SOME RESULTS ON DERIVATIONS OF BCI-ALGEBRAS
Hamza A. S. Abujabal, and Nora O. Al-Shehri
Mathematics Department, Faculty of Sciences, King Abdulaziz University, P. Box 80009, Jeddah 21589, Saudi Arabia.
(Received: July 7, 2006)
ABSTRACT: In this note, we investigate some fundamental properties and prove some results on derivations of BCI-algebras.
1. INTRODUCTION
In the theory of rings and near rings, the properties of derivations is an important topic to study [8, 10]. In [7], Jun and Xin applied the notions of rings and near rings theory to BCI- algebras and obtained some properties.
In this paper, we prove some results on derivations of BCI-algebras. First, we show that a derivations of BCK-algebra is regular and prove that if
d
is a derivation of a BCI-algebraX
andα ∈ Χ
such thata * d ( x ) = 0
or, 0
* ) ( x a =
d
for allx ∈ X ,
thend
is regular andX
is a BCK-algebra. Also we study a derivation of ap −
semisimple BCI-algebraX
, thend
1, d
2are derivations of ap −
semisimple BCI-algebraX
, thend
1od
2 is also a derivation ofX
andd
1od
2 =d
2od
1. Finally, we show thatd
1* d
2 =d
2* d
1, whered
1, d
2are derivations of ap −
semisimple BCI-algebraX
.2. PRELIMINARIES
Let X be a set with a binary operation * and a constant 0. Then
( X ,*, 0 )
is called a BCI-algebra, if it satisfies the following axioms for allx , y , z ∈ X
: BCI-1:((x * y) * (x * z)) * (z * y) = 0
;BCI-2:
(x * (x * y)) * y = 0
; BCI-3:x * x
=0
;BCI-4:
x * y = 0
andy * x = 0
implyx = y
[6].Define a binary relation
≤
on X by puttingx ≤ y
if and only ifo y
*
x =
. Then(X ; ≤ )
is a partially ordered set. A BCI-algebraX
satisfying
0
≤x
, for allx ∈ X
, is called a BCK-algebra. In any BCI- algebraX
, the following hold [6] for allx , y , z ∈ X
:(1)
x * 0
=x
.(2)
(x * y) * z = (x * z) * y
. (3)0 * (x * y) = (0 * x) * (0 * y)
. (4)* (x * (x * y)) = x * y
[1].(5)
((x * z) * ( y * z)) * ( x * y) = 0
.(6)
x ≤ y
impliesx * z ≤ y * z
andz * y ≤ z * x
. (7)x * 0
=0
impliesx = 0
.For a BCI-algebra
X
, denote byX
+ ={ x
∈X 0
≤X }
, the BCK-part ofX
, and byG ( X )
={ x∈X 0 * x=x } , the BCI-G part ofX . IfX+ ={ } 0 , then
X
is called ap −
semisimple BCI – algebra. For allx , y , z ∈ X
, the following hold in a p-semisimple BCI-algebraX
:(8)
(x * z) * (y * z) = x * y
. (9)0 * (0 * x) = x
.(10)
x * (0 * y) = y * (0 * x)
. (11)x * y = 0
impliesx = y
.(12)
x * y = x * z
impliesy = z
. (13)y * x = z * x
impliesy = z
. (14)y * (y * x) = x
[3, 4, 5, 11]Let X be a BCI-algebra. We denote
x ^ y = y * ( y * x )
, For more details, we refer to [2, 9, 12, 13].Definition 2.1 [7] Let X be a BCI-algebra. By a (
l , r
) – deviation of X, wemean a self map
d
ofX
satisfying the identity), (
*
^
* ) ( )
*
( x y d x y x d y
d =
for allx , y ∈ X
. If X satisfies the identity,
* ) (
^ ) (
* )
*
( x y x d y d x y
d =
for allx , y ∈ X ,
then we say that d is a) ,
( r l
- derivation ofX
. Moreover, ifd
is both a( l , r )
and a( r , l )
- derivation, we say thatd
is a derivation of X.Definition 2.2 [7]. A self map
d
of BCI-algebra X is said to be regular ifd ( 0 ) = 0
.Proposition 2.3 [7] Let
d
be a regular derivation of BCI-algebraX
. Then the following hold:{ ( ) 0 } lg ( 0 ) .
) 0 ( ) (
. , ),
(
* ) (
* ) ( )
* ( ) (
. , ,
) (
*
* ) ( ) (
. )
( ) (
1 1
− +
− = ∈ = ⊂
∈
≤
=
∈
≤
∈
≤
X d
and X of ebra suba
a is x
d X x d
iv
X y x all for y d x d y x d y x d iii
X y x all for y d x y x d ii
X x all for x x d i
3. SOME RESULTS ON DERIVATIONS First, we study derivations on BCK-algebras:
Proposition 3.1: Every
( ) r ,
l -derivations (or a( l , r )
-derivation) of a BCK-algebra is regular.Proof. Let
X
is a BCK-algebra andd
a( r , l )
-deviation of aX
. Then for allx ∈ X
, we have:0
* ) 0 (
^ 0
* ) 0 (
^ ) (
* 0 )
* 0 ( ) 0 (
=
=
=
=
x d
x d x d x
d d
Now let
d
is a( l , r )
-deviation of X. Then for allx
∈X
we have:0 0
^
* ) 0 (
) (
* 0
^
* ) 0 ( )
* 0 ( ) 0 (
=
=
=
=
x d
x d x d x d d
From Proposition 3.1 we get:
Corollary 3.2: A derivation of a BCK-algebra is regular.
