KHOA HOC - CONG N G H t Q
DIEU KHIEN OONG Cd KHONG OdNG BO XOAY OHilU 3 PHA
• •
BANG PHUONG PHflP
TUn THEO TU THONG ROTOR
ThS. Le QUOC DUNG Khoa Cong nghe TUdgng - TrUdng Dgi hgc Diin lUc
Tom tat: Trong tdt ca cac logi mdy dien xoay chieu thi dgng co khong ddng bg, ddc biet la logi Idng sdc ditgc sddung pho bien nhdt trong cong nghiep. Ddy Id logi dgng ccfco cdu tgo dan gidn, ben vdng, gid thanh re, hogt dgng khdng cdn bao dUdng bao tr'i vd co ddi cong sudt rong td vdi ma Ivtc tdi vai MW. Logi cdng sudt nhd thi co cd logi dgng cO mot pha, nhUng cac dgng coba pha hay dUgc sddung nhdt trong cac he truyen dgng co dieu chinh tdc do. Bdi bdo ndyse trinh bdy phuang phdp dieu khien vecta gidn tiep tUa theo td thong rotor va cac kit qud tinh todn mo phong mgt dgng ca thUc ti'.
1. D a t van d e
Trflde day, d d n g eo m o t chieu la loai ddng eo dflpc fla d u n g nhat vi nd de dieu khien. Nhflng ke t f l khi xuat hien phflOng phap dieu khien veeto thi viee dieu khien d d n g ed khdng d d n g b d eiing t f l d n g t f l n h f l viee dieu khien d d n g ed m p t chieu. Cung vdi sfl tien bd cua edng nghe vi dien tfl, cac bien tan do nhieu hang khae nhau san xuat, ed dai cdng suat rdng da dflpc ban rdng rai tren thi t r f l d n g vdi gia thanh ha. Vi vay, ngay nay, eae ddng ed khdng d d n g b d dfldc sfl d u n g rpng rai trong cdng nghiep la m o t xu the tat yeu. Do d d viee nghien eflu eae phflong phap dieu khien la m d t yeu cau rat quan trong.
2. M d hinh dong cd khdng dong bd trong he toa do d - q
Trong m o t he truyen d d n g cd dieu ehinh tdc do, bao g i d eiing cd cac mach vdng dieu ehinh nen can thiet phai xet den qua trinh qua dp cua d d n g eo. Ben canh dd, dieu khien d d n g ed bang p h f l d n g phap dieu khien veetd deu dfla tren m d hinh d d n g ed t r o n g he tpa do cf - q. Vi the, ta can xay dflng m d hinh d d n g co khdng ddng bd trong he tpa do d - q. Ve co ban, ta cd the coi d d n g co khdng d d n g b d la m o t may bien ap ed cudn t h f l cap quay. Md hinh d d n g cd cd the dfldc m d ta bdi eae p h f l d n g trinh vi phan eua eae hd cam bien thien theo t h d i gian. Nhflng md hinh n h f l vay la rat phflc tap. G. Kron da de xuat m p t phep chuyen ddi cae bien d ea stator va rotor ve m d t he tpa dp quay d d n g b d vdi t f l trfldng. Day chinh la he tpa 66 d - q rat quen thude trong dieu khien veeto.
2.1.Phep bien dd'i he toa do
Ta da quen thude vdi ba he toa d d : He toa d d dflng yen ia,b,e) - ba true hfldng theo ba cudn day pha stator.
he tpa dp {a,b) - tam trung vdi he toa dp {a,b,c) va true a trung vdi phflong ngang, true b t h i n g dflng, he toa dp {d,q) - tam trung vdi hai he toa do tren va true d hfldng theo true t f l t h d n g rotor. Muc tieu eua chung ta la bien ddi cae bien t f l he toa dp (a,b,e) sang he tpa dp {a,b) va he tpa do {d,q) va ngfldc lai.
Cupn day Tr\ic rotor
Cuon day pha a
Cupn day plia c
Hinh 1 Bleu dien cde true toa dd
2.1.1 .Phep bien doi giijfa toa do (a,b,c) va t9a do (a,b)
1 ^ . 1 ^ .
