• Tidak ada hasil yang ditemukan

Math 204 Homework 4.1 1) Determine the largest interval I on which there exists a unique solution to the given initial value problem a. 𝑦

N/A
N/A
Protected

Academic year: 2025

Membagikan "Math 204 Homework 4.1 1) Determine the largest interval I on which there exists a unique solution to the given initial value problem a. 𝑦"

Copied!
12
0
0

Teks penuh

(1)

Math 204 Homework 4.1

1) Determine the largest interval I on which there exists a unique solution to the given initial value problem

a. 𝑦′′+ (tan π‘₯)𝑦 = 𝑒π‘₯, 𝑦(0) = 1, 𝑦′(0) = 0

b. π‘₯√π‘₯ + 1π‘¦β€²β€²β€²βˆ’ 𝑦′+ π‘₯𝑦 = 0, 𝑦 (12) = βˆ’1, 𝑦′(12) = βˆ’1, 𝑦′′(12) = 1

2) For the initial value problem

π‘₯(π‘₯ βˆ’ 1)π‘¦β€²β€²β€²βˆ’ 3π‘₯𝑦′′+ 6π‘₯2π‘¦β€²βˆ’ (cos π‘₯)𝑦 = √π‘₯ + 5 𝑦(π‘₯π‘œ) = 1, 𝑦′(π‘₯π‘œ) = 0, 𝑦′′(π‘₯π‘œ) = 7

Determine the values of xo and the intervals I containing xo for which theorem 4.1.1 guarantees the existence of a unique solution on I.

3) The two-parameter family 𝑦 = 𝑐1𝑒π‘₯cos π‘₯ + 𝑐2𝑒π‘₯sin π‘₯ is a solution of the differential equation π‘¦β€²β€²βˆ’ 2𝑦′+ 2𝑦 = 0. Determine whether a member of the family can be found that satisfies the boundary conditions.

a. 𝑦(0) = 1, 𝑦′(πœ‹) = 0 b. 𝑦(0) = 1, 𝑦(πœ‹) = βˆ’1 c. 𝑦(0) = 0, 𝑦(πœ‹) = 0

4) Determine whether the given set of functions is linearly independent on (βˆ’βˆž, ∞) a. {π‘₯ , π‘₯2 , 4π‘₯ βˆ’ 3π‘₯2}

b. {π‘₯ , π‘₯2 , π‘₯3 , π‘₯4} c. {cos 2π‘₯ , 1 , cos2π‘₯ }

5) Using the Wronskian, verify that the given functions form a fundamental set of solutions of the given differential equation and find a general solution.

a. π‘₯2𝑦′′+ π‘₯𝑦′+ 𝑦 = 0; {cos(ln π‘₯), sin(ln π‘₯)}

b. π‘₯3𝑦′′′+ 6π‘₯2𝑦′′+ 4π‘₯π‘¦β€²βˆ’ 4𝑦 = 0; {π‘₯ , π‘₯βˆ’2 , π‘₯βˆ’2ln π‘₯}

6) A fundamental set of solutions for the homogeneous differential equation 𝑦′′′+ 𝑦′′+ 3π‘¦β€²βˆ’ 5𝑦 = 0

is given by {𝑒π‘₯, π‘’βˆ’π‘₯cos 2π‘₯, π‘’βˆ’π‘₯sin 2π‘₯}. If 𝑦𝑝 = π‘₯2 is a particular solution of the nonhomogeneous differential equation

𝑦′′′+ 𝑦′′+ 3π‘¦β€²βˆ’ 5𝑦 = 2 + 6π‘₯ βˆ’ 5π‘₯2 a. Find the general solution of the nonhomogeneous equation.

b. Find the solution that satisfies the initial conditions 𝑦(0) = βˆ’1 , 𝑦′(0) = 1 , 𝑦′′(0) = βˆ’3

(2)

b. Use part (a) to find a particular solution of

π‘¦β€²β€²βˆ’ 6𝑦′+ 5𝑦 = 5π‘₯2+ 3π‘₯ βˆ’ 16 βˆ’ 9𝑒2π‘₯ π‘¦β€²β€²βˆ’ 6𝑦′+ 5𝑦 = βˆ’10π‘₯2βˆ’ 6π‘₯ + 32 + 𝑒2π‘₯

(3)

Math 204 Homework 4.2

A. In Problems 1 βˆ’ 3 the indicated function 𝑦1(π‘₯) is a solution of the given differential equation. Use formula (5), as instructed, to find a esecond solution 𝑦2(π‘₯).

