H.,2006.

26,27-Cyclosterolsandotherpolyoxygenatedsterolsfromamarinesponge Topsentiasp.J.Nat.Prod.69,1760–1768.

Mayer,A.M.S.,Glaser,K.B.,Cuevas,C.,Jacobs,R.S.,Kem,W.,Little,R.D.,McIntosh,J.

M.,Newman,D.J.,Potts,B.C.,Shuster,D.E.,2010.Theodysseyofmarine pharmaceuticals:acurrentpipelineperspective.TrendsPharmacol.Sci.31, 255–265.

Neunlist,S.,Bisseret,P.,Rohmer,M.,1988.Thehopanoidsofthepurplenon-sulfur bacteriaRhodopseudomonaspalustrisandRhodopseudomonasacidophilaandthe absoluteconfigurationofbacteriohopanetetrol.Eur.J.Biochem.171,245–252.

Neunlist,S.,Rohmer,M.,1985.Novelhopanoidsfromthemethylotrophicbacteria MethylococcuscapsulatusandMethylomonasmethanica.Biochem.J.231,635–

639.

Nuijen,B.,Bouma,M.,Manada,C.,Jimeno,J.M.,Schellens,J.H.,Bult,A.,Beijnen,J.H., 2000.Pharmaceuticaldevelopmentofanticanceragentsderivedfrommarine sources.AnticancerDrugs11,793–811.

Quiñoà,E.,Crews,P.,1987.PhenolicconstituentsofPsammaplysilla.Tetrahedron Lett.28,3229–3232.

Ralifo,P.,Tenney,K.,Valeriote,F.A.,Crews,P.,2007.Adistinctivestructuraltwistin theaminoimidazolealkaloidsfromacalcareousmarinesponge:isolationand characterizationofleucosolenaminesAandB.J.Nat.Prod.70,33–38.

Rinehart,K.,Gloer,J.,Cook,J.,Carter,J.,Mizsak,S.,Scahill,T.,1987.Structuresofthe didemninsantiviralandcytotoxicdepsipeptidesfromaCaribbeantunicate.J.

Am.Chem.Soc.103,1857–1859.

Rinehart,K.,Holt,T.,Fregeau,N.,Stroh,J.G.,Keifer,P.A.,Sun,F.,Li,L.H.,Martin,D.G., 1990.Ecteinascidins729,743,745,759A,759B,and770:potentantitumour agentsfromtheCaribbeantunicateEcteinascidiaturbinata.J.Org.Chem.55, 4512–4515.

Rodriguez,A.D.,Akee,R.,Scheuer,P.,1987.Twobromotyrosine-cysteinederived metabolitesfromasponge.TetrahedronLett.28,4989–4992.

Shaala,L.A.,Bamane,F.H.,Badr,J.M.,Youssef,D.T.A.,2011.Brominatedarginine- derivedalkaloidsfromtheRedSeaspongeSubereamollis.J.Nat.Prod.74,1517–

1520.

Sorek,H.,Rudi,A.,Gueta,S.,Reyes,F.,Martin,M.J.,Aknin,M.,Vacelet,J.,Kashman,Y., 2006.NetaminesA-Gsevennewtricyclicguanidinealkaloidsfromthemarine spongeBiemnalaboutei.Tetrahedron6237,8838–8843.

Soria-Mercado,I.E.,Prieto-Davo,A.,Jensen,P.R.,Fenical,W.,2005.Antibiotic terpenoidchlorodihydroquinonesfromanewmarineactinomycete.J.Nat.Prod.

68,904–910.

Wright,A.,Forleo,D.,Gunawardana,G.,Gunasekera,S.,Koehn,F.,McConnell,O., 1990.Antitumourtetrahydroisoquinolinealkaloidsfromthecolonialascidian Ecteinascidiaturbinata.J.Org.Chem.55,4508–4512.

Xiaochun,H.,Haili,L.,Yue-Wei,G.,2008.Chemicalconstituentsofmarinesponge BiemnafortisTopsent.Chin.J.Nat.Med.6,348–353.

Youssef,D.T.A.,Shaala,L.A.,Mohamed,G.A.,Badr,J.M.,Bamanie,F.H.,Ibrahim,S.R.

M.,2014.TheonellamideG,apotentantifungalandcytotoxicbicyclic glycopeptidefromtheRedSeamarinespongeTheonellaswinhoei.Mar.Drugs12, 1911–1923.

Zeng,C.M.,Ishibashi,M.,Matsumoto,K.,Nakaike,S.,Kobayashi,J.,1993.Twonew polycyclicaromaticalkaloidsfromtheOkinawanmarinespongeBiemnasp.

Tetrahedron49,8337–8342.

Zhou,S.,Zhou,K.,Xiao,D.,2005.NaturalnitrogenouscompoundsfromSouthChina SeamarinespongeClathriafasciculatae.ZhongguoHaiyangYaowu24,31–35.

Referensi

Dokumen terkait

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/265735881 Modelling complex features from histone modification signatures

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/282886863 The effects of sound pollution on the serum levels of

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/346416093 The association between incidence and mortality of brain cancer

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341966599 Synthesis, Characterization, and Antibacterial Activity of ZnO

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/242304841 Stabilization of Tropical Peat Soil from Sarawak with Different

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/305621846 Examining the Validity and Reliability for a Measurement Model

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/304349465 Biological characteristics of an obligate marine strain

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/331658556 Us vs.. The user has requested enhancement of the downloaded