In Proposition 3.3 (resp. Proposition 3.4), we assume that
d
is a derivation of a BCI-algebraX
anda
∈X
such thatd ( x ) * a = 0 ,
(resp.a * d ( x ) = 0
), for allx
∈X
, then we show thatd
is a regular derivation ofX
andX
is a BCK-algebra:Proposition 3.3. Let
d
be a derivation of a BCI-algebraX
anda∈ X
such thatd ( x ) * a = 0 ,
for allx
∈X .
Thend
is a regular derivation ofX
. MoreoverX
is a BCK-algebra.Proof. Let
d
be a derivation of a BCI-algebraX
and leta∈ X
such that, 0
* ) ( x a =
d
for allx
∈X .
Sinced
is( l , r )
-derivation we get:a a a d x
a a d x a x d a a x d
* 0
* )) (
*
^ 0
* )) (
*
^
* ) ( (
* )
* ( 0
=
=
=
=
thus
0 ≤ a ,
and sox
∈X
+.
This shows that0 ) (
* 0
^ 0
) (
* 0
^
* ) 0 ( )
* 0 ( ) 0 (
=
=
=
=
a d
a
d
a
d
a
d
d
Hence
d
is a regular derivations ofX
. So by Proposition 2.3 (i) we have, ) ( x x
d ≤
for allx
∈X
and so.0
* 0
) (
* )
* ) ( ( ) (
* 0
* 0
=
=
=
≤ a
x d a x d x d x
Thus
0 * x
≤0
for allx
∈X
and so0 = ( 0 * x ) * 0 = 0 * x
. Then we have0
≤x
, for allx
∈X
. Which implies thatX
is a BCK-algebra.Similarly we can prove:
Proposition 3.4. Let
d
be a derivation of a BCI-algebraX
anda∈ X
such thata * d ( x ) = 0 ,
for allx
∈X .
Thend
is a regular derivation ofX
. Moreover,X
is a BCK-algebra.Finally, we study a derivations of a
p −
semisimple BCI-algebra:Definition 3.5: Let
X
be a BCl-algebra andd
1, d
2two self maps ofX
We define d1. d2d
1od
2: X
→X as :
( ( ) ) , )
(
1 22
1
d x d d x
d
o = for allx ∈ X .
Proposition 3.6 Let
X
be ap −
semisimple BCI-algebra andd
1, d
2 the( )
l, r
-derivations ofX
. Thend
1od
2 is also a( )
l, r
-derivation ofX
. Proof. LetX
be ap −
semisimple BCI – algebra andd
1, d
2 are( )
l, r
- derivations ofX
. Then by (14) and proposition 2.3 (ii), we get for all: , y X x ∈
( ) ( ) ( )
( ) ( )
( )
( d x d d x d y y ) ( d ( x x d d d y y ) d ) ( d d ( d x x ) ) y y )
y x d d y d x y x d d y x d d
* ) (
* ) ( (
*
* ) (
*
* ) ( )
(
* ) (
^
* ) (
* ) ( )
(
*
^
* ) ( )
* (
2 1 2
1 2
1
2 1 1
2 2
1
2 1 2
2 1 2
1
=
=
=
= o =
=
( d
1od
2)( x ) * y ^ x * ( d
1od
2)( y )
Which implies thatd
1od
2 is a( )
l, r
- derivation ofX
. Similarly, we can prove:Proposition 3.7. Let
X
be ap −
semisimple BCI –algebra andd
1, d
2are( ) r ,
l –derivations ofX
. Then d1 d2 is also a( ) r ,
l –derivation ofX
.Combining Propositions 3.6 and 3.7, we get:
Theorem 3.8. Let
X
be ap −
semisimple BCI –algebra andd
1, d
2 derivations of X. Thend
1od
2is also a derivation of X.Proposition 3.9. Let
X
be ap −
semisimple BCI –algebra and2 1
, d
d
derivations of X. Thend
1od
2 =d
2od
1.Proof. Let
X
be ap −
semisimple BCI –algebra andd
1, d
2, the derivations of X. Sinced
2 is a( l , r )
–derivation ofX
, then for alx , y ∈ X :
( ) ( )
( ( ( * ) * ) ) ) ( ) * ^ * ( )
)
* (
2 1
2 2
1 2
1 2
1
y x d d
y d x y x d d y x d d y x d d
=
= o =
But
d
1 is a( r , l )
-derivation ofX
, so( )
( )
) (
* ) (
* ) (
^ ) (
* ) (
* ) ( )
* )(
(
1 2
2 1 1
2 2 1 2
1
y d x d
y x d d y d x d
y x d d y x d d
=
= o =
thus we have for all
x , y ∈ X :
) (
* ) ( )
* )(
( d
1od
