• Tidak ada hasil yang ditemukan

BOUNDS OF 𝒑-ADIC WEIGHTED BILINEAR HARDY-CESΓ€RO OPERATORS 66ON PRODUCT OF LEBESGUE SPACES

N/A
N/A
Protected

Academic year: 2024

Membagikan "BOUNDS OF 𝒑-ADIC WEIGHTED BILINEAR HARDY-CESΓ€RO OPERATORS 66ON PRODUCT OF LEBESGUE SPACES"

Copied!
10
0
0

Teks penuh

(1)

BOUNDS OF 𝒑-ADIC WEIGHTED BILINEAR HARDY-CESΓ€RO OPERATORS 66ON PRODUCT OF LEBESGUE SPACES

Tran Van Anh, To Gia Can, Nguyen Thi Hong (*), Trinh Ngoc Mai Hanoi Metropolitan University

Abstract: In this paper we aim to investigate the boundedness of π‘ˆπœ“,𝑠⃗𝑝,2,𝑛 on the product of 𝑝-adic weighted Lebesgue spaces. We obtain the necessary and sufficient conditions on weight functions to ensure the boundedness of that operator on the product of 𝑝-adic weighted Lebesgue spaces. Moreover, we obtain the corresponding operator norms.

Keywords: Lebesgue spaces, conditions.

Received 27 November 2021

Revised and accepted for publication 26 January 2022 (*) Email: nthong@daihocthudo.edu.vn

1. INTRODUCTION

Theories of functions from β„šπ‘π‘› into β„‚ play an important role in the theory of the 𝑝-adic quantum mechanics, the theory of 𝑝-adic probability. As far as we know, the studies of the 𝑝-adic Hardy operators and 𝑝-adic Hausdorff operators are also useful for 𝑝-adic analysis [4,5,6,14,24,27,28].

The weighted Hardy averaging operators are defined for measurable functions on β„šπ‘ by:

π‘ˆπœ“π‘π‘“(π‘₯) = ∫ β€Š

℀𝑝⋆

𝑓(𝑑π‘₯)πœ“(𝑑)𝑑𝑑, π‘₯ ∈ β„šπ‘π‘‘, (1.1)

here ℀𝑝⋆ is the ring of 𝑝-adic non-zero integers, and 𝑑π‘₯ is the Haar measure on β„šπ‘. Rim and Lee [24] considered the problem of characterizing function πœ“ on ℀𝑝⋆, so that we have inequalities:

βˆ₯βˆ₯π‘ˆπœ“

𝑝𝑓βˆ₯βˆ₯𝑋 ≀ 𝐢 βˆ₯ 𝑓 βˆ₯𝑋

where 𝑋 is 𝑝-adic Lebesgue or BMO space. The corresponding best constants 𝐢 are also obtained by these authors.

(2)

Hung [14] considered a more general class of 𝑝-adic weighted Hardy averaging operators, which are called 𝑝-adic Hardy-Cesaro operators, defined as:

π‘ˆπœ“,𝑠𝑝 𝑓(π‘₯) = ∫ β€Š

β„€π‘βˆ—

𝑓(𝑠(𝑑)π‘₯)πœ“(𝑑)𝑑𝑑, (1.2) where 𝑠: β„€π‘βˆ— β†’ β„šπ‘ and πœ“: β„€π‘βˆ— β†’ [0; ∞) are measurable funtions.

The characterizations on funtion πœ“(𝑑), under certain conditions on 𝑠(𝑑), so that:

βˆ₯βˆ₯π‘ˆπœ“,𝑠

𝑝 𝑓βˆ₯βˆ₯𝑋 ≀ 𝐢 βˆ₯ 𝑓 βˆ₯𝑋

for all 𝑓 ∈ 𝑋, where 𝑋 is 𝑝-adic Lebesgue space, are obtained. The best constants 𝐢 in the above inequalities are worked out too. It is interesting to notice that, by applying the boundedness of π‘ˆπœ“,𝑠 on 𝑝-adic weighted Lebesgue spaces, Hung gives a relation between 𝑝 βˆ’ adic Hardy operators and discrete Hardy inequalities on the real field.

In [15], Hung and Ky gave the definition of the weighted multilinear Hardy-CesΓ ro operators π‘ˆπœ“,π‘ βƒ—π‘š,𝑛 to be:

Definition 1.1. Let π‘š, 𝑛 ∈ β„•, πœ“: [0,1]𝑛 β†’ [0, ∞), 𝑠1, … , π‘ π‘š: [0,1]𝑛 β†’ ℝ be measurable funtions. The weighted multilinear Hardy-CesΓ ro operators π‘ˆπœ“,π‘ βƒ—π‘š,𝑛 is defined by:

π‘ˆπœ“,π‘ βƒ—π‘š,𝑛(𝑓⃗)(π‘₯) = ∫ β€Š

[0,1]𝑛

(∏ β€Š

𝑛

π‘˜=1

β€Šπ‘“π‘˜(π‘ π‘˜(𝑑)π‘₯)) πœ“(𝑑)𝑑𝑑, (1.3) where 𝑓⃗ = (𝑓1, … , π‘“π‘š), 𝑠⃗ = (𝑠1, … , π‘ π‘š).

