Elastic Metamaterials with Simultaneously
Negative Effective Shear Modulus and Mass Density
Item Type Article
Authors Wu, Ying;Lai, Yun;Zhang, Zhao-Qing
Citation Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density 2011, 107 (10) Physical Review Letters
Eprint version Publisher's Version/PDF
DOI 10.1103/PhysRevLett.107.105506 Publisher American Physical Society (APS) Journal Physical Review Letters
Rights Archived with thanks to Physical Review Letters Download date 2024-01-26 19:27:33
Link to Item http://hdl.handle.net/10754/553009
Supplemental Material for “Elastic metamaterials with simultaneously negative effective shear modulus and mass density”
Ying Wu1,2, Yun Lai1,3 and Zhao-Qing Zhang1*
1 Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
2 Division of Mathematical and Computer Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
3 Department of Physics, Soochow University, 1 Shizi Street, Suzhou 215006, People’s Republic of China
Fig. S1. A schematic graph of s-p mode conversion during the negative refraction on the interface of a double-negative elastic metamaterial of Case 1 below.
There can be four cases of total s-p or p-s mode conversions on the interface of a double- negative metamaterial and a normal solid under negative refraction:
Case 1: Incident shear waves from a double negative metamaterial.
Case 2: Incident longitudinal waves from a double negative metamaterial.
Case 3: Incident shear waves from a normal solid.
Case 4: Incident longitudinal waves from a normal solid.
It is obvious that Case 3 can be obtained from the time reversal of Case 2 and Case 4 can be obtained from the time reversal of Case 1. Below we derive the general conditions of total mode conversions under negative refraction.
uGl
uGt
kGt
kGl
x Interface
α β
Incident
transverse wave
Refracted
longitudinal wave
1, 1 0, 1 0
κ μ < ρ <
Double negative elastic metamaterial
2, 2, 2
κ μ ρ
Normal positive elastic medium Flux
Flux
For s waves, the displacement is uGt =ut
(
sinαxˆ+cosαy eˆ)
ikt(−cosαx+sinαy)For p waves, the displacement is uGl =ul
(
cosβxˆ+sinβy eˆ)
ikl(cosβx+sinβy)The displacements must match on the interface x=0, i.e.,
sin sin
sin sin
sin cos ,
cos sin .
t l
t l
ik y ik y
t l
ik y ik y
t l
u e u e
u e u e
α β
α β
α β
α β
=
= (S1)
From Eq. (S1), we find sinut α =ulcosβ and utcosα =ulsinβ , which means that
l t
u =u and α β π+ = 2. In the case of normal refraction, for incident angle 0< <α π 2 we have β <0, thus α β π+ < 2, the displacements are not possible to match on the interface. Total conversion is only possible in the case of negative refraction.
From Eq. (S1), we also find sinkt α =klsinβ, which means the wave vector parallel to the interface must conserve. Substituting α β π+ = 2, we obtain sinkt α =klcosα. From
1 1
t t
k v
ω ω
= = μ ρ and
(
2 2)
2l l
k v
ω ω
κ μ ρ
= =
+ , we find
( )
1 1
2 2 2
tan l
t
k k α μ ρ
κ μ ρ
= =
+ .
We also need to consider the matching condition of stresses.
For s waves, uGt =ut
(
sinαxˆ+cosαy eˆ)
ikt(−cosαx+sinαy). Thus, the strains are( )
( ) ( )( )
( ) ( )cos sin cos sin
cos sin cos sin
sin cos sin cos ,
cos sin sin cos ,
t t
t t
ik x y ik x y
t tx
xx t t t t
ty ik x y ik x y
t
yy t t t t
S u u ik e iu k e
x
S u u ik e iu k e
y
α α α α
α α α α
α α α α
α α α α
− + − +
− + − +
=∂ = − = −
∂
=∂ = =
∂
( )
( )( )
( )( )
( )
( )cos sin cos sin
cos sin
2 2
1 2
1 sin sin cos cos
2
1 sin cos .
2
t t
t
t tx ty
xy
ik x y ik x y
t t t t
ik x y
t t t t
u u
S y x
u ik e u ik e
iu k iu k e
α α α α
α α
α α α α
α α
− + − +
− +
∂
⎛∂ ⎞
= ⎜⎝ ∂ + ∂ ⎟⎠
= + −
= −
And the stress can be written as
( ) ( )
( )
( )( )
( )( )
( )
( ) ( )
( )
1 1 1 1
cos sin cos sin
1 1 1 1
cos sin 1
cos sin 1
1 1 1 1
1 1
sin cos sin cos
2 sin cos
sin 2 ,
sin c
t t
t
t
t t t
xx xx yy
ik x y ik x y
t t t t
ik x y
t t
ik x y
t t
t t t
yy yy xx
t t
S S
iu k e iu k e
i u k e
i u k e
S S
iu k
α α α α
α α
α α
σ κ μ κ μ
κ μ α α κ μ α α
μ α α
μ α
σ κ μ κ μ
κ μ α
− + − +
− +
− +
= + + −
= − + + −
= −
= −
= + + −
= + ( )
( )
( )( )
( )
( )
( )( )
cos sin cos sin
1 1
cos sin 1
cos sin 1
1
cos sin
2 2
1
cos sin 1
os sin cos
2 sin cos
sin 2 ,
2
sin cos
cos 2 .
