KHO^ E-:$^ • cdras NQHi T«p Chi GTVT 4/2012
DIEU KHIEN TRlTtfT DONG COf XOAY CHIEU DA PHA
TS. DONG VAN HUdNG Trtfdng Dpi hpc GTVT TP.Ho Chi Minh Tim tit: Nghidn ctfu tfng dpng /cy thuit mdi trong
diiu khiin dc hd thing thiit bj nhim ning cao chit Itfpng dn phim vi hp gii thinh li van dd quan trpng trong thtfc ti sin xuit. Bii bio trinh biy phUdng phip ning cao chit Itfpng diiu khiin d0ng cd didn 3 pha dng dch stf dpng giii thuit diiu khiin trtfpt.
Abstract: Improve quality control objects are impor- tant issues in the actual minirtg equipment. This ariicle presents methds of Improving the quality of AC motor control using sliding controller.
1. Md hinh t o i n ddng cd khdng ddng bfi 1.1 Phtfdng trinh ding cd trin hp top di pha Die tfnh dfing cQa d0ng cd ddng bp kfch thfch nam chin vTnh cQu dupe md t i bdi hO phUPng trinh :
dl
uMt).R.iMih^^^ m
dtu„(t) > a/„w * ' ^ • " ^ ( ' ' dl
Vdi U«(t), U,b(t), U,c(t) l i difin i p pha stator iM(t), iBb(t),.iBc(t) l i ddng difin pha stator T «,(t), f ,b(t), "V .i(t) l i tu thing mlc vong cija 3 cufin d i y stator.
RI l i di|n trd d i y quln stator M l hinh vectd khlng gian:
i.(t) = -[ /«ffl + /W'K'°'+'«ffle"'°- ] (2)
U,ffl = - [ U«(t) + UtlVei"'- + U„ffleW ] TU h | phUdng trinh (1) v i (2) ta c6 dupc phUdng trinh di|n i p stator dudi dang vectd
^s dt
Vilt trln h | to? d | rotor (d-q) thl (3) trd thinh:
(6)
(3)
"s S, ^ ,
(4) Trong dd:
4 " , _ Lji, + 4* p l i vectd tU thing stator.
T ', = >F p l i vectd td thing rotor.
PhUdng trtnh chuyin dfing cDa dfing cd ding b l cd dsng:
J da^
Te-Tm * - ^ J, Trong dd moment di|n tU (T.)
(5)
7 " e = - Pc (fsxis)
1.2. PhUdng trinh ding cd trSn hd trifc td thdng rotor (d,q}
Tren he true d,q, tU thong stator *P ^ cd dang:
Vdi ' i ' « = L.ai«-»P T gq = i.^itq
Bien ddl phUdng trinh (4) ta cd:
, , = • T ^^"i I •
U .- R , I .+ L,j — — (BL I
sd ' sd ™ ^^ 'I ''(7)
(8)
U n=H, i., + L„ —j-+<s>L^ '„(+<» * ! • at
Hay:
dt di..
^sd l-„i
(9)
w^i,-^i + — ( 7 - a . ^ dt L " T " L •' L Bidn ddl phUdng trinh (6) ta cd:
7;=|^.K!-,+'w'-.,(iw-i«)] f^o' PhUdng trinh chuyin dfing cd dang:
dco 3
- -P.dl 2 '
^.(Te-Tm)
dt 1
-¥•
(11) 1.3. Ud hinh dinged
TU c i c phUdng trinh trln ta cd h | phUdng trinh tf^ng thii cl^a ding cd:
di^ 1 . L 1
*,» irf • 1 • 1 „ fp
sa iq sg ^sq
T.=:rKb',i„i„(L„-L„)]
dm P -— =(T.- T.) - ^
dt J
l l I KHOA HQC - C6NG NGHE
oi ddn g i i n md hinh ta d i t :
1 K 1
" 1 ^ = — ; a 2 i = 7 — . " i ^ z - y -
J^ '-•.d ^ ^
L^ _ 1 _J_
K '-. ^"
'',2d='^p'"»d=^.l-i'^
Hfi phuong trinh (12) trd t h i n h :
dX-d TT
—r- = -",,1^ + 0 2 . ® ' , , + ''2dU.d
at
di
- f = -"«<»'., - « « ' , +"..£^.1 -O7.® (13)
dl
d(o
=(T.- r.j a„„
TCI phuong trtnh (12),(13) m l hinh dfing co dupc x i y dung trong MATLAB/SIMULINK nhu sau:
Dl S^O
- nlu S > 0 chpn u sao cho 8 < 0 - neu S < 0 chpn u sao cho S > 0 - nlu S = 0 chpn u sao cho S = 0 Thay e = y - r = Xn-r vao (15) ta cd:
S=/(i:)tg(i)«+«,,(i.-r'i+...ta,(j,-r)+«,(j,-') W - N l u S > 0 thi
"<[-/W-''rik-'''')---'^('.-''')-«,('rf)]'?W (18)
- Neu S > 0 thi
u >[-/W-».,h - ' " l - - - " , ! ' , -*^)-«.(ir')]/«(') (19)
2.2. dng di/ng diSu khiin trugt vio dldu khitti dinged khdng dong bi 3 pha
la xic djnh 2 m^t trUdt S^, 8 2 sao cho t r l n in$t trupt ddng d i | n i g j t i l n v l 0 v i momen difin tCf cQa dpng cd t i l n v l g i i tri d i t T^gf.