The authors obtain the sharp bounds of π‘ˆπœ“,π‘ βƒ—π‘š,𝑛 on the product of Lebesgue spaces and central Morrey spaces. In our paper, we define the 𝑝-adic weighted bilinear Hardy-CesΓ ro operators π‘ˆπœ“,𝑠⃗𝑝,2,𝑛 as follow:

Definition 1.2. Let 𝑛 be positive interger numbers and πœ“: (β„€π‘βˆ—)𝑛 β†’ [ 0; ∞), 𝑠⃗ = (𝑠1, 𝑠2): (℀𝑝⋆)𝑛 β†’ β„šπ‘2 be measurable. The 𝑝-adic weighted bilinear Hardy-CesΓ ro operators π‘ˆπœ“,𝑠⃗𝑝,2,𝑛, which define on 𝑓⃗ = (𝑓1, 𝑓2) : β„šπ‘π‘‘ β†’ β„‚2 vector of measurable funtions, by

π‘ˆπœ“,𝑠⃗𝑝,2,𝑛(𝑓1, 𝑓2)(π‘₯) = ∫ β€Š

(℀𝑝⋆)𝑛

(∏ β€Š

2

π‘˜=1

β€Šπ‘“π‘˜(π‘ π‘˜(𝑑)π‘₯)) πœ“(𝑑)𝑑𝑑,

Our paper is organized as follow. In Section 2 we give the content of this paper including the notation and definitions that we shall use in the sequel. We define the 𝑝-adic weighted Lebesgue spaces πΏπ‘žπœ”(β„šπ‘π‘‘). We also state the main results on the boundedness of π‘ˆπœ“,𝑠⃗𝑝,2,𝑛 on the 𝑝-adic weighted Lebesgue space and work out the norms of π‘ˆπœ“,𝑠⃗𝑝,2,𝑛 on such space. In Section 3 we give the conclusion of this paper.

(3)

2. CONTENT

2.1. Basic notions and lemmas

Let 𝑝 be a prime number and let π‘Ÿ ∈ β„šβ‹†. Write π‘Ÿ = 𝑝𝛾 π‘Ž

𝑏 where π‘Ž and 𝑏 are integers not divisible by 𝑝. Define the 𝑝-adic absolute value | β‹… |𝑝 on β„š by |π‘Ÿ|𝑝 = π‘βˆ’π›Ύ and |0|𝑝 = 0. The absolute value | β‹… |𝑝 gives a metric on β„š defined by 𝑑𝑝(π‘₯, 𝑦) = |π‘₯ βˆ’ 𝑦|𝑝. We denote by β„šπ‘ the completion of β„š with respect to the metric 𝑑. β„šπ‘ with natural operations and topology induced by the metric 𝑑𝑝 is a locally compact, non-discrete, complete and totally disconnected field. A non-zero element π‘₯ of β„šπ‘, is uniquely represented as a canonical form π‘₯ = 𝑝𝛾(π‘₯0+ π‘₯1𝑝 + π‘₯2𝑝2+ β‹― ) where π‘₯𝑗 ∈ β„€/𝑝℀ and π‘₯0 β‰  0. We then have |π‘₯|𝑝 = π‘βˆ’π›Ύ. Define ℀𝑝 = {π‘₯ ∈ β„šπ‘: |π‘₯|𝑝 ≀ 1} and ℀𝑝⋆ = ℀𝑝 βˆ– {0}.

β„šπ‘π‘› = β„šπ‘Γ— β‹― Γ— β„šπ‘ contains all 𝑛 -tuples of β„šπ‘ . The norm on β„šπ‘π‘› is |π‘₯|𝑝 = max1β‰€π‘˜β‰€π‘›β€Š|π‘₯π‘˜|𝑝 for π‘₯ = (π‘₯1, … , π‘₯𝑛) ∈ β„šπ‘π‘›. The space β„šπ‘π‘› is complete metric locally compact and totally disconnected space. For each π‘Ž ∈ β„šπ‘ and π‘₯ = (π‘₯1, … , π‘₯𝑛) ∈ β„šπ‘π‘›, we denote π‘Žπ‘₯ = (π‘Žπ‘₯1, … , π‘Žπ‘₯𝑛). For 𝛾 ∈ β„€, we denote 𝐡𝛾 as a 𝛾-ball of β„šπ‘π‘› with center at 0 , containing all π‘₯ with |π‘₯|𝑝 ≀ 𝑝𝛾, and 𝑆𝛾 = π΅π›Ύβˆ– π΅π›Ύβˆ’1 its boundary. Also, for π‘Ž ∈ β„šπ‘π‘‘, 𝐡𝛾(π‘Ž) consists of all π‘₯ with π‘₯ βˆ’ π‘Ž ∈ 𝐡𝛾, and 𝑆𝛾(π‘Ž) consists of all π‘₯ with π‘₯ βˆ’ π‘Ž ∈ 𝑆𝛾.