2x y
=d
2x d
1y
(1) Also, sinced
1is a( r , l )
-derivation ofX
, then for allx , y ∈ X :
( d
2od
1) ( x * y )
=d
2( x * d
1( y )^ d
1( x ) * y ) ( *
1( ) )
2
x d y
=
d
But
d
2is a( l , r )
-derivation of X, so( ) ( )
( )
) (
* ) (
) (
* )^
(
* ) (
) (
* )
* (
1 2
1 2 1
2 1 2 1
2
y d x d
y d d x y d x d
y d x d y x d d
=
= o =
Thus we have for all
x , y ∈ X :
( d
2od
1) ( x * y )
=d
2( x ) * d
1( y )
(2) From (1) and (2) we get for allx , y ∈ X :
( d
1od
2) ( x * y )
=( d
2od
1) ( x * y )
By putting
y = 0
we get for allx
∈X :
( ) ( ) )
)(
( d
1od
2x
=d
2od
1x
Which implies that
d
1od
2 =d
2od
1Definition 3.10. Let
X
be a BCI-algebra andd
1, d
2,
two self maps ofX
. We defined
1* d
2: X ⎯ ⎯→ X as :
( d
1* d
2) ( x )
=d
1( x ) * d
2( x ),
for allx
∈X
Proposition 3.11. Let
X
be ap −
semisimple BCI –algebra and2 1
, d
d
derivations ofX
. Thend
1* d
2 =d
2* d
1Proof. Let
X
is ap −
semisimple BCI –algebra andd
1, d
2 derivations ofX
. Sinced
2 is a( l , r )
-derivation ofX
, then for allx , y ∈ X :
( d
1od
2) ( x * y )
=d
1( d
2( x ) * y ^ x * d
2( y ) )
=d
1( d
2( x ) * y )
But
d
1is a( r , l )
-derivation ofX
, so( ) ( )
) (
* ) (
* ) ( )^
(
* ) (
* ) (
1 2
2 1 1 2
2 1
y d x d
y x d d y d x d y x d d
=
=
hence
( d
1od
2) ( x * y )
=d
2( x ) * d
1( y )
for all x,y∈X (3) Also, we have thatd
2 is al( ) r, l
-derivation ofX
, then for allx , y ∈ X :
( d
1od
2) ( x * y )
=d
1( x * d
2( y )^ d
2( x ) * y )
=d
1( x * d
2( y ) )
But
d
1is a( ) l, r
- derivation ofX
, so( ) ( )
) (
* ) (
) (
* )^
(
* ) ( ) (
*
2 1
2 1 2
1 2
1
y d x d
y d d x y d x d y d x d
=
=
Thus
( d
1od
2) ( x * y )
=d
2( x ) * d
2( y )
for all x,y∈X (4)From (3) and (4) we get:
) (
* ) ( ) (
* )
(
1 1 22
x d y d x d y
d
= for allx , y ∈ X
By putting
x = y
we get for allx
∈X :
( ) * * ( ) ( ) ) ( ( * ) * ) ( ( ) )
(
2 1 1
2
2 1
1 2
x d d x d d
x d x d x d x d
=
=
Which implies that
d
2* d
1=d
1* d
24. REFERENCES
1. B. Ahmad, On Iseki’s Bci-algebras, Jr.of Natural Sciences and Mathematics, 8(1980), 125-130.
2. M. Aslam and A.B. Thaheem, A note on p-semisimple BCI-algebras, Math. Japon., 36 (1), (1991) , 39-45.
3. M. Daoji, BCI-algebras and Abelian Groups, Math. Japonica, 35 (5), (1987), 693-696
4. W.A. Dudeck, On BCI-algebras with condition(s), Math. Japonica, 31(1), (1986), 26-29
5. C.S. Hoo, BCI-algebras with condition (s), Math. Japonica, 32 (5), (1987), 749-756.
6. K. Iseki, On BCI-algebras, Math. Sem. Notes, 8(1980), 125-130 7. Y.B. Jun and X.L. Xin, On derivations of BCI-algebras, Inform. Sci.,
159 (2004), 167-176.
8. P. H. Lee and T.K. Lee, On derivations of Prime rings, Chinese J.
Math. 9 (1981), 107-110
9. J. Meng, Y.B. Jun and E.H. Roh, BCI-algebras of order 6, Math.
Japon. 47 (1) (1998), 33-43
10. E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
11. L.Tiande and X.Changchang, p-Radical in BCI-algebras, Math.
Japonica, 30 (4), (1985), 511-517.
12. X.L. Xin, E.H. Roh and J.C.Li, Some results on the BCI-G part of algebras, Far East J. Math Sci. Special Volume (Part III), (1997), 363- 370.