t t
t
t
t
t
ik x y ik x y
t t
ik x y
t t
ik x y
t t
t t
xy xy
ik x y
t t t t
ik x y
t t
e iu k e
i u k e
i u k e
S
iu k iu k e
i u k e
α α α α
α α
α α
α α
α α
α κ μ α α
μ α α
μ α
σ μ
μ α α
μ α
− + − +
− +
− +
− +
− +
− −
=
=
=
= −
= −
For p waves, uGl =ul
(
cosβxˆ+sinβy eˆ)
ikl(cosβx+sinβy). Thus, the strains are( )
( ) ( )( )
( ) ( )cos sin 2 cos sin
cos sin 2 cos sin
cos cos cos ,
sin sin sin ,
l l
l l
ik x y ik x y
l lx
xx l l l l
ly ik x y ik x y
l
yy l l l l
S u u ik e iu k e
x
S u u ik e iu k e
y
β β β β
β β β β
β β β
β β β
+ +
+ +
=∂ = =
∂
=∂ = =
∂
( )
( )( )
( )( )
( )
cos sin cos sin
cos sin
1 2
1 cos sin sin cos
2
sin cos .
l l
l
l lx ly
xy
ik x y ik x y
l l l l
ik x y
l l
u u
S y x
u ik e u ik e
iu k e
β β β β
β β
β β β β
β β
+ +
+
∂
⎛∂ ⎞
= ⎜⎝ ∂ + ∂ ⎟⎠
= +
=
And the stress can be written as
( ) ( )
( )
( )( )
( )( ) ( )
( )
( )( )
( )( ) ( )
( )
2 2 2 2
cos sin cos sin
2 2
2 2 2 2
cos sin
2 2 2 2
2 2
cos sin
2 2
2 2 2 2
2 2
cos sin
cos sin cos sin
cos 2 ,
l l
l
l
l l l
xx xx yy
ik x y ik x y
l l l l
ik x y
l l
ik x y
l l
l l l
yy yy xx
l
S S
iu k e iu k e
i u k e
i u k e
S S
iu k
β β β β
β β
β β
σ κ μ κ μ
κ μ β κ μ β
κ β β μ β β
κ μ β
σ κ μ κ μ
κ μ
+ +
+ +
= + + −
= + + −
= + + −
= +
= + + −
= + ( )
( )
( )( ) ( )
( )
( )( )
( )( )
cos sin cos sin
2 2
2 2
cos sin
2 2 2 2
2 2
cos sin
2 2
2
cos sin 2
cos 2
sin cos
cos sin cos sin
cos 2 ,
2
2 sin cos
sin 2
l l
l
l
l
l
ik x y ik x y
l l l
ik x y
l l
ik x y
l l
l l
xy xy
ik x y
l l
ik x
l l
e iu k e
i u k e
i u k e
S
iu k e
i u k e
β β β β
β β
β β
β β
β
β κ μ β
κ β β μ β β
κ μ β
σ μ
μ β β
μ β
+ +
+ +
+ +
+ −
= + + − +
= −
=
=
= ( sinβy).
σxx and σxy must also be continuous on the interface x=0, i.e.,
1 sin
(
2 2)
sinsin sin
1 2
sin 2 cos 2 ,
cos 2 sin 2 .
t l
t l
ik y ik y
t t l l
ik y ik y
t t l l
i u k e i u k e
i u k e i u k e
α β
α β
μ α κ μ β
μ α μ β
− = +
− = (S2)
By substituting α β π+ = 2, ul =ut and sinkt α =klcosα in Eq. (S2), we find
2 2cos 2 1sin 2 tan
κ =μ α μ− α α and − =μ μ1 2tan 2 tanα α .
Conclusion: total conversion is possible under the case of negative refraction.
The total conversion matching conditions are:
( )
2 2 1
1 2
1 1
2 2 2
2,
cos 2 sin 2 tan , tan 2 tan ,
tan l .
t
k k α β π
κ μ α μ α α
μ μ α α
α μ ρ
κ μ ρ + =
= −
− =
= =
+
. (S3)
Since Case 3 can be obtained from the time reversal of Case 2 and Case 4 can be obtained from the time reversal of Case 1, here we discuss only Cases 1 and 3.
Case 1: we consider a transverse plane wave incident from the left medium of
1 0, 1 0
μ < ρ < with an incident angle of 0< <α π 2as shown in Fig. S1. First, we can obtain μ2 by using − =μ μ1 2tan 2 tan .α α Then, we can obtain κ2 by usingκ2 =μ2cos 2α μ− 1sin 2α tanα μ= 2 cos 2α . At last, we can obtain ρ2 by using
( )
1 1
2 2 2
tan l
t
k k α μ ρ
κ μ ρ
= =
+ . Therefore, μ2 , κ2 and ρ2 are all obtained. It is worth mentioning that when α π> 4 , we have μ2 <0 , but κ2 >0 and
( )
2 2 2 1 cos 2 cos 2 0
κ +μ =μ + α α > , which indicates a double positive medium for refracted longitudinal waves on the right (together with ρ2 >0). In this case the medium on the right is not a normal solid.
Case 3: we consider a transverse plane wave incident from the left medium of
1 0, 1 0
μ > ρ > with an incident angle of 0< <α π 2. μ2, κ2 and ρ2 can also be obtained from Eq. (S3). Note that we have κ2+μ2 =μ2
(
1 cos 2+ α)
cos 2α <0 and ρ2 <0, whichindicate a double negative medium for refracted longitudinal waves on the right.