Since β„šπ‘π‘‘ is a locally-compact commutative group with respect to addition, there exists the Haar measure 𝑑π‘₯ on the additive group of β„šπ‘π‘‘ normalized by ∫𝐡

0β€Šπ‘‘π‘₯ = 1. Then 𝑑(π‘Žπ‘₯) =

|π‘Ž| 𝑝𝑑𝑑π‘₯ for all π‘Ž ∈ β„šπ‘β‹†, |𝐡𝛾(π‘₯)| = 𝑝𝑑𝛾 and |𝑆𝛾(π‘₯)| = 𝑝𝑑𝛾(1 βˆ’ π‘βˆ’π‘‘).

We shall consider the class of weights 𝒲𝛼, which consists of all nonnegative locally integrable function πœ” on β„šπ‘π‘‘ so that πœ”(𝑑π‘₯) = |𝑑|π‘π›Όπœ”(π‘₯) for all π‘₯ ∈ β„šπ‘π‘‘ and 𝑑 ∈ β„šπ‘β‹† and 0 <

βˆ«π‘†

0β€Šπœ”(π‘₯)𝑑π‘₯ < ∞. It is easy to see that πœ”(π‘₯) = |π‘₯|𝑝𝛼 is in 𝒲𝛼 if and only if 𝛼 > βˆ’π‘‘.

Definition 2.1. Let πœ” be any weight function on β„šπ‘π‘‘, that is a nonnegative, locally integrable function from β„šπ‘π‘‘ into ℝ. Let 1 ≀ π‘Ÿ < ∞, the 𝑝-adic weighted Lebesgue spaces πΏπ‘Ÿπœ”(β„šπ‘π‘‘) be the space of complexvalued functions 𝑓 on β„šπ‘π‘‘ so that

βˆ₯ 𝑓 βˆ₯𝐿

π‘Ÿπœ”(β„šπ‘π‘‘)= (∫ β€Š

β„šπ‘π‘‘

β€Š|𝑓(π‘₯)|π‘Ÿπœ”(π‘₯)𝑑π‘₯)

1/π‘Ÿ

< ∞

For further readings on 𝑝-adic analysis, see [25,26]. Here, some often used computational principles are worth mentioning at the outset. First, if 𝑓 ∈ 𝐿1πœ”(β„šπ‘) we can write

∫ β€Š

β„šπ‘π‘‘

𝑓(π‘₯)πœ”(π‘₯)𝑑π‘₯ = βˆ‘ β€Š

π›Ύβˆˆβ„€

∫ β€Š

𝑆𝛾

𝑓(𝑦)πœ”(𝑦)𝑑𝑦.

Second, we also often use the fact that

(4)

∫ β€Š

β„šπ‘π‘‘

𝑓(π‘Žπ‘₯)𝑑π‘₯ = 1

|π‘Ž|π‘π‘‘βˆ« β€Š

β„šπ‘π‘‘

𝑓(π‘₯)𝑑π‘₯, if π‘Ž ∈ β„šπ‘π‘‘ βˆ– {0} and 𝑓 ∈ 𝐿1(β„šπ‘π‘‘).

In order to prove the main theorem, we need the following lemma.

Lemma 2.2. Let πœ” ∈ 𝒲𝛼, 𝛼 > βˆ’π‘‘ and 𝛾 > 0. Then, the funtions π‘“π‘Ÿ,𝛾(π‘₯) = {

0 if |π‘₯|𝑝 < 1

|π‘₯|π‘βˆ’

𝑑+𝛼 π‘Ÿ βˆ’1

𝛾2

if |π‘₯|𝑝 β‰₯ 1 belong to πΏπ‘Ÿπœ”(β„šπ‘π‘‘) and βˆ₯βˆ₯π‘“π‘Ÿ,𝛾βˆ₯βˆ₯𝐿

π‘Ÿπœ”(β„šπ‘π‘‘)= ( πœ”(𝑆0)

1βˆ’π‘βˆ’π‘Ÿ/𝛾2)1/π‘Ÿ > 0 Proof. From the formula for π‘“π‘Ÿ,𝛾, we see that

βˆ₯βˆ₯π‘“π‘Ÿ,𝛾βˆ₯βˆ₯𝐿

πœ”π‘Ÿ(β„šπ‘π‘‘)

π‘Ÿ = ∫ β€Š

β„šπ‘π‘‘

β€Š|π‘“π‘Ÿ,𝛾|π‘Ÿπœ”(π‘₯)𝑑π‘₯ = ∫ β€Š

|π‘₯|𝑝β‰₯1

β€Š|π‘₯|π‘βˆ’(𝑑+𝛼+

π‘Ÿ 𝛾2)

πœ”(π‘₯)𝑑π‘₯ = βˆ‘ β€Š

∞

π‘˜=0

β€Šβˆ« β€Š

π‘†π‘˜

β€Šπ‘βˆ’π‘˜(𝑑+𝛼+

π‘Ÿ 𝛾2)

πœ”(π‘₯)𝑑π‘₯ = βˆ‘ β€Š

∞

π‘˜=0

β€Šβˆ« β€Š

𝑆0

β€Šπ‘βˆ’π‘˜(𝑑+𝛼+

π‘Ÿ 𝛾2)

π‘π‘˜π›Ό+π‘˜π‘‘πœ”(𝑦)𝑑𝑦 = βˆ‘ β€Š

∞

π‘˜=0

β€Šπ‘βˆ’

π‘˜π‘Ÿ 𝛾2πœ”(𝑆0)

= 1

1 βˆ’ π‘βˆ’

π‘Ÿ 𝛾2

πœ”(𝑆0) < ∞

Thus π‘“π‘Ÿ,𝛾 ∈ πΏπ‘Ÿπœ”(β„šπ‘π‘‘) for each 𝛾 and βˆ₯βˆ₯π‘“π‘Ÿ,𝛾βˆ₯βˆ₯𝐿

πœ”π‘Ÿ(β„šπ‘π‘‘) = ( πœ”(𝑆0)

1βˆ’π‘βˆ’π‘Ÿ/𝛾2)1/π‘Ÿ > 0.

