A machine learning study on superlattice electron blocking layer design for AlGaN deep ultraviolet light-emitting diodes using the stacked XGBoost/LightGBM algorithm
Item Type Article
Authors Lin, Rongyu;Liu, Zhiyuan;Han, Peng;Lin, Ronghui;Lu, Yi;Cao, Haicheng;Tang, Xiao;Wang, Chuanju;Khandelwal, Vishal;Zhang, Xiangliang;Li, Xiaohang
Citation Lin, R., Liu, Z., Han, P., Lin, R., Lu, Y., Cao, H., Tang, X., Wang, C., Khandelwal, V., Zhang, X., & Li, X. (2022). A machine learning study on superlattice electron blocking layer design for AlGaN deep ultraviolet light-emitting diodes using the stacked XGBoost/
LightGBM algorithm. Journal of Materials Chemistry C. https://
doi.org/10.1039/d2tc02335k Eprint version Publisher's Version/PDF
DOI 10.1039/d2tc02335k
Publisher Royal Society of Chemistry (RSC) Journal Journal of Materials Chemistry C
Rights Archived with thanks to Journal of Materials Chemistry C under a Creative Commons license, details at: http://
creativecommons.org/licenses/by-nc/3.0/
Download date 2023-12-06 19:43:49
Item License http://creativecommons.org/licenses/by-nc/3.0/
Link to Item http://hdl.handle.net/10754/685969
Machine learning study on superlattice electron blocking layer design for AlGaN deep ultraviolet light-emitting diodes using the stacked XGBoost/LightGBM algorithm
Rongyu Lin,a,† Zhiyuan Liu,a, † Peng Han,b Ronghui Lin,a Yi Lu,a Haicheng Cao,a Xiao Tang, a Chuanju Wang,a Vishal Khandelwal,a Xiangliang Zhang,*b,c and Xiaohang Li *a
a. Advanced Semiconductor Laboratory, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
b. Laboratory Machine, Intelligence and Knowledge Engineering (MINE), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
c. Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
† These authors contributed equally.
*Corresponding author.
* [email protected] and [email protected]
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C.
This journal is © The Royal Society of Chemistry 2022
S1. Internal quantum efficiency (IQE) predictions from stacked XGBoost/LightGBM model of superlattice (SL) electron blocking layer (EBL) with different composition combinations under the band offset ratio = 0.55.
S2. Internal quantum efficiency (IQE) predictions from stacked XGBoost/LightGBM model of superlattice (SL) electron blocking layer (EBL) with different composition combinations under the band offset ratio = 0.6.
.
S3. Internal quantum efficiency (IQE) predictions from stacked XGBoost/LightGBM model of superlattice (SL) electron blocking layer (EBL) with different composition combinations under the band offset ratio = 0.65.
S4. Internal quantum efficiency (IQE) predictionsfrom stacked XGBoost/LightGBM model of superlattice (SL) electron blocking layer (EBL) with different composition combinations under the band offset ratio = 0.7.