• Tidak ada hasil yang ditemukan

A machine learning study on superlattice electron blocking layer design for AlGaN deep ultraviolet light-emitting diodes using the stacked XGBoost/LightGBM algorithm

N/A
N/A
Protected

Academic year: 2024

Membagikan "A machine learning study on superlattice electron blocking layer design for AlGaN deep ultraviolet light-emitting diodes using the stacked XGBoost/LightGBM algorithm"

Copied!
54
0
0

Teks penuh

(1)

A machine learning study on superlattice electron blocking layer design for AlGaN deep ultraviolet light-emitting diodes using the stacked XGBoost/LightGBM algorithm

Item Type Article

Authors Lin, Rongyu;Liu, Zhiyuan;Han, Peng;Lin, Ronghui;Lu, Yi;Cao, Haicheng;Tang, Xiao;Wang, Chuanju;Khandelwal, Vishal;Zhang, Xiangliang;Li, Xiaohang

Citation Lin, R., Liu, Z., Han, P., Lin, R., Lu, Y., Cao, H., Tang, X., Wang, C., Khandelwal, V., Zhang, X., & Li, X. (2022). A machine learning study on superlattice electron blocking layer design for AlGaN deep ultraviolet light-emitting diodes using the stacked XGBoost/

LightGBM algorithm. Journal of Materials Chemistry C. https://

doi.org/10.1039/d2tc02335k Eprint version Publisher's Version/PDF

DOI 10.1039/d2tc02335k

Publisher Royal Society of Chemistry (RSC) Journal Journal of Materials Chemistry C

Rights Archived with thanks to Journal of Materials Chemistry C under a Creative Commons license, details at: http://

creativecommons.org/licenses/by-nc/3.0/

Download date 2023-12-06 19:43:49

Item License http://creativecommons.org/licenses/by-nc/3.0/

Link to Item http://hdl.handle.net/10754/685969

(2)

Machine learning study on superlattice electron blocking layer design for AlGaN deep ultraviolet light-emitting diodes using the stacked XGBoost/LightGBM algorithm

Rongyu Lin,a,† Zhiyuan Liu,a, Peng Han,b Ronghui Lin,a Yi Lu,a Haicheng Cao,a Xiao Tang, a Chuanju Wang,a Vishal Khandelwal,a Xiangliang Zhang,*b,c and Xiaohang Li *a

a. Advanced Semiconductor Laboratory, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

b. Laboratory Machine, Intelligence and Knowledge Engineering (MINE), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

c. Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA

† These authors contributed equally.

*Corresponding author.

* [email protected] and [email protected]

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C.

This journal is © The Royal Society of Chemistry 2022

(3)

S1. Internal quantum efficiency (IQE) predictions from stacked XGBoost/LightGBM model of superlattice (SL) electron blocking layer (EBL) with different composition combinations under the band offset ratio = 0.55.

(4)
(5)

(6)

(7)
(8)

(9)
(10)

(11)

(12)

(13)
(14)
(15)
(16)

S2. Internal quantum efficiency (IQE) predictions from stacked XGBoost/LightGBM model of superlattice (SL) electron blocking layer (EBL) with different composition combinations under the band offset ratio = 0.6.

(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)

.

(29)

S3. Internal quantum efficiency (IQE) predictions from stacked XGBoost/LightGBM model of superlattice (SL) electron blocking layer (EBL) with different composition combinations under the band offset ratio = 0.65.

(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)
(39)
(40)
(41)
(42)

S4. Internal quantum efficiency (IQE) predictionsfrom stacked XGBoost/LightGBM model of superlattice (SL) electron blocking layer (EBL) with different composition combinations under the band offset ratio = 0.7.

(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)

Referensi

Dokumen terkait