2.2 . Bounds of 𝑼𝝍,𝒔𝒑,𝟐,𝒏⃗⃗ on the product of weighted Lebesgue spaces

Let 𝑋 be πΏπ‘žπœ”(β„šπ‘π‘‘). Our aim is to characterize condition on functions πœ“(𝑑) and 𝑠1(𝑑), 𝑠2(𝑑) such that

βˆ₯βˆ₯π‘ˆπœ“,𝑠⃗𝑝,2,𝑛(𝑓1, 𝑓2)βˆ₯βˆ₯𝑋×𝑋 ≀ 𝐢βˆ₯βˆ₯𝑓1βˆ₯βˆ₯𝑋⋅ βˆ₯βˆ₯𝑓2βˆ₯βˆ₯𝑋

(5)

holds for any 𝑓1, 𝑓2 and the best constant 𝐢 is obtained. The main result of this section is Theorem 3.2.

In this section, if not explicitly stated otherwise, π‘ž, 𝛼, π‘ž1, π‘ž2, 𝛼1, 𝛼2 are real numbers, 1 ≀ π‘ž < ∞, 1 ≀ π‘ž1 < ∞, 1 ≀ π‘ž2 < ∞, 𝛼1 > βˆ’π‘‘, 𝛼2 > βˆ’π‘‘ so that

1 π‘ž= 1

π‘ž1+ 1 π‘ž2, and

𝛼 =π‘žπ›Ό1

π‘ž1 +π‘žπ›Ό2 π‘ž2 . The weights πœ”1 ∈ 𝒲𝛼1, πœ”2 ∈ 𝒲𝛼2, set

πœ”(π‘₯) = πœ”1

π‘ž π‘ž1

(π‘₯) β‹… πœ”2

π‘ž π‘ž2

(π‘₯) It is obvious that πœ” ∈ 𝒲𝛼

Definition 3.1. We say that (πœ”1, πœ”2) satisfies the 𝒲𝛼⃗⃗⃗ condition if πœ”(𝑆0) β‰₯ πœ”1(𝑆0)

π‘ž

π‘ž1πœ”2(𝑆0)

π‘ž π‘ž2

For example, (πœ”1, πœ”2) where πœ”1(π‘₯) = |π‘₯|𝑝𝛼1, πœ”2(π‘₯) = |π‘₯|𝑝𝛼2 is satisfies the 𝒲𝛼⃗⃗⃗

condition.

Through out this paper, 𝑠1, 𝑠2 are measurable functions from (℀𝑝⋆)𝑛 into β„šπ‘ and we denote by 𝑠⃗ the vector (𝑠1, 𝑠2).

Theorem 3.2. Assume that (πœ”1, πœ”2) satisfies 𝒲𝛼⃗⃗⃗ condition and there exits constant 𝛽 > 0 such that |𝑠1(𝑑1, … , 𝑑𝑛)|𝑝 β‰₯ min{|𝑑1|𝑝𝛽, … , |𝑑𝑛|𝑝𝛽} and |𝑠2(𝑑1, … , 𝑑𝑛)|𝑝 β‰₯ min{|𝑑1|𝑝𝛽, … , |𝑑𝑛|𝑝𝛽} and for almost everywhere (𝑑1, … , 𝑑𝑛) ∈ (℀𝑝⋆)𝑛. Then there exists a constant 𝐢 such that the inequality

βˆ₯βˆ₯π‘ˆπœ“,𝑠⃗𝑝,2,𝑛(𝑓1, 𝑓2)βˆ₯βˆ₯𝐿

πœ”

π‘ž(β„šπ‘π‘‘) ≀ 𝐢βˆ₯βˆ₯𝑓1βˆ₯βˆ₯𝐿

πœ”1π‘ž1(β„šπ‘π‘‘)β‹… βˆ₯βˆ₯𝑓2βˆ₯βˆ₯𝐿

πœ”2π‘ž2(β„šπ‘π‘‘)

holds for any measurable 𝑓1, 𝑓2 if and only if π’œ: = ∫ β€Š

(℀𝑝⋆)𝑛

|𝑠1(𝑑)|π‘βˆ’

𝑑+𝛼1 π‘ž1

β‹… |𝑠2(𝑑)|π‘βˆ’

𝑑+𝛼2 π‘ž2

πœ“(𝑑)𝑑𝑑 < ∞

Moreover, if (3.7) holds then π’œ is the norm of π‘ˆπ‘£,𝑠⃗𝑝,2,𝑛 from πΏπ‘žπœ”11(β„šπ‘π‘‘) Γ— πΏπ‘žπœ”22(β„šπ‘π‘‘) to πΏπ‘žπœ”(β„šπ‘π‘‘).

