Math 204 Homework 4.1
1) Determine the largest interval I on which there exists a unique solution to the given initial value problem
a. π¦β²β²+ (tan π₯)π¦ = ππ₯, π¦(0) = 1, π¦β²(0) = 0
b. π₯βπ₯ + 1π¦β²β²β²β π¦β²+ π₯π¦ = 0, π¦ (12) = β1, π¦β²(12) = β1, π¦β²β²(12) = 1
2) For the initial value problem
π₯(π₯ β 1)π¦β²β²β²β 3π₯π¦β²β²+ 6π₯2π¦β²β (cos π₯)π¦ = βπ₯ + 5 π¦(π₯π) = 1, π¦β²(π₯π) = 0, π¦β²β²(π₯π) = 7
Determine the values of xo and the intervals I containing xo for which theorem 4.1.1 guarantees the existence of a unique solution on I.
3) The two-parameter family π¦ = π1ππ₯cos π₯ + π2ππ₯sin π₯ is a solution of the differential equation π¦β²β²β 2π¦β²+ 2π¦ = 0. Determine whether a member of the family can be found that satisfies the boundary conditions.
a. π¦(0) = 1, π¦β²(π) = 0 b. π¦(0) = 1, π¦(π) = β1 c. π¦(0) = 0, π¦(π) = 0
4) Determine whether the given set of functions is linearly independent on (ββ, β) a. {π₯ , π₯2 , 4π₯ β 3π₯2}
b. {π₯ , π₯2 , π₯3 , π₯4} c. {cos 2π₯ , 1 , cos2π₯ }
5) Using the Wronskian, verify that the given functions form a fundamental set of solutions of the given differential equation and find a general solution.
a. π₯2π¦β²β²+ π₯π¦β²+ π¦ = 0; {cos(ln π₯), sin(ln π₯)}
b. π₯3π¦β²β²β²+ 6π₯2π¦β²β²+ 4π₯π¦β²β 4π¦ = 0; {π₯ , π₯β2 , π₯β2ln π₯}
6) A fundamental set of solutions for the homogeneous differential equation π¦β²β²β²+ π¦β²β²+ 3π¦β²β 5π¦ = 0
is given by {ππ₯, πβπ₯cos 2π₯, πβπ₯sin 2π₯}. If π¦π = π₯2 is a particular solution of the nonhomogeneous differential equation
π¦β²β²β²+ π¦β²β²+ 3π¦β²β 5π¦ = 2 + 6π₯ β 5π₯2 a. Find the general solution of the nonhomogeneous equation.
b. Find the solution that satisfies the initial conditions π¦(0) = β1 , π¦β²(0) = 1 , π¦β²β²(0) = β3
b. Use part (a) to find a particular solution of
π¦β²β²β 6π¦β²+ 5π¦ = 5π₯2+ 3π₯ β 16 β 9π2π₯ π¦β²β²β 6π¦β²+ 5π¦ = β10π₯2β 6π₯ + 32 + π2π₯
Math 204 Homework 4.2
A. In Problems 1 β 3 the indicated function π¦1(π₯) is a solution of the given differential equation. Use formula (5), as instructed, to find a esecond solution π¦2(π₯).
1) 6π¦β²β²+ π¦β²β π¦ = 0 ; π¦1(π₯) = ππ₯ 3β
2) 4π₯2π¦β²β²+ π¦ = 0 ; π¦1(π₯) = βπ₯ ln π₯
3) (1 β 2π₯ β π₯2)π¦β²β²+ 2(1 + π₯)π¦β²β 2π¦ = 0 ; π¦1(π₯) = π₯ + 1
B. In Problem (4) the indicated function π¦1(π₯) is a solution of the given associated
homogeneous equation. Use the method of reduction of order to find a seccond solution π¦2(π₯) of the homogeneous equation and a particular solution of the givin nonhomogeneous equation .