Chpn m i t trupt n h u sau:
S., = M (20) 8 2 = T . - T,« (21) Trong d d :
- ltd l i t h i n h p h l n ddng difin dpc true d(A) -TB l i momen difin tU cOa d | n g cd (Nm) -Trei l i tfn hifiu d i i u k h i l n cDa vong d i l u khiln Vk d l dUng phUdng p h i p PI (Nm)
,, d-' d- S = 7e + a, , —
df -' dl
dt^ d- rf-' d S = ——e + a , ——-e+ ... + «„ — e
df dt'-' dl (15)
<*-S- •A
(22)vdi ^p _ ^ , l i c i e h i n g s l thUe dupc chpn tCl th(;c nghifim. s l i t d i n tU Laplace
L u i t d l l u k h i l n dupe xao dinh nhu sau:
TCI phUdng trinh (9) v i (20) ta ed:
di. 1 L 1 5i = —— = i + to-^i H u^ (23) D l Si = 0 x i c djnh l u i t d i l u k h i l n ^sd sao cho Si = 0
Hinh I.Sddi chl tiit mi hinh ding cd 2. B i l u khlln trU«t
2.1. Nguydn If dHu khiin trugt Xlt h i thing phi tuyln Jf=l(x) + g(x)u
y = h(x) = x. (14) Gpi r l i tfn hifiu dfit v i e = y • r l i tfn hifiu sai Ifieh.
B l e(t)->0 khi t -> 00, xie dinh luit dilu khiln u sao cho ngd ra bim theo mfit him nio dd eho trudc.
Mfit trupt l i mfit da tap trong khlng gian n chilu xic djnh bdi S = O.trin mjt InJpl e(t)->0 khi t-^m.
d
=^".1 "t-Ji—i^-a-^i,,^ -ajign(S,)
=> 5 i = -ajign(S,) Chpn he s l : a = 2.8
TU phUdng trinh (13) v i (21) ta c d :
K4-0J
L I . I(20 (25)
(26)
X i c djnh lufit d i l u k h i l n u d l dua c i c qu9 d^c
D l S i = 0 x i e djnh l u i t d i l u k h l l n M „ sao Choi S! = 0
£J. J, \ 1
i . T.' I.Tgp chf GTVT 4/2012
If
^S2=-bsign(.S,) (28) Chpn hfi s l : b = 1.7
^id
Thay v i o phUdng trinh (24) v i (27) ta ed:
««( = " I ' . j - <aO|',i - asigniS,) (33)
o,o,+a,D,(^ Oj+SMi/^^+fl,/ •Hi«i,-ijig?i(Sj) (29)
TU c i c phuong trinh t r l n ta x i y d y n g dupc mfi hinh b | d l u k h i l n trUpt trong MATLAB/SIMULINK nhu sau:
mnh 2. Sd dd chl Hit khdi bi diiu khiin 2.3 B i l u k h l l n trUpt d f n g c d d i n g b$ vdi bfi h l | u chinh PI
Hinh 3. Sd di mi phdng dldu khiin trugt ding cd ddngbicdbiPI
3. K i t q u i m 6 phdng
3.1. Cic thing sd ding cd ddng lim md phdng nhu sau
C l n g s u i t dinh mUc: P = 750w; T i n s l f = 50Hz;
S d d l i cue 2pc=2; 8 1 pha m=3; Difin trd Stator RB = 3 . 4 0 ; D l | n c i m Stator LB= IM = L . » = 6.5mH; TCl thfing '*'(•= 0.08 v»b: Momen q u i n tfnh J d . = 3.10-* k g m ' ; T i c d | d|it a>« = 314 rad/s; Momen t i f Tm = 2.5 N m . C i c thdng s l t h i l t k i t dupc chpn trpng hfi t h i n g d l l u k h l l n l i Td - 0.5ms; C i c hfi s l cDa mfit trupt l i a = , 2 . e , b = 1 .
