-Khoa hpc Giao dgc
CAC DANG KHAM PHA THEO THUYET KIEN TAO TRONG DAY HOC TIEU HOC
S
U p h I t trien manh m e cCia khoa hpe kl thuat va edng nghe t h d n g tin da kich thich nhu d u tU kham p h i cQa ngudi hpc trude d c hien tupng t u nhien va x l hoi dang h I n g ngay dien ra xung quanh hp.D6i mdi phuong p h I p v l hinh thdc to chufe day hpc t r d thanh m o t tat y l u k h I c h quan n h I m p h I t huy tfnh tich cUc, chCi ddng, sang tao cua ngudi hpc phu h d p vdi dac diem eua tCflig ldp hpc, m d n hpe, boi d u d n g p h u a n g p h l p t U hpc, t u ren Iuyen kT n l n g van d u n g k i l n thdc vao thuc tien.Thuyet kien tao chu trUPng day hpe dUa t r I n tinh tfeh cUe n h i n thtfe, dong co hpc tap, khat vpng hpe t i p va khat vpng hieu biet cua ngUdi hpc. Day hpc theo thuyet kien tao I I mdt hpe thuyet v l ele hoat d d n g hpc cua ngUdi hpe phai dua vao tri thUc da hpc (tri thdc cu) v l v d n kinh nghiem song cua d c &m. Day hpc kham pha theo thuyet kien tao se tao ra nhieu c d hdi cho ngUdi hpc dugc hpc t i p vdi nhCfng t r l i nghiem phong phu ma giao vien I I ngudi djnh hudng cho eae em xay dung nen tri thdc cho b i n t h i n cung n h u eleh thde v l eon dudng t i m ra tri thdc dd.
Day hpc k h i m p h i I I sU t i m tdi tfeh cue, bao g d m n h i l u qua trinh m l qua d d bien kinh nghiem t r d t h I n h kien thdc. Cd 5 kieu k h I m p h i , d d I I : K h I m pha quy nap (Inductive Inquyry), K h I m p h i dien djch (Deductive Inquyry), Gili q u y l t van d l (Problem Solving), Day hpe t U p h I t hien (Discovery Learning, Day hpc dU I n (Project base- learning).
1 . K h a m p h a q u y n a p (Inductive I n q u y r y ) 1.1. Khdi niem
Quy nap la p h u o n g phap di tU tri thCfc ve d i rieng den tri thCfc ve d i chung, tCj" tri thUc ft chung d i n tri thdc chung hdn. De t i m d u t r i Idi cho nhOhg cau hdi, chung ta cd the xem xet, kiem n g h i e m vat d d m d t e l c h kT d n g , thuc hien mdt vai thi nghiem, so s i n h n d vdi d c vat t h e khae, d c vat t h e tUdng d o n g hdn... Tat c l cac hoat dong quan sat, hinh t h I n h g i l djnh, kiem nghiem, kiem tra g i l djnh...de t h u t h i p t h d n g tin de k i t ndi chung lai vdi nhau, hinh t h a i i h cac gia djnh va g i l a n h n l y se tam hinh t h I n h kinh nghiem mdi, it la lam hdn va cd y nghia hem.
PGS.TS. PHO DUC HOA Tnr£nig Dai hpc sir pham Ha Kgi 1.2. Quy trlnh thuehien
Quy trinh eua k h I m p h i quy nap cd d u true vdng tron va cd trinh tusau:
Glai doan 1: X l c djnh vung nghien cufu - pham vi hoat ddng bao g d m ITnh vuc nhan thtfe va ITnh vuc thue te d n k h I m pha.
Giai doan 2: Tap hpp va sang Ipc thdng tin lien quan den pham vi hoat ddng.
Giai doan 3: X l y dung elc y tudng, cu the I I c l e nhdm kiem soat cac vung thdng tin.
Giai doan 4: Tap hdp d c g i l thuyet dupe kham pha nham hieu rd mol quan he trong ITnh vUe do v l eung d p d c h g i l l q u y l t van de.
Giai doan 5:ThCrnghiem cac g i l thuyet bao gdm vlec chuyen t d k i l n thCfc sang kT nang ed tinh Ung d u n g thue tien.
