• Tidak ada hasil yang ditemukan

The Integrability of Monotone and continuous Functions

N/A
N/A
Protected

Academic year: 2025

Membagikan "The Integrability of Monotone and continuous Functions"

Copied!
5
0
0

Teks penuh

(1)

and Properties of Riemann Integral Dr.Hamed Al-Sulami

THE INTEGRABILITY OF MONOTONE AND CONTINUOUS FUNCTIONS AND PROPERTIES OF RIEMANN INTEGRAL

DR.HAMED AL-SULAMI

Let [a, b]Rbe a closed and bounded interval,P ={x0, x1, . . . , xn}be a partition of [a, b], and f : [a, b]Rbe bounded function. We use the familiar notation

Mk = sup{f(x)|x∈[xk−1, xk]},andmk= inf{f(x)|x∈[xk−1, xk]}.

Note that

U(f, P)−L(f, P) = Xn k=1

(Mk−mk)4xk

Theorem 0.1(Integrability of Monotone Functions). Let f : [a, b]Rbe monotone function on [a, b]. Then f is integrable on[a, b].

Discussion: Suppose f is increasing on [a, b]. Let P = {x0, x1, . . . , xn} be a partition of [a, b] such that xk−xk−1 = b−an for k = 1,2, . . . , n. Since f is increasing on [xk−1, xk], then mk = f(xk−1) and Mk =f(xk).Hence

U(f, P)−L(f, P) = Xn k=1

(Mk−mk)4xk

= Xn

k=1

[f(xk)−f(xk−1)]

·b−a n

¸

=b−a n

Xn

k=1

[f(xk)−f(xk−1)]

=b−a n

£(©©f(x©1)−f(x0)) + (©©f(x©2)©©f(x©1)) +. . .+ (f(xn)»»»f(xn−1»))¤

=b−a

n [f(xn)−f(x0)]

=b−a

n [f(b)−f(a)]. So we need to choosen∈Nsuch that b−a

n [f(b)−f(a)]< ε.

Proof. Suppose f is increasing on [a, b]. Choose n N such that b−a

n [f(b)−f(a)] < ε. Let P = {x0, x1, . . . , xn} be a partition of [a, b] such thatxk−xk−1=b−an fork= 1,2, . . . , n.Now,

U(f, P)−L(f, P) =b−a

n [f(b)−f(a)]< ε.

Hencef is integrable. ¤

Theorem 0.2 (Integrability of Continuous Functions). Let f : [a, b]Rbe continuous function

(2)

and Properties of Riemann Integral Dr.Hamed Al-Sulami Proof. Sincef is continuous on [a, b], then f is uniformly continuous on [a, b]. Hence givenε >0 there existδ >0 such that ifx, y∈[a, b] and|x−y|< δ⇒ |f(x)−f(y)|< b−aε .Now, choosen∈Nsuch that

b−a

n < δ.LetP ={x0, x1, . . . , xn}be a partition of [a, b] such thatxk−xk−1= b−an fork= 1,2, . . . , n.

Sincef is continuous on [xk−1, xk],thenf takes its maximum and minimum at some points in [xk−1, xk].

Hencemk=f(uk) andMk=f(vk) for some uk, vk [xk−1, xk].

Hence|vk−uk| ≤ |xk−xk−1|= b−an < δ⇒ |f(vk)−f(uk)|< b−aε . Therefore

U(f, P)−L(f, P) = Xn

k=1

(Mk−mk)4xk

= Xn k=1

[f(vk)−f(uk)]

·b−a n

¸

< b−a n

Xn

k=1

ε b−a

= b−a n

b−a

=ε.

Hencef is integrable. ¤

Theorem 0.3. Let f : [a, b]Rbe integrable on [a, b]. Ifc∈R, thencf is integrable on[a, b], and Z b

a

cf=c Z b

a

f.

Proof. Case 1: c >0.

LetI⊆[a, b].Now, since

inf{(cf)(x) :x∈I}=cinf{f(x) :x∈I} and sup{(cf)(x) :x∈I}=csup{f(x) :x∈I}, then

U(cf, P) =cU(f, P) andL(cf, P) =cL(f, P) for any partitionP of [a, b].