1) 6𝑦′′+ π‘¦β€²βˆ’ 𝑦 = 0 ; 𝑦1(π‘₯) = 𝑒π‘₯ 3⁄

2) 4π‘₯2𝑦′′+ 𝑦 = 0 ; 𝑦1(π‘₯) = √π‘₯ ln π‘₯

3) (1 βˆ’ 2π‘₯ βˆ’ π‘₯2)𝑦′′+ 2(1 + π‘₯)π‘¦β€²βˆ’ 2𝑦 = 0 ; 𝑦1(π‘₯) = π‘₯ + 1

B. In Problem (4) the indicated function 𝑦1(π‘₯) is a solution of the given associated

homogeneous equation. Use the method of reduction of order to find a seccond solution 𝑦2(π‘₯) of the homogeneous equation and a particular solution of the givin nonhomogeneous equation .

4) π‘¦β€²β€²βˆ’ 4𝑦′+ 3𝑦 = π‘₯ ; 𝑦1(π‘₯) = 𝑒π‘₯

(4)

A. In Problems 1 βˆ’ 7 find the general solution of given second –order differential equation.

1) 5π‘¦β€²β€²βˆ’ 10𝑦′= 0

2) π‘¦β€²β€²βˆ’ 49𝑦 = 0

3) π‘¦β€²β€²βˆ’ 8𝑦′+ 15𝑦 = 0

4) 3π‘¦β€²β€²βˆ’ 5π‘¦β€²βˆ’ 2𝑦 = 0

5) 4π‘¦β€²β€²βˆ’ 24𝑦′+ 9𝑦 = 0

6) 𝑦′′+ 𝑦′+ 2𝑦 = 0

7) π‘¦β€²β€²βˆ’ 4𝑦′+ 5𝑦 = 0

B. In Problems 1 βˆ’ 8 find the general solution of given higher –order differential equation.

1) π‘¦β€²β€²β€²βˆ’ 𝑦′′+ 20𝑦′= 0

2) 𝑦′′′+ 27𝑦 = 0

3) 𝑦′′′+ 100𝑦′= 0

4) 𝑦′′′+ 5π‘¦β€²β€²βˆ’ 2π‘¦β€²βˆ’ 10𝑦 = 0

5) π‘¦β€²β€²β€²βˆ’ 6𝑦′′+ 12π‘¦β€²βˆ’ 8𝑦 = 0

6) 𝑦′′′+ 3𝑦′′+ 3𝑦′+ 𝑦 = 0

7) 25𝑦(4)+ 40𝑦′′+ 16𝑦 = 0

8) 𝑦(5)βˆ’ 7𝑦(4)βˆ’ 18𝑦(3) = 0

C. In Problems 1 βˆ’ 3 solve the given IVP.

1) π‘¦β€²β€²βˆ’ 4𝑦 = 0 𝑦(0) = 1. , 𝑦′(0) = 5

2) 𝑦′′+ 25𝑦 = 0 𝑦(0) = 2. , 𝑦′(0) = 15

3) 𝑦′′′+ 12𝑦′′+ 36𝑦′ = 0. 𝑦(0) = 0 , 𝑦′(0) = 1 , 𝑦′′(0) = βˆ’7

(5)

D. In Problems 1 βˆ’ 2 solve the given BVP.

1) π‘¦β€²β€²βˆ’ 2𝑦′+ 2𝑦 = 0, 𝑦(0) = 1 , 𝑦(πœ‹) = 1

2) π‘¦β€²β€²βˆ’ 10𝑦′+ 25𝑦 = 0, 𝑦(0) = 1 , 𝑦′(1) = 11

(6)