Giai doan 6: Ap dung d c khai niem v l kT n l n g , thuc hanh va tang eUdng kiem tra de d c kT nang n l y ludn s i n sang Ung dung
NhUvay, chung ta thay eae y l u cau quy nap kha ngan gpn. K i t q u i cua viec hpe tap khdng chi k i t thuc cung vdi t r l i nghiem ciia Idp hpe trUe t i l p hay d i n h g i l k i t qua sau buoi hpc ma cdn dupe C^g d u n g sau gid hpc, ngoai gid hpe eung n h u trong cupe sdng ndi chung. Muc dich chinh cua viec hpc chfnh la sU quy nap. Do v l y , hpc sinh cd dupe viee kiem soat cd y thde ve mot cong cu hpc tap day sdc manh.
2 . K h a m p h a d l e n dich t r o n g d a y hoc ( D e d u c t i v e I n q u y r y )
2.1. Khdi niem
K h I m p h i dien djch ngUpe vdi kham p h i quy nap. Trong e l c h tlep can vdi kham p h i n l y , g i l o vien trinh b I y mdt y k h I i q u i t , mot nguyen If h o l e m d t k h I i niem va sau d d t h u hut hpc sinh tham gia v I o mot h o l e nhieu hdn mot hoat d d n g k h I m p h i de giup d c em hieu dupe khai niem dupe dUa ra.
2.2. Quy trinh thUc hiin
Quy trinh k h I m pha dien djch cd d u true trpn ven g d m e l c budc nhusau:
K H G D so 6 9 , thdng 6 - 2 0 1 1
19
K h o a h p c G i a o dijc -
Budc 1: Tao chu y fXac djnh muc tieu cua hoat ddng, dua ra su k i l n mdi h o l e chu de mdi...)
Budc 2: K h I o s i t ( Len ke hoach thUe hien hoat dong, dieu tra, sap xep, ghi chep ele thdng tin thu thap dugc qua hoat ddng)
Budc 3: Gili thfeh ( Ngudi hoe phan tich v l glal thich d c ket qua thu duac qua hoat ddng)
Bude 4: PhIt bieu (Gili quyet van de, ap dung vao tinh huong khae lien quan trong thUe tien)
Budc 5: Danh gia (Tong hpp ket q u i thu dupe tU bai hpc)
Vdi quy trinh day hpc nay ngudi hpc dupc chu ddng t h a m gia vao viec t i m kiem tri thUc, tri thUc do chinh b i n t h i n elc em t i m ra tren c o s d d i n h hucmg eua g i l o vien.
3 . Gl^i q u y e t v a n d e ( P r o b l e m solving) 3.t. Khdi niem
Gili q u y l t van de I I mdt phUdng p h I p day hpe dung de day eae kl n l n g g i l i quyet van de v l giup hpc sinh trong viee dieu tra ele van di thUe te. Hpc tap d c h gidiquyetvdn dild mdt dang khae cua phuong phap k h I m pha. Viec giai q u y l t van de trong Idp hpc khdng chi dua ngudi hpc tiep d n v I o nhCfng van de cua the gidl thuc tai ma cdn d i n h g i l cao q u i trinh k h I m pha cua ngUdi hpc.
NgUdi day sCf d u n g eleh neu tinh hudng ed van de (THCVD) van d l de eung cap eho ngUdl hpe eP hdi tham gia v I o c l e hoat d d n g t i l p theo, trong do ele em se de xuat eleh g i l i quyet tinh hudng ed van de bang nhieu eleh thUe v l con dudng khae nhau.
3.2. Cau true vd ehu trlnh gidl quyet tinh huong ed vdnde
Bude 1: Dat van de, xay dung b l i t o l n nhan thUe (Tao ra THCVD; phat hien, nhan dang v^n di n l y sinh; p h I t bieu van de can g i l i quyet)
Budc 2: Gill quyet van di dat ra
Budc 3: Ket luan (Thao luan k i t qua va d i n h gia;
khang djnh hay bac b d g i l t l i u y l t d l neu; trinh bay k i t luan v l de xuat van de mdi)
4 . D a y hoc tiT p h a t hien h a y hoc t a p k h a m p h a (Discovery learning)
Trong qua trinh hpc tap, hpc sinh khdng p h l i nhac lai, ghi n h d Idi g i l o vien g i l n g hay nhCfng ndi dung ed s i n trong sIch giao khoa h o l e lam theo mau mot each m I y mde ma t u minh tim ra nhufng dieu mdi la hay nhitng tri thUe khoa hpc bo fch, hap dan dudi s u t o chUe, hudng dan mot each t i l tinh cua giao vien. S i n pham cua qua trinh nhan thdc ( k i t q u i hpc tap cua hpc sinh ) mdi dich thUc I I eua ehCi the hpe sinh. Hay ndi e l c h khIc, b i n chat
cua q u i trinh day hpc d l quy djnh tinh chat nhan thUc cua hoat ddng hpc tap la hpc sinh t u minh tim kiem, phat h i i n ra tri thde khoa hpe, nhOng chuan muc xa hdi trong mdi trudng su pham thuan Ipi.