Proof. As we note above, πœ” ∈ 𝒲𝛼⃗⃗⃗ . Firstly, suppose that π’œ is finite. Let 𝑓1 ∈ πΏπ‘žπœ”11(β„šπ‘π‘‘), 𝑓2 ∈ πΏπ‘žπœ”22(β„šπ‘π‘‘). Using Minkowski's inequality, HΓΆlder's inequality and 𝑝-adic change of variable (2.2), we have

(6)

βˆ₯βˆ₯π‘ˆπœ“,𝑠⃗𝑝,2,𝑛(𝑓1, 𝑓2)βˆ₯βˆ₯𝐿

πœ” π‘ž(β„šπ‘π‘‘)

≀ ∬ β€Š

β„šπ‘π‘‘

β€Š(∫ β€Š

(℀𝑝⋆)𝑛

β€Š(|𝑓1(𝑠1(𝑑)π‘₯)𝑓2(𝑠2(𝑑)π‘₯)|)πœ“(𝑑)𝑑𝑑)

π‘ž

πœ”(π‘₯)𝑑π‘₯)

1 π‘ž

≀ ∫ β€Š

(℀𝑝⋆)𝑛

β€Š(∫ β€Š

β„šπ‘π‘‘

β€Š|𝑓1(𝑠1(𝑑)π‘₯)𝑓2(𝑠2(𝑑)π‘₯)|π‘žπœ”(π‘₯)𝑑π‘₯)

1 π‘ž

πœ“(𝑑)𝑑𝑑

≀ ∫ β€Š

(℀𝑝⋆)𝑛

β€Šβˆ β€Š

2

π‘˜=1

β€Š(∫ β€Š

β„šπ‘π‘‘β€Š|π‘“π‘˜(π‘ π‘˜(𝑑)π‘₯)|π‘žπ‘˜πœ”π‘˜(π‘₯)𝑑π‘₯)

1 π‘žπ‘˜

πœ“(𝑑)𝑑𝑑

= π’œ (∏ β€Š

2

π‘˜=1

β€Šβˆ₯βˆ₯π‘“π‘˜βˆ₯βˆ₯𝐿

πœ”π‘˜π‘žπ‘˜(β„šπ‘π‘‘)) < ∞.

Thus, π‘ˆπœ“,𝑠⃗𝑝,2,𝑛 is bounded from πΏπ‘žπœ”11(β„šπ‘π‘‘) Γ— πΏπœ”π‘ž22(β„šπ‘π‘‘) to πΏπ‘žπœ”(β„šπ‘π‘‘) and the best constant 𝐢 in (3.6) satisfies

𝐢 ≀ π’œ.

For the converse, assuming that π‘ˆπœ“,𝑠⃗𝑝,2,𝑛 is defined as a bounded operator from πΏπ‘žπœ”11(β„šπ‘π‘‘) Γ— πΏπ‘žπœ”22(β„šπ‘π‘‘) to πΏπ‘žπœ”(β„šπ‘π‘‘). Let 𝛾 be an arbitrary positive number and we set

𝛾1: = βˆšπ‘ž1

π‘ž 𝛾 and 𝛾2: = βˆšπ‘ž2 π‘ž 𝛾 and

π‘“π‘ž1,𝛾1 = {

0 if |π‘₯|𝑝 ≀ 1

|π‘₯|𝑝

βˆ’π‘‘+𝛼1 π‘ž1 βˆ’1

𝛾12

if |π‘₯|𝑝 β‰₯ 1.

π‘“π‘ž2,𝛾2 = {

0 if |π‘₯|𝑝 ≀ 1

|π‘₯|𝑝

βˆ’π‘‘+𝛼1 π‘ž1 βˆ’1

𝛾22

if |π‘₯|𝑝 β‰₯ 1.

From Lemma 2.2, we get that π‘“π‘ž1,𝛾1 ∈ πΏπ‘žπœ”11(β„šπ‘π‘‘), π‘“π‘ž2,𝛾2 ∈ πΏπ‘žπœ”22(β„šπ‘π‘‘) and

βˆ₯βˆ₯π‘“π‘ž1,𝛾1βˆ₯βˆ₯𝐿

π‘ž1πœ”1(β„šπ‘π‘‘) = (πœ”1(𝑆0)

1βˆ’π‘

βˆ’π‘ž1 𝛾12)

1 π‘ž1

> 0, βˆ₯βˆ₯π‘“π‘ž2,𝛾2βˆ₯βˆ₯𝐿

π‘ž2πœ”2(β„šπ‘π‘‘)= (πœ”2(𝑆0)

1βˆ’π‘βˆ’ π‘ž2𝛾2

)

1 π‘ž2 > 0.

We fix π‘₯ ∈ β„šπ‘π‘‘ which |π‘₯|𝑝 β‰₯ 1 and set

𝑆π‘₯ = {𝑑 ∈ (℀𝑝⋆)𝑛: |𝑠1(𝑑)π‘₯|𝑝> 1} ∩ {𝑑 ∈ (℀𝑝⋆)𝑛: |𝑠2(𝑑)π‘₯|𝑝 > 1}.