.^ - - ^ ( ' . . +2!.J
S KHOA HOC • CONG NGHE
2.1.2.Phep bien doi giij'a tpa do {a,b) va {d,q)
V. ^ = J .^ cos,?. - ! . , sm^. U, =!., cos,?. -I-;;, sm i?.
'• .^ = ^6 sin ^ . + ! „ cos a, K, = - ! . , sm a, -1-!,^ cos a^
2.2.Md hinh ddng hoc cua ddng cd khdng dong bo trong he quy chieu quay dong bo
Phfldng trinh dien ap stator:
1^ ^ = -R ^.^ + — ^.^ - cj'// i^^ = -^J... + — '^^ + ^ . ^ «
Phfldng trinh dien ap rotor:
0 = K^,^ + —'Z',^ - («. - «J^.»
at
Hinh 2 trinh bay so dd mach dien thay the tfldng dfldng cua md hinh ddng hpc ciia ddng co khdng ddng bd thda man 4 phflOng trinh tren . L/u diem dac biet eua md hinh ddng hpe eua ddng ed khdng ddng bo trong he tpa do d - q la tat ea cae bien hinh sin trong he tpa dp dflng yen deu trd thanh eae dai Iflpng mdt chieu.
Hinh 2 SO dd mach diin thay thetuang dUang eua ddng ea khdng dong bd (a) theo true q, (b) thea true d Tfl hinh 2 ta ed the viet dflpc cac bieu thflc tfl thdng mde vdng nhflsau:
Ket hop tat ea cac bieu thflc tren, ta cd md hinh qua do ve dien theo dien ap va ddng dien dflpc viet dfldi dang ma tran nhflsau:
R.+:-L. 01,1, JX„ a,L, ii^ (o),-01. )X_ R,-*-iL, (<".-ty. X.
-(OI,-oi.X, '". -(^y,-fi', X. ^+-'i.
trong dd, s la toan tfl Laplace va vdi ddng co rotor Idng sdc thi u = u = 0.
rd rq I!
"-
0 0
_
24 Dien A Ddi song
Bieu thflc momen ciia ddng co:
M
^ ^ k i - )
trong dd p la sd ddi cflc cua ddng co khdng ddng bd.
2.3.Tuyen tfnh hoa mo hinh dong cd
Cac phfldng trinh tren md ta ddng co he phflong trinh phflc tap, ed dp phi tuyen eao dan de'n mot so dd rat phflc tap va khd cd the tdng hpp mach theo cac phflong phap thdng thfldng dflpc. Do vay ta phai dimg phfldng phap tuyen tinh hoa quanh diem lam viee. Gpi diem lam viee dn dinh cua ddng ed la diem ed tdc dp wO flng mdmen tai mO (va gpi tat ca cae thdng sd tai diem do deu ed chi sd dfldi la 0). He thdng xe dich quanh diem lam viec dn djnh mot Iflpng rat nhd keo theo tat ea cac dai Iflpng ciing deu bi thay ddi mdt Iflpng rat nhd nao dd, vi du w/ = wo -(- Dw.
Hinh 3. Md hinh ddng ca khdng dong bd trong hi toa dd d-q Thay tat ca eae dai Ifldng bien ddi dflpc vao cae phfldng trinh da thie't lap: i = i „+D\ ,w = w/ -i-Dw, m =
r- :p • r^ sq sqO 5q o
m^-l-Dm ... ta dflpc:
1+7-^
Z
Jii.., =<i),,.A!, -1-J.^.iiry. +—— -A%-(—- A ^ „
l-o- , \-a , 1 .
Cl+Tj^A^=I^Ii,^
Ao). =
^ . i
'/u KZ
3 ^ ^ ,oA^l
- M . ^ A v ^
Tfl dd ta cd sd dd cau true ddng co da tuyen tinh hoa tren hinh 4.
am.
^^rtl-HEf^Mi]
Hinh 4. So do md td ddng ca trin hi tog dd d-q dd tuyen tinh hod quanh diem Idm viic
KHOA HOC - CONG NC
3. PhUdng p h a p dieu khien vectd gian tiep - FOC Oieu khien vectd gian tiep dflpc d u n g p h d bien trong edng nghiep. Phfldng phap dieu khien vectd gian tiep dien hinh la p h f l o n g phap tfla theo t f l t h d n g rotor (FOC) cd m d hinh t d n g quat n h f l tren hinh 5. Dfldi day, ta se di sau hdn ve m d hinh he FOC. M d hinh dieu khien ddng ed dien khdng d d n g b d theo phflOng phap FOC eung t f l o n g t f l n h f l dieu khien d d n g eo dien m d t chieu vdi hai nhanh dieu khien kich t f l va m d m e n .