4.1. Cde bude tien hdnh eua dgy hgc tuphdt hien (1). Xem xet tinh trang dang x l y ra (2). Xac djnh van de
(3). Thu thap t h d n g tin ( dCf lieu) cd lien quan den v I n d l d n glai quyet.
(4). Phln tich t h d n g tin
(5). Lap c l e k l hoach g i l i q u y l t van d l (6). Lua chpn k l hoach t d t nhat vdi sU d n nhic vedieu kienthUete
(7).ThUe hien k l hoach (8). Kiem s o l t v l d i n h g i l (9). Lap lai chu trinh.
4.2. Cde edeh tiip cdn giai quyet vdn di trong dgy hoe
Tlep can g i l i q u y l t van de dUpe hieu la d c h t h t f e , bien p h I p t o ehUe dua ra elc mUc dp khae nhau cCia THCVD trong day hoc.Dd la:
(#t)Tiepedn 1: GV neu ra tinh hudng - G V g l l i quyet tinh hudng dd. Trong day hpc, each t i l p can nay thudng xuyen duge sCf dung. Co nhOfng van d l n h u hinh thanh khai niem, neu tinh chat, phat bieu quy tac hay ehCfng minh edng thUe ...
torn lai la nhOng tri thijfe khdi dau can eung d p cho ngudi hpc. d day, g i l o vien n l u ra eho hpe sinh tU duy, suy nght, tao s u t d m d k h I m p h i eho d c em, song giao vien lai la ngudi p h l i g i l i quyet, bdi vi d l y I I cac dan vi tri thUe mdi, khdi dau, khdng dua v I o tri thu'c eU, da b i l t va vdn kinh nghiem sdng eua hpe sinh.
Vidu: GV ve mdt hinh trdn tren b I n g , cho b i l t ban kfnh la R ,PI=3,14 (mdn Toan). Y l u d u HS tim dien tich hinh trdn? ThUe su, hpe sinh rat hUng thu vdi tinh huong nay nhung c l e em khdng giai q u y l t dupc VI d e dau hieu da biet chua du l l m n I n t i n g , ea sd, v l lien quan d i n d e h tinh dien tfeh hinh trdn. Nhu v a y , GV p h l i dUa ra edng thdfc tfnh dlen tich hinh trdn mang phuang thdc dp dat
S = R x R x 3 , 1 4
Tiep can 1 gpi la thuyet trlnh neu vdn de trong day hpc.
f#2J77ep can 2: GV xay d u n g THCVD- GV & HS g i l i quyet THCVD. Caeh tlep can nay dupe sCf d u n g vdi t u d c h I I su kit hap giUa day hpc van d i p gpi m d v l day hpc g i l i quyet van de.Trong thUe t l , khi g i l o vien neu ra THCVD, ngudi hoc khdng the doc lap
2 0 K H G D so 6 9 , thdng 6 - 2011
-Khoa hpc Gido duo
gili quylt van d l , can cd sutrp giup cua ngudi day
(ele d u hdi gpi md, dan dit) va cuoi eung ngUdi hpe gill quyet THCVD. LLerner v l M.Skatkin gpi mu'c nay II hpe sinh dde lap mot nda trong glai quyetvande.
T i ^ can 2 gpi II vdnddpneu vdn de trong day hpc (if3)Tiep can 3: GV xay dung THCVD- HS dde lap gill quylt THCVD.Day chfnh la phUPng phIp day hpe neu va gili quyet van de.
f#4j77epcdn4;HS phat hien ra THCVD-HStUgili quylt THCVD. Day la dch tiep can cao nhat eua day hpe gili quyet van de.Trong day hpc khdng phli lue nao tilp can 4 cung xuat hien. Nd phu thudc vIo npl dung bai hpc, trinh dp nhan thUe hien ed cua ngUdi hpc, v l khi nang su pham, vai trd chu dao eua ngUdi day.