(7)

From the assumption |𝑠1(𝑑1, … , 𝑑𝑛)|𝑝β‰₯ min{|𝑑1|𝑝𝛽, … , |𝑑𝑛|𝑝𝛽}, |𝑠2(𝑑1, … , 𝑑𝑛)|𝑝 β‰₯ min{|𝑑1|𝑝𝛽, … , |𝑑𝑛|𝑝𝛽} a.e 𝑑 = (𝑑1, … , 𝑑𝑛) ∈ (℀𝑝⋆)𝑛, there exist a subset 𝐸 of (℀𝑝⋆)𝑛 has measure zero and 𝑆π‘₯ is contained in

{𝑑 ∈ (℀𝑝⋆)𝑛: |𝑑|𝑝 β‰₯ |π‘₯|π‘βˆ’1/𝛽} βˆ– 𝐸.

Consequently, we have

βˆ₯βˆ₯π‘ˆπœ“,𝑠‾

𝑝,2,𝑛

(π‘“π‘ž1,𝛾1, π‘“π‘ž2,𝛾2)βˆ₯βˆ₯𝐿

πœ” π‘ž(β„šπ‘π‘‘) π‘ž

= ∫ β€Š

(β„šπ‘π‘‘)

β€Š| ∫ (π‘“π‘ž1,𝛾1(𝑠1(𝑑)π‘₯) β‹… π‘“π‘ž2,𝛾2(𝑠2(𝑑)π‘₯)) πœ“(𝑑)𝑑𝑑

(℀𝑝⋆)𝑛

β€Š|

π‘ž

πœ”(π‘₯)𝑑π‘₯

= ∫ β€Š

|π‘₯|𝑝β‰₯1

β€Š(|π‘₯|𝑝

βˆ’π‘‘+𝛼1 π‘ž1 βˆ’1

𝛾12

β‹… |π‘₯|𝑝

βˆ’π‘‘+𝛼2 π‘ž2 βˆ’1

𝛾22

)

π‘ž

Γ—

Γ— |∫ β€Š

𝑆π‘₯

β€Š| 𝑠1(𝑑)|

𝑝

βˆ’π‘‘+𝛼1 π‘ž1 βˆ’1

𝛾12

β‹… |𝑠2(𝑑)|𝑝

βˆ’π‘‘+𝛼2 π‘ž2 βˆ’1

𝛾22

πœ“(𝑑)𝑑𝑑|

π‘ž

πœ”(π‘₯)𝑑π‘₯

β‰₯ ∫ β€Š

|π‘₯|𝑝β‰₯1

β€Š|π‘₯|π‘βˆ’π‘‘βˆ’π›Όβˆ’

π‘ž 𝛾2

(∫ β€Š

𝑆π‘₯

β€Š|𝑠1(𝑑)|𝑝

βˆ’π‘‘+𝛼1 π‘ž1 βˆ’1

𝛾12

β‹… |𝑠2(𝑑)|𝑝

βˆ’π‘‘+𝛼2 π‘ž2 βˆ’1

𝛾22

πœ“(𝑑)𝑑𝑑)

π‘ž

πœ”(π‘₯)𝑑π‘₯

β‰₯ ∫ β€Š

|π‘₯|𝑝β‰₯𝑝𝛾

β€Š|π‘₯|π‘βˆ’π‘‘βˆ’π›Όβˆ’

π‘ž 𝛾2

πœ”(π‘₯)𝑑π‘₯ (∫ β€Š

𝑆π‘₯

β€Š|𝑠1(𝑑)|π‘βˆ’

𝑑+𝛼1 π‘ž1 βˆ’ 1

𝛾12β‹… |𝑠2(𝑑)|𝑝

βˆ’π‘‘+𝛼2 π‘ž2 βˆ’1

𝛾22

πœ“(𝑑)𝑑𝑑)

π‘ž

= π‘βˆ’

π‘ž 𝛾βˆ₯βˆ₯π‘“π‘ž,𝛾βˆ₯βˆ₯𝐿

πœ”

π‘ž(β„šπ‘π‘‘)(∫ β€Š

𝑆π‘₯

β€Š|𝑠1(𝑑)|𝑝

βˆ’π‘‘+𝛼1 π‘ž1 βˆ’1

𝛾12

β‹… |𝑠2(𝑑)|𝑝

βˆ’π‘‘+𝛼2 π‘ž2 βˆ’1

𝛾22

πœ“(𝑑)𝑑𝑑)

π‘ž

Here we denote 𝐹 by the set {𝑑 ∈ (℀𝑝⋆)𝑛: |𝑑|𝑝 β‰₯ π‘βˆ’π›Ύ/𝛽}. Since |𝑠1(𝑑1, … , 𝑑𝑛)|𝑝 β‰₯ min{|𝑑1|𝑝𝛽, … , |𝑑𝑛|𝑝𝛽}, |𝑠2(𝑑1, … , 𝑑𝑛)|𝑝 β‰₯ min{|𝑑1|𝑝𝛽, … , |𝑑𝑛|𝑝𝛽} a.e 𝑑 = (𝑑1, … , 𝑑𝑛) ∈ (℀𝑝⋆)𝑛 , imply that 𝑆π‘₯ βŠƒ 𝐹.