A. In Problems, 1 βˆ’ 12 find the general solution of given higher –order differential equation.

1) π‘¦β€²β€²βˆ’ 𝑦′= βˆ’3 + 𝑒π‘₯

2) 9𝑦′′+ 4𝑦 = 16

3) 𝑦′′+ π‘¦β€²βˆ’ 6𝑦 = 2π‘₯

4) π‘¦β€²β€²βˆ’ 16𝑦 = 2𝑒4π‘₯

5) π‘¦β€²β€²βˆ’ 5𝑦′= 2π‘₯3βˆ’ 4π‘₯2βˆ’ π‘₯ + 6

6) π‘¦β€²β€²β€²βˆ’ 6𝑦′′ = 3 βˆ’ cos(π‘₯)

7) 𝑦(4)βˆ’ 𝑦′′ = 4π‘₯ + 2π‘₯𝑒π‘₯

8) 𝑦′′+ 𝑦 = 2π‘₯ sin(π‘₯)

9) π‘¦β€²β€²βˆ’ 8𝑦′+ 7𝑦 = 14π‘₯2βˆ’ 3π‘₯ + 4 βˆ’ 24π‘₯𝑒π‘₯

10) π‘¦β€²β€²β€²βˆ’ π‘¦β€²β€²βˆ’ 4𝑦′+ 4𝑦 = 5 βˆ’ 𝑒π‘₯βˆ’ 4𝑒2π‘₯

11) 𝑦′′+ 2π‘¦β€²βˆ’ 24𝑦 = 16 βˆ’ π‘₯𝑒π‘₯βˆ’ 2𝑒6π‘₯

12) 𝑦′′+ 2𝑦′+ 2𝑦 = sin(π‘₯) + 3cos(2π‘₯)

B. In Problems, 1 βˆ’ 3 solve the given IVP.

1) 𝑦′′+ 4𝑦 = βˆ’2 𝑦 (πœ‹8) =12. , 𝑦′(πœ‹8) = 2

2) 𝑦′′′+ 8𝑦 = 2π‘₯ βˆ’ 5 + 8π‘’βˆ’2π‘₯ 𝑦(0) = βˆ’5 , 𝑦′(0) = 3 , 𝑦′′(0) = βˆ’4

3) 𝑦′′+ 4𝑦′+ 4𝑦 = (3 + π‘₯)π‘’βˆ’2π‘₯ , 𝑦(0) = 2 , 𝑦′(0) = 5

(7)

C. In Problem 1 solve the given IVP in which the input function 𝑔(π‘₯) is discontinues.

1) π‘¦β€²β€²βˆ’ 2𝑦′+ 10𝑦 = 𝑔(π‘₯) , 𝑦(0) = 0 , 𝑦′(0) = 0 , where

𝑔(π‘₯) = {20 if 0 ≀ π‘₯ ≀ Ο€ 0 if π‘₯ > πœ‹

(8)

A. In Problems, 1 βˆ’ 4 verify that given differential operatar annihilates the indicated functions.

1) 𝐷2+ 64 , 𝑦 = 2 cos 8π‘₯ βˆ’ 5 sin 8π‘₯

2) (𝐷 βˆ’ 2)(𝐷 + 5) , 𝑦 = 𝑒2π‘₯+ 3π‘’βˆ’5π‘₯

3) (𝐷 βˆ’ 1)3 , 𝑦 = π‘₯2𝑒π‘₯

4) 𝐷7, 𝑦 = 10 + 2π‘₯ + 3π‘₯2βˆ’ 7π‘₯6+ 1

B. In Problems, 1 βˆ’ 6 Find a linearly independent functions that are annihilated by the given differential operator.

1) 𝐷2+ 4𝐷

2) 𝐷2βˆ’ 12𝐷 + 36

3) 𝐷4βˆ’ 12𝐷3 + 35𝐷2

4) 𝐷2+ 6𝐷 + 10

5) 𝐷2 βˆ’ 5𝐷 βˆ’ 36

6) 3𝐷3βˆ’ 2𝐷2 βˆ’ 5𝐷

C. In Problem 1- 5 Find a linear differential operator that annihilates the given functions.

1) π‘₯ βˆ’ 2 + π‘₯2π‘’βˆ’3π‘₯

2) (π‘₯ βˆ’ 2 + π‘₯2)π‘’βˆ’3π‘₯

3) 9π‘₯2βˆ’ 3π‘₯𝑒4π‘₯cos 2π‘₯ + sin 7π‘₯ + 1

4) (6 βˆ’ π‘₯𝑒2π‘₯ )2

5) π‘₯5(5 + 3π‘₯2)