3.2. etc kit qui mi phing
- KSt qui mi phing vdi chi di dinh mdc cOa ding cd ddng OSu khiin tnAft cd bi Pi:
" T r n T T'"
/ • • • • .
a 0 1 OJ 03 0.4 0.5 0.6 0.7 0 0 09
Hinh 4. Tic di cua dpng cd d chi dp djnh mtfc
A
- Oongdnnitd I- Dong (fian i«q j .
0 O03 a04 006 OOB 0 1 012 D14 OIS 018 0 2 Hsl
Hinh 5. Ddng di$n Isd vi Isq d che di dfnh mtfc
0 0D2 004 OOS 008 0 1 012 014 016 0.18 0 .
"(•1
Hinh 6. Moment cOa dpng co d chi di dinh mtfc
Hinh 7. Ddng dlpn ba pha cda ding cd d chi dp dinh mtfc
Nhan xet:
+ Tde dp a tien ve mgt trupt mdt c i c h ddn difiu, khdng vpt Id, thdi gian d i p Qng l i 0.35s.
+ Dong difin md may nhd, k h o i n g 4A, sau k h o i n g thdi gian 0.06s ddng dat dinh mQc l i 3.2A.
+ Momen difin dat gia trj x i e i i p sau k h o i n g 0.16s + H d thdng dat ehdt lUpng tdt, d i p Qng nhanh, khdng vpt Id, khdng c6 sai s d xac l i p .
- Kit qui md phdng khi thay dii dc thdng si da ddng cd dtfng diSu khiin trupt cd bp PI
Bi k h i o s i t k h i n i n g d i p Qng va tfnh bdn vQng cua hfi thdng didu khidn, ta thay ddi cae thfing sd cQa ddng c d b i n g each cho thfim c i c thfing s d nhu sau:
Fib = 0.167; l_sd = 0.007; Lsq = 0.007; Rs = 0. 3;
J = 0.0001314;Tm =1.274; Pc = 2;Tsd =Ud/RB;
T«q = l-sq/Rs.
Kdt q u i nhu sau:
. . . j . .
...f. 4" ...j. • f
" j — TocdodtfMM 1"1 Toe do W 1 i j j i 1 • j j : 1 0 1 03 0 3 04 0 5 0£ 07 OB 09 1
Hinh 8. Tde di ding cd khi thay dii thing sd
j l I KHOA HQC - CONG N G H E
S 4 > S
• I : ! :
; • • •
\ \ \ i
- Dong tented 1
— Ooagditnisq f
i 1 1 OIC Q£I4 O t E CLdS 0 1 0 1 2 0 1 4 0 1 6 0 1 0 0.2
1 M
Hinh 9. Ding / u vi h, khi Ihay doi thing sd
"
J l i i <
T 1 1 1 I 1 r-" ' ' 1 : 1 — MorMnA«nT« 1
b:tr~«.-_L-^..j i ; j ^- ': i -
OiQ O W 0 0 6 OOB 0 1 0 1 2 O U 0 1 6 0 1 8 0 2
Hinh 10. Momen ding cdkhl thay dii thdng si
Hinh 11. Ding dl$n ba pha cua dpng cd khi thay dii thing si
N h i n xdt:
+ Tde dfi <o tidn vfi m$t trupt mfit e i e h ddn difiu, khdng vpt Id, thdi gian d i p Qng l i 0.35s
+ Ddng difin md m i y nhd, k h o i n g 2.6A, sau k h o i n g thdi gian 0.07s d^t djnh mUc l i 1.85A
+ Momen difin dat g i i trj x i e Ifip sau 0.18s + Hfi thdng d^t ehdt lupng tdt, dap Qng nhanh, khdng vpt Id, khdng cd sai sd x i e l i p .