Thus we have the following inequality

∫ β€Š

𝐹

β€Š|𝑠1(𝑑)|𝑝

βˆ’π‘‘+𝛼1 π‘ž1 βˆ’1

𝛾12

β‹… |𝑠2(𝑑)|𝑝

βˆ’π‘‘+𝛼2 π‘ž2 βˆ’1

𝛾22

πœ“(𝑑)𝑑𝑑 ≀ 𝑝

1

𝛾 βˆ₯βˆ₯π‘ˆπœ“,𝑠⃗𝑝,2,𝑛(π‘“π‘ž1,𝛾1, π‘“π‘ž2,𝛾2)βˆ₯βˆ₯

βˆ₯βˆ₯π‘“π‘ž1,𝛾1βˆ₯βˆ₯𝐿

π‘ž1πœ”1(β„šπ‘π‘‘)β‹… βˆ₯βˆ₯π‘“π‘ž2,𝛾2βˆ₯βˆ₯𝐿

πœ”2π‘ž2(β„šπ‘π‘‘)

≀ 𝐢𝑝

1 𝛾.

Here 𝐢 is the constant in (3.6). Letting 𝛾 to infinity, by Lebesgue's dominated convergence Theorem, we obtain

(8)

∫(β„€ β€Š

𝑝⋆)𝑛 |𝑠1(𝑑)|π‘βˆ’

𝑑+𝛼1

π‘ž1 β‹… |𝑠2(𝑑)|π‘βˆ’

𝑑+𝛼2

π‘ž2 πœ“(𝑑)𝑑𝑑 ≀ 𝐢.

From (3.7) and (3.9), we obtain βˆ₯βˆ₯π‘ˆπœ“,𝑠⃗𝑝,2,𝑛βˆ₯βˆ₯

πΏπ‘ž1πœ”1(β„šπ‘π‘‘)Γ—πΏπœ”2π‘ž2(β„šπ‘π‘‘)β†’πΏπœ”π‘ž(β„šπ‘π‘‘) = π’œ.

3. CONCLUSION

In this paper, we find out the norm of 𝑝-adic weighted bilinear Hardy-CesΓ ro operator on product of 𝑝-adic weighted Lebesgue spaces as following:

βˆ₯βˆ₯π‘ˆπœ“,𝑠⃗𝑝,2,𝑛βˆ₯βˆ₯

πΏπ‘ž1πœ”1(β„šπ‘π‘‘)Γ—πΏπœ”2π‘ž2(β„šπ‘π‘‘)β†’πΏπœ”π‘ž(β„šπ‘π‘‘) = ∫ β€Š

(℀𝑝⋆)𝑛

|𝑠1(𝑑)|π‘βˆ’

𝑑+𝛼1

π‘ž1 β‹… |𝑠2(𝑑)|π‘βˆ’

𝑑+𝛼2

π‘ž2 πœ“(𝑑)𝑑𝑑 < ∞.

REFERENCES

1. J. Alvarez, J. Lakey and M. GuzmΓ‘n-Partida (2000), Space of bounded πœ†-central mean oscillation, Morrey spaces, and πœ†-central Carleson measures, Collect. Math Duke Math. J. 51, 1-47.

2. C. Carton-Lebrun and M. Fosset (1984), Moyennes et quotients de Taylor dans BMO, Bull. Soc.

Roy. Sci. LiΓ©ge. (2) 53, 85-87.

3. Y. Z. Chen and K. S. Lau (1989), Some new classes of Hardy spaces, J. Funct. Anal. 84, 255-278.

4. N.M. Chuong, Yu V. Egorov, A. Khrennikov, Y. Meyer, D. Mumford (2007), Harmonic, wavelet and 𝑝-adic analysis, World Scientific.

5. N. M. Chuong and H. D. Hung (2010), Maximal functions and weighted norm inequalities on Local Fields, Appl. Comput. Harmon. Anal. 29, 272-286.

6. N. M. Chuong and H. D. Hung (2010), A Muckenhoupt's weight problem and vector valued maximal inequalities over local fields, 𝑝 βˆ’ Adic Numbers Ultrametric Anal. Appl. 2, 305-321.

7. N. M. Chuong and H. D. Hung (2014), Bounds of weighted Hardy-CesΓ ro operators on weighted Lebesgue and BMO spaces, Integral Transforms Spec. Funct. (9) 25, 697-710.

8. N.M. Chuong, H. D. Hung and N. T. Hong, Bounds of 𝑝-adic HardyCesΓ ro operators and their commutators on 𝑝-adic weighted spaces of Morrey types, Submitted

9. R. R. Coifman, R. Rochberg and G. Weiss (1976), Factorization theorems for Hardy spaces in several variables, Annals of Math. (2) 103, 611-635.

10. Z. W. Fu, Z. G. Liu, and S. Z. Lu (2009), Commutators of weighted Hardy operators on ℝ𝑛, Proc. Amer. Math. Soc. (10) 137,3319-3328.

11. Z. W. Fu, S. L. Gong, S. Z. Lu and W. Yuan (2014), Weighted multilinear Hardy operators and commutators, Forum Math. 2014, DOI: 10.1515/forum 2013-0064.