l.i'
^^-(gK'^
Nluinh kith ur
Rl.. N'hanlil momen I
-4
Hinh 5.Dleu khien DCKDB theo phuang phdp FOC Nhflng trong he t h d n g thflc, n g u d n eung cap cho ddng eo la ba pha abe va cae dai Iflong d d n g phan hdi do ve dfloc eung la tren toa d p abe, vay gifla hai he toa dp d d phai ed eae b d chuyen ddi toa dp, eu t h e la t f l b d dieu ehinh Iflpng dat de thanh tfn hieu dfla vao bien tan nudi d d n g eo phai cd m d t b d chuyen ddi dq/abe t f l cac dai IflOng d d n g d o dfloc dem phan hdi ed m d t bd chuyen ddi ngflpc t f l abe/dq.Van de nay sinh la khi chuyen ddi gifla hai toa d p can phai cd gde lech gifla ehung ( q j . Tfl day cd hai giai phap:
- Lay q bang each tich phan tdc dp quay w^ eua ddng, ap stato hoac eiia t f l t h d n g rdto.
- Vi he toa do quay d q cd true thflc gan vdi y^ nen gde q ed t h e xac dinh bang each t i n h gde cua y^ tren he toa dp ab.
Gde q dung de chuyen toa dp t f l tinh sang quay theo chieu thuan hoac ngflpc (abddq hade dqdab) . q^ cd the dflpc tinh trfle tiep q^ = arctg(y^) hoac gian tiep: q^ = w^.t -i- a^^
4. Tong hdp cac bo dieu chinh Tdng h p p he theo ham ehuan:
Cau true he g d m cac mach vdng dieu ehinh le thude lan nhau (cau true mach vdng p h u h o p vdi cac he dieu ehinh cdng nghiep).
Nguon nn^it chieu R,. . Rl..,
,„
) ~ i
1 1 ""•
Ri.4
V i . b . i .
\ a , b , c u . .
1 t - 1 . .
M
Nghicli liru dv,H: lap
I ' W M
-^J
Hinh 6. Sa do hi thong dieu chinh ddng diin vd toe dd eua ddng ea trin dq.
-jR^—R- ^ R . , h _ . , . ( . , , ^ y
f
(')
\1 Hinh 7.Cdu true tong qudt mdt hi dieu ehinh
4.1.T6ng hdp Ri va R
- * • • s q w
So d d tren edn nhieu phflc t a p mac dii da b d b d t khau nhan va ehia.Ta edn phai tiep tuc lam don gian b d t bang cac gia thiet sau:
- Gia thie't dieu chinh tdc d p ddng eo d mflc dfldi tdc dd dinh mflc. Khi dd gidng n h f l dieu chinh toe d p ddng co m d t chieu, ta se theo luat t f l t h d n g khdng ddi nen nhanh t f l hoa yrd cd Dyrd = 0 ta suy ra Disd = 0. Vay ta ed :
l-cr
^^j^^,,=-{^^>.,,l^'i', -| ^ ^ ' - - o p'" + ^ ^ . ,
1T.V^r.J^"
3 i ,
Hinh 8. So do edu true khiy = const Bien ddi so d d :
Hinh 9. Md hinh sau khi dd bien doi
Tdng hpp mach: mach dieu khien g d m khau dieu ehinh tdc do va khau dieu chinh ddng dien. Coi khau nghich Iflu ed quan tinh rat nhd, ed 1ms (T^^= 0.001).
O a t :
^ KHOA HOC - CONG NGHE
VrdJ.
\-a
^^T„p
r.
B — VrtO * Isdo
P^^ U . ^ . - i
(\^AT„) + T^p UT^pC = 21 J
>D = —+.4
< > H . K , 1 I „ , P
-±<^
p-D 'Hinh ; 0. Tong hop crfc mach vdng ddng diin vd toe dd Nhan tha'y t f l d n g t f l n h f l khi t d n g hpp m d hinh d d n g CO m o t chieu, khau phan hdi B gidng khau phan hdi sfle dien d d n g . Ma ta biet quan t i n h eiia khau nay thi rat n h d so vdi quan t i n h co nen m d t each gan d u n g ed the b d qua d e t d n g hpp dfldc.
/ i , -
a-LXl + T^pX^+P)
c-i,o+r^^)a+—;?)