4) π¦β²β²β 4π¦β²+ 3π¦ = π₯ ; π¦1(π₯) = ππ₯
A. In Problems 1 β 7 find the general solution of given second βorder differential equation.
1) 5π¦β²β²β 10π¦β²= 0
2) π¦β²β²β 49π¦ = 0
3) π¦β²β²β 8π¦β²+ 15π¦ = 0
4) 3π¦β²β²β 5π¦β²β 2π¦ = 0
5) 4π¦β²β²β 24π¦β²+ 9π¦ = 0
6) π¦β²β²+ π¦β²+ 2π¦ = 0
7) π¦β²β²β 4π¦β²+ 5π¦ = 0
B. In Problems 1 β 8 find the general solution of given higher βorder differential equation.
1) π¦β²β²β²β π¦β²β²+ 20π¦β²= 0
2) π¦β²β²β²+ 27π¦ = 0
3) π¦β²β²β²+ 100π¦β²= 0
4) π¦β²β²β²+ 5π¦β²β²β 2π¦β²β 10π¦ = 0
5) π¦β²β²β²β 6π¦β²β²+ 12π¦β²β 8π¦ = 0
6) π¦β²β²β²+ 3π¦β²β²+ 3π¦β²+ π¦ = 0
7) 25π¦(4)+ 40π¦β²β²+ 16π¦ = 0
8) π¦(5)β 7π¦(4)β 18π¦(3) = 0
C. In Problems 1 β 3 solve the given IVP.
1) π¦β²β²β 4π¦ = 0 π¦(0) = 1. , π¦β²(0) = 5
2) π¦β²β²+ 25π¦ = 0 π¦(0) = 2. , π¦β²(0) = 15
3) π¦β²β²β²+ 12π¦β²β²+ 36π¦β² = 0. π¦(0) = 0 , π¦β²(0) = 1 , π¦β²β²(0) = β7
D. In Problems 1 β 2 solve the given BVP.
1) π¦β²β²β 2π¦β²+ 2π¦ = 0, π¦(0) = 1 , π¦(π) = 1
2) π¦β²β²β 10π¦β²+ 25π¦ = 0, π¦(0) = 1 , π¦β²(1) = 11
A. In Problems, 1 β 12 find the general solution of given higher βorder differential equation.
1) π¦β²β²β π¦β²= β3 + ππ₯
2) 9π¦β²β²+ 4π¦ = 16
3) π¦β²β²+ π¦β²β 6π¦ = 2π₯
4) π¦β²β²β 16π¦ = 2π4π₯
5) π¦β²β²β 5π¦β²= 2π₯3β 4π₯2β π₯ + 6
6) π¦β²β²β²β 6π¦β²β² = 3 β cos(π₯)
7) π¦(4)β π¦β²β² = 4π₯ + 2π₯ππ₯
8) π¦β²β²+ π¦ = 2π₯ sin(π₯)
9) π¦β²β²β 8π¦β²+ 7π¦ = 14π₯2β 3π₯ + 4 β 24π₯ππ₯
10) π¦β²β²β²β π¦β²β²β 4π¦β²+ 4π¦ = 5 β ππ₯β 4π2π₯
11) π¦β²β²+ 2π¦β²β 24π¦ = 16 β π₯ππ₯β 2π6π₯
12) π¦β²β²+ 2π¦β²+ 2π¦ = sin(π₯) + 3cos(2π₯)
