1 | P a g e Umm Al-Qura Universtiy, Makkah
Department of Electrical Engineering Electromagnetics (2) - (8022320)
Term 1: 2021/2022
Solution Homework 7 Dr. Waheed Ahmad Younis
Do not submit this homework. It will be included in the midterm on Monday, 25 Oct 2021.
Topics covered in this week:
• Special case-1 of reflection: 𝛼1 = 0, 𝜂2 = 0 𝐻𝑒𝑛𝑐𝑒 Γ = −1
Net field in media-1: 𝐸𝑥1 = 2𝐸𝑥10+ sin 𝜔𝑡 sin 𝛽1𝑧 Field is zero at 𝑧 = 𝑛𝜆1
2
𝐻𝑦1 = 2𝐸𝑥10+
𝜂1 cos 𝜔𝑡 cos 𝛽1𝑧 Field is zero at 𝑧 = (1
2+ 𝑛)𝜆1
2
𝑃𝑎𝑣(𝑧) = 0 These are standing waves.
• Special case-2 of reflection: 𝛼1 = 0, 𝜂1 = 𝜂2 𝐻𝑒𝑛𝑐𝑒 Γ = 0 Net field in media-1: 𝐸𝑥1 = 𝐸𝑥10+ cos(𝜔𝑡 − 𝛽1𝑧)
𝐻𝑦1 = 𝐸𝑥10+
𝜂1 cos(𝜔𝑡 − 𝛽1𝑧) These are travelling waves.
• General case of reflection: 𝛼1 = 0 𝑎𝑛𝑑 Γ = |Γ|𝑒𝑗𝜙 Incident wave: 𝐸𝑥𝑠1+ = 𝐸𝑥10+ 𝑒−𝑗𝛽1𝑧
Reflected wave: 𝐸𝑥𝑠1− = |Γ|𝑒𝑗𝜙𝐸𝑥10+ 𝑒𝑗𝛽1𝑧 = |Γ|𝐸𝑥10+ 𝑒𝑗(𝛽1𝑧+𝜙)
Net field in media-1: 𝐸𝑥𝑠1 = 𝐸𝑥𝑠1+ + 𝐸𝑥𝑠1− = 𝐸𝑥10+ 𝑒−𝑗𝛽1𝑧+ |Γ|𝐸𝑥10+ 𝑒𝑗(𝛽1𝑧+𝜙)
= 𝐸𝑥10+ [𝑒−𝑗𝛽1𝑧+ |Γ|𝑒𝑗(𝛽1𝑧+𝜙)]
Maximum value of field: 𝐸𝑥𝑠1,𝑚𝑎𝑥 = 𝐸𝑥10+ [1 + |Γ|] At −𝛽1𝑧𝑚𝑎𝑥 =𝜙
2 + 𝑛𝜋 Minimum value of field: 𝐸𝑥𝑠1,𝑚𝑖𝑛 = 𝐸𝑥10+ [1 − |Γ|] At −𝛽1𝑧𝑚𝑖𝑛 =𝜙
2 + 𝑛𝜋 +𝜋
2
Standing wave ratio = 𝑆𝑊𝑅 =𝐸𝑥𝑠1,𝑚𝑎𝑥
𝐸𝑥𝑠1,𝑚𝑖𝑛 = 1+|Γ|
1−|Γ|
____________________________________________________________________________________
Q1. Consider a standing wave in a lossless region 𝐸⃗ = 200 sin 109𝑡 sin 20𝑧 𝑎⃗⃗⃗⃗ V/m 𝑥
If the amplitude of associated magnetic field is 1 A/m, find (a) 𝜇 𝑎𝑛𝑑 𝜖 for the medium, (b) 𝐻⃗⃗ , (c) 𝐸⃗⃗⃗⃗ 𝑠. Solution:
a. 𝜂 = 𝐸
𝐻= √𝜇𝜖 = 200 ⇒ 𝜇
𝜖 = 4 × 104 Also 𝛽 = 𝜔√𝜇𝜖 = 20 ⇒ 𝜇𝜖 = (10209)2 = 4 × 10−16
Hence (𝜇
𝜖) (𝜇𝜖) = (4 × 104)(4 × 10−16) = 16 × 10−12 ⇒ 𝜇 = 4 𝜇𝐻 𝑚⁄ Also 𝜇𝜖 = 4 × 10−16 ⇒ 𝜖 = 4×10−16
𝜇 =4×10−16
4×10−6 = 10−10 = 100 𝑝𝐹/𝑚 b. 𝐻⃗⃗ = cos 109𝑡 cos 20𝑧 𝑎⃗⃗⃗⃗ A/m 𝑦
c. 𝐸⃗ = 200 sin 109𝑡 sin 20𝑧 𝑎⃗⃗⃗⃗ = 200 sin 20𝑧 𝑅𝑒[−𝑗𝑒𝑥 𝑗109𝑡] 𝑎⃗⃗⃗⃗ 𝑥 𝐸𝑠
⃗⃗⃗⃗ = −𝑗200 sin 20𝑧 𝑎⃗⃗⃗⃗ V/m 𝑥
2 | P a g e Q2. Consider two perfect dielectrics:
𝜇1 = 𝜇0, 𝜖1 = 3.6𝜋 𝑝𝐹 𝑚⁄ , 𝑎𝑛𝑑 𝜎1 = 0.
𝜇2 = 𝜇0, 𝜖2 = 14.4𝜋 𝑝𝐹 𝑚⁄ , 𝑎𝑛𝑑 𝜎2 = 0 Find the SWR in dielectric-1.
Solution:
𝜂1 = √𝜇𝜖1
1 = √ 4𝜋×10−7
3.6𝜋×10−12 = 333.33 Ω 𝜂2 = √𝜇𝜖2
2 = √ 4𝜋×10−7
14.4𝜋×10−12 = 166.67 Ω Γ =𝜂2−𝜂1
𝜂2+𝜂1= 166.67−333.33
166.67+333.33= −0.333 𝑆𝑊𝑅 =1+|Γ|
1−|Γ|= 1+0.333
1−0.333= 2
Q3. In region A (x<0), the incident and reflected electric fields are given as 𝐸𝑠𝐴+
⃗⃗⃗⃗⃗⃗ = 1000 𝑒−𝑗200𝑥 𝑎⃗⃗⃗⃗ V/m 𝑦 𝐸𝑠𝐴−
⃗⃗⃗⃗⃗⃗ = 141.3 𝑒𝑗(200𝑥+106°) 𝑎⃗⃗⃗⃗ V/m 𝑦
Find the reflection co-efficient and standing wave ratio.
Solution:
Γ =𝐸𝑠𝐴0−
𝐸𝑠𝐴0+ = 141.3 𝑒𝑗(106.08°)
1000 = 0.1413𝑒𝑗(106°)= 0.1413∠106°
𝑆𝑊𝑅 =1+|Γ|
1−|Γ|= 1+0.1413
1−0.1413= 1.33