Letε >0 be given. Sincef is integrable a partitionPε such thatU(f, Pε)−L(f, Pε)<εc. Now,

U(cf, Pε)−L(cf, Pε) =cU(f, Pε)−cL(f, Pε)

=c[U(f, Pε)−L(f, Pε)]

< cε c

=ε.

Hencecf is integrable.

(3)

and Properties of Riemann Integral Dr.Hamed Al-Sulami Now,

cL(f, Pε) =L(cf, Pε) Z b

a

cf ≤U(cf, Pε) =cU(f, Pε) (1) and

L(f, Pε) Z b

a

f ≤U(f, Pε).

If we multiply the last inequality byc >0 we get cL(f, Pε)≤c

Z b

a

f ≤cU(f, Pε).

Now, usingU(cf, P) =cU(f, P) andL(cf, P) =cL(f, P) in the last inequality we have L(cf, Pε)≤c

Z b

a

f ≤U(cf, Pε).

Hence

−U(cf, Pε)≤ −c Z b

a

f ≤ −L(cf, Pε) (2) Adding (1) and (2) we get

[U(cf, Pε)−L(cf, Pε)] Z b

a

cf−c Z b

a

f ≤U(cf, Pε)−L(cf, Pε)

¯¯

¯¯

¯ Z b

a

cf−c Z b

a

f

¯¯

¯¯

¯< U(cf, Pε)−L(cf, Pε)< ε.

Hence ¯

¯¯

¯¯ Z b

a

cf−c Z b

a

f

¯¯

¯¯

¯= 0 Z b

a

cf−c Z b

a

f = 0 Z b

a

cf=c Z b

a

f Case 2: c= 0.

The functioncf = 0 which is integrable and Z b

a

cf= Z b

a

0 = 0 = 0.

Z b

a

f =c Z b

a

f.

Case 3: c <0.

Try to do this case.

¤ Theorem 0.4. Let f, g: [a, b]R be integrable on[a, b]. Thenf+g is integrable on [a, b],and

Z b

a

f+g= Z b

a

f+ Z b

a

g.

Proof. LetI⊆[a, b].Now, since

inf{(f+g)(x) :x∈I} ≥inf{f(x) :x∈I}+ inf{g(x) :x∈I}

and

sup{(f +g)(x) :x∈I} ≤sup{f(x) :x∈I}+ sup{g(x) :x∈I}, then

(4)

and Properties of Riemann Integral Dr.Hamed Al-Sulami Letε >0 be given. Sincef andgare integrablea partitionsP1andP2such thatU(f, P1)−L(f, P1)< ε2 andU(f, P2)−L(f, P2)<2ε.

Now, let

Pε=P1∪P2⇒U(f+g, Pε)≤U(f, Pε) +U(g, Pε) andL(f, Pε) +L(g, Pε)≤L(f+g, Pε) also,

Pε=P1∪P2⇒U(f, Pε)≤U(f, P1), L(f, P1)≤L(f, Pε), U(g, Pε)≤U(g, P2), and,L(g, P2)≤L(g, Pε).

Now,

U(f+g, Pε)−L(f+g, Pε)≤U(f, Pε) +U(g, Pε)[L(f, Pε) +L(g, Pε)]

[U(f, Pε)−L(f, Pε)] + [U(g, Pε)−L(g, Pε)]

[U(f, P1)−L(f, P1)] + [U(g, P2)−L(g, P2)]

< ε 2+ε

2

=ε.

Hencef +gis integrable. Now, Z b

a

f +g≤U(f+g, Pε)≤U(f, Pε) +U(g, Pε)≤L(f, Pε) +L(g, Pε) +ε≤ Z b

a

f+ Z b

a

g+ε.

Hence Z b

a

f+g−( Z b

a

f+ Z b

a

g)≤ε (1).

Also, Z b

a

f+ Z b

a

g≤U(f, Pε) +U(g, Pε)≤L(f+g, Pε) +ε≤ Z b

a

f+g+ε.