B. In Problems, 1 β 3 solve the given IVP.
1) π¦β²β²+ 4π¦ = β2 π¦ (π8) =12. , π¦β²(π8) = 2
2) π¦β²β²β²+ 8π¦ = 2π₯ β 5 + 8πβ2π₯ π¦(0) = β5 , π¦β²(0) = 3 , π¦β²β²(0) = β4
3) π¦β²β²+ 4π¦β²+ 4π¦ = (3 + π₯)πβ2π₯ , π¦(0) = 2 , π¦β²(0) = 5
C. In Problem 1 solve the given IVP in which the input function π(π₯) is discontinues.
1) π¦β²β²β 2π¦β²+ 10π¦ = π(π₯) , π¦(0) = 0 , π¦β²(0) = 0 , where
π(π₯) = {20 if 0 β€ π₯ β€ Ο 0 if π₯ > π
A. In Problems, 1 β 4 verify that given differential operatar annihilates the indicated functions.
1) π·2+ 64 , π¦ = 2 cos 8π₯ β 5 sin 8π₯
2) (π· β 2)(π· + 5) , π¦ = π2π₯+ 3πβ5π₯
3) (π· β 1)3 , π¦ = π₯2ππ₯
4) π·7, π¦ = 10 + 2π₯ + 3π₯2β 7π₯6+ 1
B. In Problems, 1 β 6 Find a linearly independent functions that are annihilated by the given differential operator.
1) π·2+ 4π·
2) π·2β 12π· + 36
3) π·4β 12π·3 + 35π·2
4) π·2+ 6π· + 10
5) π·2 β 5π· β 36
6) 3π·3β 2π·2 β 5π·
C. In Problem 1- 5 Find a linear differential operator that annihilates the given functions.
1) π₯ β 2 + π₯2πβ3π₯
2) (π₯ β 2 + π₯2)πβ3π₯
3) 9π₯2β 3π₯π4π₯cos 2π₯ + sin 7π₯ + 1
4) (6 β π₯π2π₯ )2
5) π₯5(5 + 3π₯2)
D. In Problems, 1 β 3 Solve the following DE by using undetermined coefficients ( annihilation opproach )
1) π¦(4)β π¦β²β² = π₯ β 1
2) π¦β²β²+ 4π¦ = cos 2π₯
3) π¦β²β²β 5π¦β²+ 6π¦ = 2π₯π3π₯
A. In Problems, 1 β 9 solve each DE by variation of parameters.
1) π¦β²β²+ π¦ = tan π₯
2) π¦β²β²β π¦β² = sinh 2π₯
3) π¦β²β²β π¦ =ππ‘2π+ππ‘βπ‘
4) π¦β²β²+ π¦ = cos2π₯
5) π3π₯π¦β²β²β 9π3π₯π¦ = 9π₯
6) π¦β²β²+ 3π¦β²+ 2π¦ = sin ππ₯
7) π¦β²β²β 2π¦β²+ π¦ = 1+π₯ππ₯2
8) 4π¦β²β²β 4π¦β²+ π¦ = ππ₯β2β1 β π₯2
9) π¦β²β²+ 2π¦β²+ π¦ = πβπ₯ln π₯
B. In Problem, 1 solve the given IVP.
1) π¦β²β²+ π¦ = sec3π₯ π¦(0) = 1. , π¦β²(0) =12
Math 204 Homework 4.7
A. In Problems, 1 β 9 solve the given DE..
1) π₯2π¦β²β²β 2π¦ = 0
2) π₯π¦β²β²+ π¦β² = 0
3) π₯2π¦β²β²+ π₯π¦β²+ 4π¦ = 0
4) π₯3π¦β²β²β²β 6π¦ = 0
5) π₯3π¦β²β²β²+ π₯π¦β²β π¦ = 0
6) π₯2π¦β²β²+ 3π₯π¦β²β 4π¦ = 0
7) π₯2π¦β²β²β 4π₯π¦β²+ 6π¦ = ln π₯2
8) π₯2π¦β²β²+ π₯π¦β²β π¦ = ln π₯
9) π₯2π¦β²β²β 2π₯π¦β²+ 2π¦ = π₯4ππ₯
B. In Problems, 1 β 2 solve the given IVP.
1) π₯2π¦β²β²β 5π₯π¦β²+ 8π¦ = 8π₯6 π¦ (12) = 0. , π¦β²(12) = 0 2) π₯2π¦β²β²β 3π₯π¦β²+ 4π¦ = 0 π¦(1) = 5. , π¦β²(1) = 3
1. Solve the given system of differential equations by systematic elimination.
ππ₯
ππ‘ = π₯ β 4π¦ ππ¦
ππ‘ = π₯ + π¦
2. Solve the given system of differential equations by systematic elimination.
(π· + 2)π₯ + (π· + 1)π¦ = sin 2π‘ 5π₯ + (π· + 3)π¦ = cos 2π‘
3. Solve the given IVP ππ₯
ππ‘ = 4π₯ + π¦ ππ¦
ππ‘ = β2π₯ + π¦ π₯(0) = 1 , π¦(0) = 0