א
א
א–
א
–
١٤٣٠
–
٢٠٠٩
QTY
ﺔﻴﻓﺍﺮﻐﳉﺍ ﺕﺎﺳﺍﺭﺪﻟﺍ ﰲ ﺭﺍﻮﳉﺍ ﺔﻠﺻ ﻞﻴﻠﲢ
ﺔﻣﺮﻜﳌﺍ ﺔﻜﻣ ﺔﻘﻄﻨﲟ ﺔﻳﺮﺸﺒﻟﺍ ﺕﺎﻨﻃﻮﺘﺴﳌﺍ ﻰﻠﻋ ﻖﻴﺒﻄﺘﻟﺎﺑ
K
אאא
אאאא
אא –
אא
–
א
א –
K
א
אאא
א
אא –
אא
–
א
א –
א
א
א–
א
–
١٤٣٠
–
٢٠٠٩
QUQ
ﺔﻴﻓﺍﺮﻐﳉﺍ ﺕﺎﺳﺍﺭﺪﻟﺍ ﰲ ﺭﺍﻮﳉﺍ ﺔﻠﺻ ﻞﻴﻠﲢ
ﺔﻣﺮﻜﳌﺍ ﺔﻜﻣ ﺔﻘﻄﻨﲟ ﺔﻳﺮﺸﺒﻟﺍ ﺕﺎﻨﻃﻮﺘﺴﳌﺍ ﻰﻠﻋ ﻖﻴﺒﻄﺘﻟﺎﺑ
K
אאא
K
א
א W
אאאאאא
F
א
E
א
אאאאאאא
K
אא
،
אאאא
،
אאא
،
א
א
F index
E
אא
א
K
אאאאאאא
א
F continuous
E
אאא
F
E
،
א
אאא
،
אא
F ٢{١٥ E
،
א
אא،א
F ١
E
א
א
K
אא
אאאאא،אא
אאאאא،א،אא
K
אא
א
،
אאאאא
،
אא
،
،
K
אאאאאא
אאאא،א
אא
אא،אR K
אאאאאאא
אאא
אאR
אאא
؛
אא
K
אאאא
א
،
א
K
אא
א
אא
Z
؛
א
،
אאאא
א
F
אR E
אא،
אאאא K
QUR
א
א
Nearest Neighbor Analysis in Geographic Studies Application to Human Settlements
in Makkah Area
Dr. Abdul Halim A. Al-farooq Dr. Nozha Y. Al-jabri Abstract:
The nearest neighbor index is one of the widely used indices by geographers to measure the pattern of central distributions in space.
Unlike this index, other measures are weak in certain aspects as their dependence on description rather than measurement; and they have no unified quantitative indices that measure the distribution pattern. This nearest neighbor index, symbolized as R ,is one of the few measures that depends on a "quantitative" continuous scale. This scale starts from the first extreme point (Zero) where all points of the distribution cluster, and upwards to the last extreme point where the value of the index reaches its climax at 2.15' meaning that all points are uniformly distributed throughout the area. The index value of 1 indicates a random distribution.
Despite the fact that much has been written about this index, this study tries to detail the way this index is calculated and derived. Furthermore, it explains how the index can be statistically tested, and it reveals the index weaknesses and strengths.
The main objective of this paper is directed towards helping graduate students deal with this index. It reveals the theoretical concepts behind this measure, its definition, and the way it is derived and calculated. In addition, this index is applied to measure the nearest neighbor index as with respect to settlement distributions in Mecca area.
The study also explains the importance of "taking the number of points of the distribution into consideration" when interpreting the value of the index R . It also warns that this R should be statistically tested using the Z statistics, otherwise we may accept the null hypothesis (that the distribution pattern is random) in cases where it should be rejected.
א
א
א–
א
–
١٤٣٠
–
٢٠٠٩
QUS
ﺔﻴﻓﺍﺮﻐﳉﺍ ﺕﺎﺳﺍﺭﺪﻟﺍ ﰲ ﺭﺍﻮﳉﺍ ﺔﻠﺻ ﻞﻴﻠﲢ
ﺔﻣﺮﻜﳌﺍ ﺔﻜﻣ ﺔﻘﻄﻨﲟ ﺔﻳﺮﺸﺒﻟﺍ ﺕﺎﻨﻃﻮﺘﺴﳌﺍ ﻰﻠﻋ ﻖﻴﺒﻄﺘﻟﺎﺑ
١
J
W
א
(Distribution)
אאא
،
א
،אאאאאאא
،אא،
אא
F
E
،אאא
אאאאאא
K
א
אאאאא Pattern
אא
،
א
אא
K
F ١٩٨٤
W ١٧٢
E
אאא
אאא
א
،א
אא K
א
אאאאא
K
אאאא
אאא
K
א
אאא
א
?
?
?
?
א
?
?
?
?
אאא
K
QUT
א
א
אא א
א
?
?
nucleated
א
?