Vidu, trong mdn Khoa hoc (Bli: NUdc ed tinh chat gi?). Gilo viin yeu d u hpc sinh lam thi nghiem sau (llm vile theo nhdm): Hay cho nUde vao 2 II thCiy tinh, trong dd mdt II dUng dUdng, mot li dung cat, rdi lay dua (thia) nguay 2 li nUdc. Gilo viin dat ra THCVD: Cle em nhan xet xem hien tUpng gi xay ra sau dd? (Cdch tiep can 3)
Ngudi hpe eho thay, dudng hda tan trong nude, cdn d t thi khdng. Td dd ngudi day rut ra kit luan v l tfnh chat cua nUde: nudc hda tan mdt sd chat va khdng hda tan mot so chat.
Tuy nhlln, cd mdt nhdm hpc sinh thae mic, la do d c em nguay mli ml dudng vdn khdng tan hit trong nUdc (ngUdI hpe phIt hien ra THCVD). Luc nly, ngudi day djnh hudng, ehi dao cho hoc sinh tu duy, tu luc tim gill phIp gill quylt hien tuong tren.
Den day, ^eu thu vj xly ra, cd hpe sinh nhdm khie de nghj cac ban rot them nudc vIo li dudng, tiep tuc nguay din khi nIo dudng tan het thi thdi (hpc sinh tuglli quyet THCVD).
Tiep eIn 4gpi la dgy hgc tUphdt hien- mdt kieu cCia day hpc kham pha.
5. Day hoc dif an (Project base learning)
5.1. Khdi niem
Day hoc dU I n (DHDA) cd nguon goc tU Chlu Autd'thlkIl6(dy,Phap).
Dau the kl 20, d c nha sU pham My xay dUng li luan cho DHDA (Woodward; Richard; J.Dewey, W.Klipatrick). Ngay nay, DHDA dugc sCfdung rdng rai tren the gldi, trong tat el d c cap hpc, mdn hpc, vdi d c ten gpi khIc nhau: Project Method; Project base- learning.
Day hpc dU I n II mot phUc^g phap day hpc
trong dd ngudi hpc thuc hiin mdt nhiem vu hpe tap phUe hdp, gin vdi thuc tien, ket hop If thuyet vdi thuc hanh, tu luc lap ke hoach, thuc hien v l danh gil kit qui. Hinh thUe lam viec chu yeu II theo nhdm, ket qua d u l n la nhijfng sin pham hinh ddng ed the gidl thieu dupe.
5.2. Cde dde diem cua dgy hgc dudn Dinh hudng thuc tien: ChCi de cOa du an gin vdi thUc tien, kit qui DA ed y nghTa thUe tien-xl hpl.
Dinh hudng hUng thu eua hgc sinh: Chu de va ndi dung CLia duan phCi hpp vdi hUng thu cCia hpc sinh.
Tinh tuluceao eita ngudi hoe: Hpe sinh tham gia tich cUc v l tu lUe vIo ele glai doan eua qui trinh day hpc.
Dinh hudng hdnh dgng: Ket hpp glOa If thuyet v l thue hinh, huy ddng nhieu gile quan.
Dinh hudng san phdm: Dd II nhCfng sin pham hanh ddng cd the edng bd, gidl thieu duae.
Cd tinh phUe hap: Ndi dung dU In ed su kit hpp tri thUe eua nhieu ITnh vUe hoae mdn hpe khae nhau.
Cong tde Idm viee: Cac du an hpc tap thudng dupc thUc hien theo nhdm, viee hpe mang tfnh xa hdi.
5.3. Cde giai dogn cua dgy hoc dudn:
- Quylt djnh chu the: GV & HS de xuat sing kiln chu de, xlc hnh muc tieu dU an.
- Xay dung k l hoach: HS lap ke hoach lam viee, phan edng Iao ddng
-Thuc hien: HS iam vlec el nhin va nhdm theo ke hoach. Kit hpp li thuyet va thue hinh, tao ra sin pham.
- Gidl thieu san pham: HS thu thap sin pham, gidl thleu, edng bd san pham du an.
- Danh gia : GV & HS dinh gil kit qui va qui trinh, rut ra kinh nghiem va kit qua can thilt.