Hence

−ε≤ Z b

a

f +g−( Z b

a

f+ Z b

a

g) (2).

By (1) and (2) we have

−ε≤ Z b

a

f +g−( Z b

a

f+ Z b

a

g)≤ε.

Hence

¯¯

¯¯

¯ Z b

a

f +g−( Z b

a

f+ Z b

a

g)

¯¯

¯¯

¯≤ε⇒

¯¯

¯¯

¯ Z b

a

f +g−( Z b

a

f+ Z b

a

g)

¯¯

¯¯

¯= 0 Z b

a

f+g= Z b

a

f+ Z b

a

g.

¤

Theorem 0.5. Let f : [a, b]Rbe integrable on [a, b]. Then |f|is integrable on [a, b],and

| Z b

a

f| ≤ Z b

a

|f|.

(5)

and Properties of Riemann Integral Dr.Hamed Al-Sulami Proof. LetI⊆[a, b].Now, since We have

sup{|f(x)|:x∈I} −inf{|f(x)|:x∈I} ≤sup{f(x) :x∈I} −inf{f(x) :x∈I}.

Letε >0 be given. Sincef is integrable a partitionPε such thatU(f, Pε)−L(f, Pε)< ε

Now,

U(|f|, Pε)−L(|f|, Pε)≤U(f, Pε)−L(f, Pε)< ε.

Hence|f| is integrable. Now, f(x)≤ |f(x)| ⇒

Z b

a

f(x) Z b

a

|f(x)| −f(x)≤ |f(x)| ⇒ − Z b

a

f(x) Z b

a

|f(x)|.

Hence

Z b

a

|f(x)| ≤ Z b

a

f(x) Z b

a

|f(x)| ⇒

¯¯

¯¯

¯ Z b

a

f(x)

¯¯

¯¯

¯ Z b

a

|f(x)|.

¤

Theorem 0.6. Let f : [a, b]Rbe integrable on [a, b]. Then f2 is integrable on[a, b].

Proof. Sincef is bounded ,then there existM >0 such that|f(x)| ≤M for allx∈[a, b].

Now,letI⊆[a, b].We have

sup{f2(x) :x∈I} −inf{f2(x) :x∈I} ≤2M[sup{|f(x)|:x∈I} −inf{|f(x)|:x∈I}]

Letε >0 be given. Since|f| is integrablea partitionPεsuch thatU(|f|, Pε)−L(|f|, Pε)< 2Mε

Now,

U(f2, Pε)−L(f2, Pε)2M U(|f|, Pε)−L(|f|, Pε)<2M ε 2M =ε.

Hencef2 is integrable. ¤

Referensi

Dokumen terkait

In this paper we de- velop identities, new families of closed form representations of alternating harmonic numbers and reciprocal binomial coefficients, including integral

xii Gauss hypergeometric function Extended Gauss hypergeometric function Generalized Bernardi–Libera–Livingston integral operator Convolution or Hadamard product of functions and

The crucial point for our study of the integrals appearing in the equidis- tribution conjecture above is a formula proved in [1] that connects the integral of a product of 3

GALAXY INTERNATIONAL INTERDISCIPLINARY RESEARCH JOURNAL GIIRJ ISSN E: 2347-6915 Vol.. 2022 558 RIEMANN FUNCTION AND ITS REMARKABLE PROPERTIES Gulchehrakhon Ortigalieva National of

Multiple Gamma functions, Riemann Zeta function, generalized or Hurwitz Zeta function, Psi or Digamma function, determinants of Laplacians, generating functions, Bernoulli polynomials

This research aimed to study batch and continuous flow treatment of trichloroethylene TCE contaminated in water by silver and cerium doped zinc oxide 0.005Ag-0.005Ce-ZnO visible light

Emin and Dragomir, Sever S 2009 On the Hermite- Hadamard Inequality and Other Integral Inequalities Involving Two Functions.. Research report collection, 12

Some Inequalities Relating to Upper and Lower Bounds for the Riemann-Stieltjes Integral This is the Published version of the following publication Dragomir, Sever S and Pearce,