Gas separation performance and physical aging of tubular thin-film composite carbon molecular sieve membranes based on a polyimide of intrinsic microporosity precursor
Item Type Article
Authors Ogieglo, Wojciech;Puspasari, Tiara;Alabdulaaly, Abdullah;Nga Nguyen, Thi Phuong;Lai, Zhiping;Pinnau, Ingo
Citation Ogieglo, W., Puspasari, T., Alabdulaaly, A., Nga Nguyen, T. P., Lai, Z., & Pinnau, I. (2022). Gas separation performance and physical aging of tubular thin-film composite carbon molecular sieve membranes based on a polyimide of intrinsic microporosity precursor. Journal of Membrane Science, 652, 120497. https://
doi.org/10.1016/j.memsci.2022.120497 Eprint version Post-print
DOI 10.1016/j.memsci.2022.120497
Publisher Elsevier BV
Journal Journal of Membrane Science
Rights NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Membrane Science. Changes
resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document.
Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Membrane Science, [652, , (2022-04-07)] DOI:
10.1016/j.memsci.2022.120497 . © 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://
creativecommons.org/licenses/by-nc-nd/4.0/
Download date 2023-12-21 23:04:08
Link to Item http://hdl.handle.net/10754/676286
1
Supporting Information:
Gas Separation Performance and Physical Aging of Tubular Thin-Film Composite Carbon Molecular Sieve Membranes Based on a Polyimide of Intrinsic Microporosity
Precursor
Wojciech Ogieglo1, Tiara Puspasari1, Abdullah Alabdulaaly1,2, Thi Phuong Nga Nguyen1, Zhiping Lai1,2, Ingo Pinnau1,2*
1KAUST Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
2Chemical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
*Corresponding author: [email protected]
Table of contents
Figure S1. Examples of ellipsometric modeling using Complete EASE 6.51 package for ~ 100 nm PIM-6FDA- OH film before thermal scan at ~40 °C ... 2 Figure S2. Examples of ellipsometric modeling using Complete EASE 6.51 package for ~ 100 nm PIM-6FDA- OH film before thermal scan at ~450 °C ... 3 Figure S3. Examples of ellipsometric modeling using Complete EASE 6.51 package for ~ 100 nm PIM-6FDA- OH film before thermal scan at ~560 °C ... 4 Figure S4. Example of a pore size distribution of the uncoated SS tubular supports determined with mercury porosimetry (MicroActive AutoPore V 9600 Version 2.03.00) ... 5 Table S1. Permeance and ideal selectivity of various CMS membranes prepared in this work as a function of soak time at 615 °C pyrolysis set point measured over 90 days aging period. ... 6 Table S2 Permeance and ideal selectivity of various CMS membranes prepared in this work as a function of PIM-6FDA-OH solution concentration in THF (wt. %) or number of coating steps measured over 90 days aging period ... 8 Table S3. Permeances and selectivities of polymeric ~3 µm thick PIM-6FDA-OH membranes without PDMS top coating ... 10 Table S4. Permeances and selectivities of polymeric ~3 µm thick PIM-6FDA-OH membranes with PDMS top coating ... 10 Table S5. Permeances and selectivities of PIM-6FDA-OH based interlayer CMS membrane without PDMS top coating ... 10 Figure S5. Illustration of the mechanical stability of the CMS tubular stainless-steel supported membranes employed in this work. ... 11
2
Fit Results
MSE = 4.500
Thickness # 2 = 104.52 ± 0.644 nm E Inf = 0.856 ± 0.0151
IR Amp = 0.126 ± 0.0166
% Thickness Non-uniformity = 19.62 ± 0.396
n of B-Spline @ 632.8 nm = 1.52828
Optical Model
Experimental and Model Generated Data Fits
Figure S1. Examples of ellipsometric modeling using Complete EASE 6.51 package for ~ 100 nm PIM-6FDA- OH film before thermal scan at ~40 °C
3
Fit Results
MSE = 2.665
Thickness # 2 = 99.20 ± 0.420 nm E Inf = 0.886 ± 0.0116
IR Amp = 0.0666 ± 0.0100
% Thickness Non-uniformity = 19.65 ± 0.231
n of B-Spline @ 632.8 nm = 1.52410
Optical Model
Experimental and Model Generated Data Fits
Figure S2. Examples of ellipsometric modeling using Complete EASE 6.51 package for ~ 100 nm PIM-6FDA- OH film before thermal scan at ~450 °C
4
Fit Results
MSE = 2.011
Thickness # 2 = 69.16 ± 0.449 nm E Inf = 1.041 ± 0.0179
IR Amp = 0.147 ± 0.0554
% Thickness Non-uniformity = 29.27 ± 0.756
n of B-Spline @ 632.8 nm = 1.80245
Optical Model
Experimental and Model Generated Data Fits
Figure S3. Examples of ellipsometric modeling using Complete EASE 6.51 package for ~ 100 nm PIM-6FDA- OH film before thermal scan at ~560 °C
5 Figure S4. Example of a pore size distribution of the uncoated SS tubular supports determined with mercury porosimetry (MicroActive AutoPore V 9600 Version 2.03.00)
Average pore diameter is 1.422µm.