CAC LOAI Oy AN HOC T^P ICAC LO»l 01/AN]
DA lien mAn I-
f o A t a ^ n l ^ l
;7v
KHGD s6 69, thing 6 - 2011
21
K h o a h p c G i a o d u e •
5.4. Cde logi dudn hoc tap (Project works):
Day hpc d u I n cho phep ngUdi hpe lam viee mot each ed tfnh hop t i e vdi cac ban hpc va ngudi hudng dan eua mlnh trong mot mdi trudng lay hpe sinh lam trung tam, ndi ma hpc sinh dUdc khuyen khfch kham pha elc chCi de khae nhau ma chung quan t i m . Cle dU I n ed e h i l u s l u , cd giai doan va ed tfnh phUe tap se thue day ehung x l y dung k i l n thCfc.
N h U v a y , d a y h p e k h l m p h l e d 5 dang khie nhau.
Moi dang ed nhCfng dac diem, yeu t d rieng nhUng chung deu ed nhCfng diem ehung I I giup hpe sinh k h I m p h i tri thUe eua n h i n loai d l bien thanh tri thUc eua rieng minh. Day hpe theo ele dang k h I m p h i I I xu hudng eua nen giao due hien dai, dua tren sUtham gia eua ngUdl hpe v I o viee g i l i quyet van de v l nhCfng suy nghT ed tinh phe phan (tu duy phe p h l n dupe p h I t huy) t r o n g hoat ddng m l hpe sinh thay phu hpp va hUng t h u .
TAI L i f U T H A M KHAO
1. Bd G i l o due va Dao t a o . Dgy kJnang tuduy.
H I Ndi, 2000 (Tai lieu cua d u an Viet Bi "Ho trp day hpetCfxa").
2. David WJohnson & RogerT. Johnson. Learning Together and Atone: Cooperative, Competitive, and IndividualisticLearning.JhWd edition. Prentice Hall, Englewood Cliffs, NewJesey 076323(1991).
3. Phd Diic Hda. Dgy hgc tich cue vd each tlep con trong dgy hoc tieu hgc. NXB DHSR 2009.
4. J. Samuel Barkin. Realist Constructivism:
Rethinking international Relations Theory, Cambridge University Press, UK 2010.
SUMMARY
Constructivism Theory allows learners building knowledge for themselves through testing ideas from available experience and knov\/ledge, then apply this knowledge to other situation relating to new knowledge. Learning with forms of Inquyry teaching is trend of modern education, based on participation of learners in solving problem and critical thoughts (critical thought is promoting) in activity that pupils find relevant and interesting.
THirC NGHIEM...
(Tiep theo trang 26)
vien cu the t h e m t l i lieu eho rieng hpe sinh nhu phieuhpetap).
TAILI|UTHAMKHAO
1 / Bp Giao due va D I o tao, Hudng ddn thuehien nhiem vu Gido ducTrung hgc nam hgc 2009-2010.Hh Ndi, 2009.
2/ Nguyen HQu C h l u (2005a, chu bien), Mdt so vdn de ve dgy hoc edc chCi de tu chon trong chuang trlnh tdp 8 trudng THCS, NXB G i l o dye.
Ha Ndi 2005.
3/ Nguyen HOfu C h l u (2005b), NhUng vdn died bdn ve chuang trinh vd qud trinh dgy hgc, NXBGD, 2005.
4/ Nguyen Ba Kim (chO bien) - Vu DUdng Thuy(1992), Phuong phdp dgy hoe mdn Todn (phan dai eUdng), NXB G i l o due, H I Npi, 1992.
5/ Nguyen B I Kim (2002), Phuang phdp dgy hgc mon Todn, NXB Dai hpc SU pham, H I Npi, 2002.
6/Trung t i m Cong nghe g i l o due, Bdo edo tong kit di tdi cap Bg "Budc ddu thCl nghiem hinh thdc tU ehgn d trung hoc ca s&', ma sd B 92-45-01, H I Npi, 1995.
7/ Vien Khoa hpe Giao due Viet Nam (2007), Chuang trinh dgy hgc tu chon mdn Todn THCS (lUu hanh npi bd), H I Npi, 2007.
SUMMARY
This paper introduces an experimental instructionfortwokindsofthe&^grademathematlcs materials to meet a demand on the self-selected teaching materials with the appropriate enhanced topics. Pupils' handbook is developed in the form of selected system of mathematical exercises to make full use of the role of exercises as pupils' activities holder and meeting the aspects of purpose, content and teaching method. Teacher's guide lets him/her help pupils ta do the above activities with a view to achieve the demand of knowledge, skills and attitudes of teaching topic.
K H G D s d 6 9 , t h d n g 6 - 2 0 1 1