- Kit qui md phdng khi thay dii tii cua d0ng cd dtfng didu khiin trtfpt d bd PI:
' . : ; ] '
1 \ : : ; ;
M i i ; i (
\ — : : ;
iKdadMWrtr 1 Toe do w 1
....
1 i i 1 i i i i ; 0 0 3 04 06 OB
Hlnh12.TScdi
••^ .^ ^ •
cia dingca khi thay dii tii
-J-A-
-f.
•: t : f
1 Ooaqdnnnd |
— 1 — DMgMniM) \ — i
i- i j . >••
0 9 8 0 9 0 5 0 9 9 0 9 9 S 1 tOOS 1 0 1 1JJ15 MH 1.03S IE
• U I
Hinh 13. Ddng dlin Uvil,^kht thay dii til Nh$n xdt:
+ Tde dfi Q tidn vd m i t tn/pt mfit c i c h ddn difiu.
khdng vpt Id, khi ddng t i i tde dO g i i m xudng 295rad/s
titfr\ r iTm Y'"!
0.9B 09es 099 Q9B5 l O E 1-01 1JI15 IJQ IJBi
Hinh 14. Momen cua ding cd khi thay dii
2 0 -2
j - i
— D o n g a
— Dong lb
— Dongtc
i i f-
: -*~-v
..ij<^ Xbi^
V r
\ws 1.01 1015 1.02 un Hinh 15. Ddng dl$n ba pha cua ding cd ftft doi til
nhung d^t g i i trj x i c l i p sau k h o i n g 0.6s + Ddng dlOn md may nhd, k h o i n g 0.02A kiii chita cd t i i va khi cd t i i sau k h o i n g 0.015s thl dat g i i t^
x i e l i p 3.2A.
4- Momen difin dat gia trj x i c l i p sau 0.005s + Hfi thdng dgt ehdt IUpng tdt, d i p Qng nhanh, khdng vpt Id, khdng cd sai s d x i c lOp.
4. Kdt lufin
Kdt q u i md phdng cho thdy:
- Hfi thdng dieu khidn trupt d i thidt kd c6 ciiSt lupng tdt v i bdn vQng ddi vdi sp thay ddi e i e thfing sd cOa ddng ed trong pham vt eho phdp.
- BO didu khidn PI m d i p dgng trong hO thtfng didu khidn trupt co thdi gian dap Qng nhanh. -^
' Hfi thdng hoat ddng dn djnh v i k h i bdn v i J n g ^ ' sp thay ddi e i e thdng s d dfing c d . Didu n i y c h Q n ^ bd didu khidn PI md da thay t h d tdt bfi dldu k h i d n | ^ PhUdng p h i p didu khidn trupt dfing cd ddng b ^ thd Qng dyng vao thpc t d didu khidn ddng cd 6 ^
bfi 3 pha trong cong nghidp Q v T i l lifiu t h a m k h i o
t l ] . Nguydn PhUPng H i (1996) DiSu Khiin Tii Ddng. NXB Khoa Hpc vi K^ Thuit.
[2]. Nguydn ThUdng Ngd (2005) /.^ Thuyit Diiu Khiin Ttf Ddng Thdng ThUdng vi Hi$n Dpi. NXBKhOB Hpc vi Ky Thuit.
[3]. NguySn Doan Phudc, Phan X u i n Minh, Hin Thanh Trung (2003) Ly Thuyit Diiu Khiin Phi Tuy^
NXB Khoa Hpc vi Ky Thuit.
[4]. Nguy§n Phung Quang (1998) Didu Khiin Tif Ddng Truyin Ding Didn Xoay Chidu Ba Pha, NXB Giao Dtfc.
[5]. A.D.Karlis (2004) Comparison of the FieUOfi- ented and Direct Torque Control Methods for / n d « ^ Motor used in Electric Vehicles. Democritus Univer^
of Thrace, Greece.
[6]. J.C. Trounce (2(M)1) Comparison BySimuisiBR of Three -Level Indudon Motor Torque Cor^
Schemes For Electric Vehicle Applications. Universal of Canterbery.New Zealand.
[7]. W. Perruquetti, J . P . Barbot (2002) SlkSng Mode Control In Engineering. Marcel Dekker.lflC-.
New York. i