Overall porosity is 60.1145%
6 Table S1. Permeance and ideal selectivity of various CMS membranes prepared in this work as a function of soak time at 615 °C pyrolysis set point measured over 90 days aging period.
1 10 100
10 100 1000
H2 O2 N2 CO2 CH4
Permeance [GPU]
Aging time [days]
9 wt. %, 1 CMS layer
1 10 100
1 10 100
H2/N2 CO2/N2 H2/CH4 CO2/CH4
O2/N2
H2/CO2
Ideal selectivity [-]
Aging time [days]
9 wt. %, 1 CMS layer, 15 min pyrolysis time
N2/CH4
1 10 100
1 10 100 1000
Permeance [GPU]
Aging time [days]
9 wt. %, 1 CMS layer, 1 h pyrolysis time
1 10 100
1 10
100 H2/N2
CO2/N2 H2/CH4 CO2/CH4
O2/N2
H2/CO2
Ideal selectivity [-]
Aging time [days]
9 wt. %, 1 CMS layer, 1 h pyrolysis time
N2/CH4
1 10 100
1 10 100 1000
Permeance [GPU]
Aging time [days]
9 wt. %, 1 CMS layer, 3 h pyrolysis time
1 10 100
1 10
100 H2/N2
CO2/N2 H2/CH4 CO2/CH4
O2/N2
H2/CO2
Ideal selectivity [-]
Aging time [days]
9 wt. %, 1 CMS layer, 3 h pyrolysis time
N2/CH4
7
1 10 100
1 10 100 1000
Permeance [GPU]
Aging time [days]
9 wt. %, 1 CMS layer, 10 h pyrolysis time
1 10 100
1 10
100 H2/N2
CO2/N2 H2/CH4 CO2/CH4
O2/N2
H2/CO2
Ideal selectivity [-]
Aging time [days]
9 wt. %, 1 CMS layer, 10 h pyrolysis time
N2/CH4
8 Table S2 Permeance and ideal selectivity of various CMS membranes prepared in this work as a function of PIM-6FDA-OH solution concentration in THF (wt. %) or number of coating steps measured over 90 days aging period
1 10 100
10 100 1000
Permeance [GPU]
Aging time [days]
5 wt. %, 1 CMS layer
1 10 100
1 10 100
H2/N2 CO2/N2 H2/CH4 CO2/CH4
O2/N2
H2/CO2
Ideal selectivity [-]
Aging time [days]
5 wt. %, 1 CMS layer
N2/CH4
1 10 100
10 100 1000
H2 O2 N2 CO2 CH4
Permeance [GPU]
Aging time [days]
7.5 wt. %, 1 CMS layer
1 10 100
1 10
100 H2/N2
CO2/N2 H2/CH4 CO2/CH4
O2/N2
H2/CO2
Ideal selectivity [-]
Aging time [days]
7.5 wt. %, 1 CMS layer
N2/CH4
1 10 100
10 100 1000
Permeance [GPU]
Aging time [days]
9 wt. %, 1 CMS layer
1 10 100
1 10 100
H2/N2
CO2/N2 H2/CH4 CO2/CH4
O2/N2
H2/CO2
Ideal selectivity [-]
Aging time [days]
9 wt. %, 1 CMS layer
N2/CH4
9
1 10 100
10 100 1000
Permeance [GPU]
Aging time [days]
9 wt. %, 2 CMS layers
1 10 100
1 10 100
H2/N2 CO2/N2 H2/CH4 CO2/CH4
O2/N2
H2/CO2
Ideal selectivity [-]
Aging time [days]
9 wt. %, 2 CMS layers
N2/CH4
1 10 100
10 100 1000
Permeance [GPU]
Aging time [days]
9 wt. %, 3 CMS layers
1 10 100
1 10 100
H2/N2
CO2/N2 H2/CH4 CO2/CH4
O2/N2
H2/CO2
Ideal selectivity [-]
Aging time [days]
9 wt. %, 3 CMS layers
N2/CH4
10 Table S3. Permeances and selectivities of polymeric ~5 µm thick PIM-6FDA-OH membranes without PDMS top coating
Gas Average Permeance [GPU] Gas Pair Ideal Selectivity
H2 96 O2/N2 2.6
O2 21 CO2/CH4 6.1
N2 8 CO2/N2 6.1
CH4 8 H2/N2 2.0
CO2 49 H2/CO2 2.0
Table S4. Permeances and selectivities of polymeric ~5 µm thick PIM-6FDA-OH membranes with PDMS top coating
Gas Average Permeance [GPU] Gas Pair Ideal Selectivity
H2 42.5 O2/N2 4.9
O2 4.5 CO2/CH4 58.3
N2 0.9 CO2/N2 27.8
CH4 0.4 H2/N2 45.8
CO2 25.8 H2/CO2 1.7
Table S5. Permeances and selectivities of PIM-6FDA-OH based interlayer CMS membrane without PDMS top coating
Gas Average Permeance [GPU] Gas Pair Ideal Selectivity
O2 1233 O2/N2 0.88
N2 1404 Knudsen sel. O2/N2 0.94
Bare SS fiber permeance for N2 is ~114 000 GPU, O2 ~94 000 GPU, and for CO2 ~140 000 GPU.
11 Figure S5. Illustration of the mechanical stability of the CMS tubular stainless-steel supported membranes employed in this work.