?
dispersed
א
א
K
א
،אאאאא
אא
،
K
אאא
א
،
(subjectivity)
؛
אאא
אא
K
אאאאא
אאא F
٢٠٠٤
E
א
،
א
אאא،אאא،א
אאא،אאאאא
،
،
F
E
אא،
K
אאאאאא
אא
–
אאאא– W
•
Uniform distribution
א
א
א
K
אאא
א K
א
א
א–
א
–
١٤٣٠
–
٢٠٠٩
QUU
• F
E Clustered distribution
א
א
א
،
אא
F
E
א
א
K
אא •
א
Random distribution
אאא
؛
אאא
،
א
א K
٢
J
אאא
W
،אאאא
אאאא
א
،אא
،א
אאא،אאאאא
W
أ -
אא
،
،
،
א
،
אאאאא
K
ب -
אאאאא
אא K
ت -
אא
F ER
א
א
K
ث -
אאאאאא
א K
QUV
א
א
٣
J
אא
W
אא
،
אא
אא
،
א
אא
،
א
(index)
،
א
אא
K
אאאא
א
אאא (continuous)
אאא
F
E
،
אאא
א
אא F
٢{١٥
E
א
אא،א
F ١
E
אא
K
אא
אאא
“non–randomness”
א
אא،אא
K
،
א
א
Nearest Neighbor Analysis
–
א–
W
F
E
،
،א
K
אאאא
W
١
אא -
אא
א؟אא Reliability
؟
٢
אאא -
אא
؟
٣
אאאא -
אא
؟
א
א
א–
א
–
١٤٣٠
–
٢٠٠٩
QUW
٤
אאא -
؟
٥
אאאאא -
אא
؟
٤
J
אא
W
אאאא
R
א
Botanists
אאא
א
(Hammond & McCullagh, 1975)
،
אא
F ٢٠٠٤
W
٤٢٥
E
אא
?
?
١٩٠٩
אאא،
אאא
אאא
אא
?
א
?
א
١٩٥٢
K
אאא
אא
?
Clarks
?
?
Evans
?
١٩٥٤
K
،א
F ١٩٩٣
W
١٣٥
J ١٨٨
E
א
אאאאאא
Brush
F
E1953
אא
؛
אאאאאא
،
א
אא
K
א
Michael Dacey1962)
E
؛
אא
אאאא
אאא F
Dacey 1962 : 55-75 KE
QUX
א
א
א
،אאאאא
אאא
F
ER
א
אא
K
אאאא
١٩٨٦
؛
אאאא
א
،
אאאאאא
אא
F
،א ١٩٨٦
W ٩٣
− ١٣٦
KE
א
١٩٩٠
אאא
،
אאאא
؛
א
א
،
א،אאא
א
؛
אא
F
،א ١٩٩٠
W
٥٧ ٦٣− EK
אא
١٩٨٨
א
אאאאאא
אאאא،אאא
אאאא
אא
،א
אא
אא F
،א ١٩٨٨
W ٧٠
J ٨١
KE
א
א
W
١٩٩٣
،
אאאאא
،
אאאאאא
אא،א
؛
אאאא
F
א
E
אאא
אאאאא،א
K
א
א
א–
א
–
١٤٣٠
–
٢٠٠٩
QUY
אאא
F
א
E
א
אאאא
א
F
،א ١٩٩٣
W ١٦٠ ١٧٦− E
؛
אאא
١٩٩٨
،
אאאא
אא
؛
א
אאא
אא
K
אאא
אאא
،
אאא
אאאאא
،
א
אאאאא
K
אא
אאאאא F
،א
١٩٩٨
W
١٤٤
١٤٩−
KE
אאאאא
W
١٩٩٥
،
אא
،
אא
א،אאאא
אאאא
،
אא
א
F
،א ١٩٩٥
W ١٠٥
−
١٠٧
KE
אא
א ٢٠٠٤
،
،אא
אא
F
،א ٢٠٠٤
W
٤١٢
٤١٣−
KE
א
١٩٩٨
،
אא
אאא
א
אאאאא،
؛
א،אאא
QVP
א
א
א،אאא
אא F
،א ١٩٩٨
W
−٢٧ ٣٠
KE
א
٢٠٠٤
،
אאאאאאא
،
אאאא
אאאא،א
F
،א ٢٠٠٤
W
−٦٨٢ ٦٨٥ KE
J
אא
W
אאאא
אאא
،
אאאא
אא
א
،
אא
אאאא
K
אאאא
W
אא
F
א KE
J
אא
K
J
אא
א
K
J
אא
F
א
E
אא
،
א
אאא
K
א
א
א–
א
–
١٤٣٠
–
٢٠٠٩
QVQ
J
אאא
F ER
J
אאאא
١٠
א
אאאאא،אא
F ER
؟
אאאא
אאאא W
א •
אא
א
F
KE
• F
E
F
KE
F
E
אא
F
E
א
F
EK
אא •
א
K
אא
א–
אא
–
א
K
א
א
אא
F
E
F
١ EK
QVR
א
א
F ١ E
אא
אא • : R
R
א
W
ran
obs D
D
R = /
١
W
Dobs
∑
d/nZאא
אאא
Dran
Z
אא א
،
) ) / (
* 2 (
1l N A
א א
W
1 D
F
א2 א
א
א
E
ﺃ ﺏ ﺝ
א
א
א–
א
–
١٤٣٠
–
٢٠٠٩
QVS
N
Z
א
K
ZA
אאא
K
Dran
א
١
R K
/{1 / 2 * ( / )}
R = Dobs N A
2
א
٢
W
2 o b s * ( / )
R = D N A