12. J. GarcΓ­a-Cuerva (1989), Hardy spaces and Beurling algebras, J. London Math. Soc. 39(2), 499- 513.

13. G. H. Hardy, J. E. Littlewood, G. PΓ³lya (1952), Inequalities. 2d ed. Cambridge, at the University Press. MR0046395 (13,727e)

14. H. D. Hung (2014), P-adic weighted Hardy - Cesaro operator and an application to discrete Hardy Inequalities, J. Math. Anal. Appl. 409, 868-879.

(9)

15. H. D. Hung and L. D. Ky (2015), New weighted multilinear operators and commutators of Hardy- Cesaro type, Acta Math.Sci., Ser. B, Engl. Ed., 35N(6),1411-1425.

16. Y. C. Kim (2009), Carleson measures and the BMO space on the 𝑝 βˆ’ π‘Žπ‘‘π‘–π‘ vector space, Math.

Nachr., 282, 1278-1304.

17. A. N. Kochubei (2001), Pseudodifferential equations and stochastics over nonArchimedean fields, Marcel Dekker, Inc. New York-Basel, MR 2003 b:35220.

18. Yasuo Komori and Satoru Shirai (2009), Weighted Morrey spaces and a singular integral operator, Math. Nachr. (2) 282. 219-231.

19. S.V. Kozyrev (2002), Wavelet analysis as a 𝑝-adic spectral analysis, Izvestia Akademii Nauk, Seria Math. (2) 66, 149-158.

20. S.V. Kozyrev, A.Yu. Khrennikov (2005), Pseudodifferential operators on ultrametric spaces and ultrametric wavelets, Izv. Ross. Akad. Nauk Ser. Mat. (5) 69, 133-148.

21. J. Igusa (2000), Introduction to the theory of local zeta functions. Studies in Advanced Mathematics 14.

22. S.Z. Lu, D.C. Yang (1995), The central BMO spaces and Littlewood-Paley operators, Approx.

Theory Appl. 11, 72-94.

23. C. B. Morrey (1938), On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43, 126-166.

24. K.S. Rim and J. Lee (2006), Estimates of weighted Hardy-Littlewood averages on the 𝑝-adic vector space, J. Math. Anal. Appl. 324, 1470-1477.

25. Mitchell Taibleson (1975), Fourier analysis on local fields, Princeton University Press, Princeton.

26. V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov (1994), 𝑃-adic analysis and mathematical physics, World Scientific.

27. S. S. Volosivets (2011), Hausdorff operator of special kind on p-adic field and BMO-type spaces, 𝑝-adic Numbers, Ultrametric Anal. Appl., 3, 149-156.

28. S. S. Volosivets (2012), Hausdorff operator of special kind in Morrey and Herz 𝑝-adic spaces, 𝑝-adic Numbers, Ultrametric Anal. Appl., 4, 222-230.

29. J. Xiao (2001), 𝐿𝑝 and BMO bounds of weighted Hardy-Littlewood Averages, J. Math. Anal.

Appl. 262, 660-666.

30. A. Weil (1971), Basic number theory. Academic Press.

31. Q. Y. Wu and Z. W. Fu , Weighted 𝑝-adic Hardy operators and their commutators on 𝑝-adic central Morrey spaces, Submitted.

32. Q. Y. Wu, L. Mi and Z. W. Fu (2013), Boundedness of 𝑝-adic Hardy operattors and their commutators on 𝑝-adic central Morrey and BMO spaces, J. Funct. Spaces Appl., 2013, 10 pages.

33. Q. Y. Wu, L. Mi and Z. W. Fu (2012), Boundedness for commutators of fractional 𝑝-adic Hardy operators, J. Inequal. Appl. 2012:293.

(10)

CHUαΊ¨N CỦA TOÁN TỬ SONG TUYαΊΎN TÍNH 𝒑-ADIC HARDY- CESΓ€RO CΓ“ TRỌNG TRÊN TÍCH CÁC KHΓ”NG GIAN LEBESGUE

TΓ³m tαΊ―t: Trong bΓ i bΓ‘o nΓ y, mα»₯c Δ‘Γ­ch của chΓΊng tΓ΄i lΓ  nghiΓͺn cα»©u tΓ­nh bα»‹ chαΊ·n của toΓ‘n tα»­ π‘ˆπœ“,𝑠⃗𝑝,2,𝑛 trΓͺn tΓ­ch của cΓ‘c khΓ΄ng gian p-adic Lebesgue cΓ³ trọng. ChΓΊng tΓ΄i tΓ¬m ra được Δ‘iều kiện cαΊ§n vΓ  đủ cho cΓ‘c hΓ m trọng để toΓ‘n tα»­ nΓ y bα»‹ chαΊ·n trΓͺn tΓ­ch cΓ‘c khΓ΄ng gian 𝑝- adic Lebesgue cΓ³ trọng. HΖ‘n nα»―a, chΓΊng tΓ΄i cΕ©ng tΓ¬m ra chuαΊ©n của toΓ‘n tα»­ song tuyαΊΏn tΓ­nh p-adic Hardy-cesΓ ro tΖ°Ζ‘ng α»©ng.

Tα»« khoΓ‘: KhΓ΄ng gian Lebesgue, Δ‘iều kiện.

Referensi

Dokumen terkait