(9)

D. In Problems, 1 βˆ’ 3 Solve the following DE by using undetermined coefficients ( annihilation opproach )

1) 𝑦(4)βˆ’ 𝑦′′ = π‘₯ βˆ’ 1

2) 𝑦′′+ 4𝑦 = cos 2π‘₯

3) π‘¦β€²β€²βˆ’ 5𝑦′+ 6𝑦 = 2π‘₯𝑒3π‘₯

(10)

A. In Problems, 1 βˆ’ 9 solve each DE by variation of parameters.

1) 𝑦′′+ 𝑦 = tan π‘₯

2) π‘¦β€²β€²βˆ’ 𝑦′ = sinh 2π‘₯

3) π‘¦β€²β€²βˆ’ 𝑦 =𝑒𝑑2𝑒+π‘’π‘‘βˆ’π‘‘

4) 𝑦′′+ 𝑦 = cos2π‘₯

5) 𝑒3π‘₯π‘¦β€²β€²βˆ’ 9𝑒3π‘₯𝑦 = 9π‘₯

6) 𝑦′′+ 3𝑦′+ 2𝑦 = sin 𝑒π‘₯

7) π‘¦β€²β€²βˆ’ 2𝑦′+ 𝑦 = 1+π‘₯𝑒π‘₯2

8) 4π‘¦β€²β€²βˆ’ 4𝑦′+ 𝑦 = 𝑒π‘₯⁄2√1 βˆ’ π‘₯2

9) 𝑦′′+ 2𝑦′+ 𝑦 = π‘’βˆ’π‘₯ln π‘₯

B. In Problem, 1 solve the given IVP.

1) 𝑦′′+ 𝑦 = sec3π‘₯ 𝑦(0) = 1. , 𝑦′(0) =12

(11)

Math 204 Homework 4.7

A. In Problems, 1 βˆ’ 9 solve the given DE..

1) π‘₯2π‘¦β€²β€²βˆ’ 2𝑦 = 0

2) π‘₯𝑦′′+ 𝑦′ = 0

3) π‘₯2𝑦′′+ π‘₯𝑦′+ 4𝑦 = 0

4) π‘₯3π‘¦β€²β€²β€²βˆ’ 6𝑦 = 0

5) π‘₯3𝑦′′′+ π‘₯π‘¦β€²βˆ’ 𝑦 = 0

6) π‘₯2𝑦′′+ 3π‘₯π‘¦β€²βˆ’ 4𝑦 = 0

7) π‘₯2π‘¦β€²β€²βˆ’ 4π‘₯𝑦′+ 6𝑦 = ln π‘₯2

8) π‘₯2𝑦′′+ π‘₯π‘¦β€²βˆ’ 𝑦 = ln π‘₯

9) π‘₯2π‘¦β€²β€²βˆ’ 2π‘₯𝑦′+ 2𝑦 = π‘₯4𝑒π‘₯

B. In Problems, 1 βˆ’ 2 solve the given IVP.

1) π‘₯2π‘¦β€²β€²βˆ’ 5π‘₯𝑦′+ 8𝑦 = 8π‘₯6 𝑦 (12) = 0. , 𝑦′(12) = 0 2) π‘₯2π‘¦β€²β€²βˆ’ 3π‘₯𝑦′+ 4𝑦 = 0 𝑦(1) = 5. , 𝑦′(1) = 3

(12)

1. Solve the given system of differential equations by systematic elimination.

𝑑π‘₯

𝑑𝑑 = π‘₯ βˆ’ 4𝑦 𝑑𝑦

𝑑𝑑 = π‘₯ + 𝑦

2. Solve the given system of differential equations by systematic elimination.

(𝐷 + 2)π‘₯ + (𝐷 + 1)𝑦 = sin 2𝑑 5π‘₯ + (𝐷 + 3)𝑦 = cos 2𝑑

3. Solve the given IVP 𝑑π‘₯

𝑑𝑑 = 4π‘₯ + 𝑦 𝑑𝑦

𝑑𝑑 = βˆ’2π‘₯ + 𝑦 π‘₯(0) = 1 , 𝑦(0) = 0

Referensi

Dokumen terkait