Theo tieu chuan tdi flu m d d u n ta cd:
Ri_
^ . + 1 p-t-D
'^A ^ ^ ^ " 1 ^
N h f l vay theo luat dieu khien m d d u n tdi flu ham truyen kin eiia mach vdng ddng dien la:
F = 1
\ + 2T„,p + 2iTj p'
De d o n gian bdt cho phan t d n g hop sau ta bd bdt t h a n h phan bae 2 eiia F,^:
1 1+2 J.,
Ham truyen ddi t f l d n g cua mach vdng tdc d p Rs : - 1 C
'^"° \+2T„,.p'p
Ddi vdi mach dieu chinh tdc dp, do quan tinh eua he t h d n g Idn nen khi tdng hop theo ehuan tdi flu ta khdng the dat hang sd T_. cd miligiay n h f l k h i a p d u n g eho mach vdng ddng dien dflpe.Neu datTc qua nhd se gay hai bat loi: t h f l nhat de tdc dd dn dinh t f l 0 tdi dinh mflc trong khoang thdi gian miligiay thi ddng sinh m d m e n lue d d phai cd gia tri rat Idn, cd vai nghin ampe, dieu nay khdng the chap nhan dflpc. Thfl hai l a t i n hieu dat eua mach vdng ddng dien latin hieu dau ra eua mach vdng tdc do. Neu tan sd dao ddng eua mach vdng ngoai dfla vao eiing xap xf tan sd dao ddng ciia mach vdng trong thi he t h d n g de mat dn dinh. Ta phai lam sao eho ehu ky dao ddng eua mach vdng trong rat nhd so
26 Dien A Ddi song
vdi mach vdng ngoai thi he kin m d i dam bao dn dinh dflpc.
Ap d u n g tieu chuan m d d u n tdi flu ddi xflng cho mach v d n g tdc d p ta dflpc:
1 1 - ^ , .
.^.R. I + ^KP l-^2^„,.p p ST^'^p'-^ST^'p^
^ _(l-l-2r„,.y).a-H4r,^)_ 1 l-i-2T„,.p 1-1-47,;.
Neu d d n gian chi lay R^ la khau PI:
c.sr^'-p
4.2. T o n g h d p Ri
D e giam b d t phflc tap t r o n g viec t d n g hop ta dfla vao ly luan sau: Khi khdi d d n g ta lam theo quy trinh nhfl may dien m o t chieu: sau khi dn dinh viee cap ngudn phia ki'ch t f l i^^ xong m d i cap m d m e n quay i^ nen cd the coi khi dfla i^^ vao t h i mach phia phan flng chfla ed hoat ddng. Nhd vay ta ed the b d qua anh hfldng eua phfa phan flng trong qua trinh khdi d d n g .
Lue d d mach v d n g dieu chinh ed dang:
— « 0 - ^ . i
T m j r <'L,
<t
T 1+T,P
An,
Aj.
Hinh 11. Nhdnh kich tdcua md hinh ddng ca trin hi toa dd d-q.
u^ •
,M
oLy^
\
u
l - c r (U.fl
[E
f
I-
iK..3U,p.- : u j p -
Hinh 12. Bien doi nhdnh klzh tU
F =
D o n gian b d t va lay
K., 1 r ^J. 1
" l + r , / ' a i , \ + T^p (L, (l + T,p)(\ + T^p)
^ . . =
''"'i'"'}
Suy ra
theo ham chuan bac hai
KHOA HOC - CONG NGHE [^
5. Tinh toan va m d phdng 5.1.Tinh toan
Cae t h a m sd eua d p n g cO:
Pa. = 5 , 6 k W U , ^ = 220V l , ^ = 1 8 A n , ^ = 1 4 6 0 v / p h r = 5 0 H z
~ dm
R = 0,260 R = 0,440 X = 0 , 6 0 X = 1,40 X
5 ' SC r o ' m
= 1 5 0 J = 0 , 6 k g m ^
Ta di xay d f l n g m d hinh cac ham truyen theo phan tfch d t r e n :
Oien cam stato:
L = L +1
s SO m
X . , + X ^ 0,6 + 15 2.71.50 2,Tl.f
Dien cam rotdr:
L = L -i-L
0,049H
ro m
X ^ + X ^ 1,4 + 15 27t.f 2 i c 5 0
0, 052H
Hang s d t h d i gian rdto:T=L/R^=0,118 Hang s d t h d i gian stato: T = L / R =0,191
a = l-
L.L,L,
= 0,117He sd t f l tan :
M d t sd he sd can t h i e t khae:
1 - a
—^— = 158,21 OL
- = 171,97 aL
T. 0,118 L ~ 0,0477 3 p , L
2,47
^ + 1 ^ = 1 0 8 , 7 r, = 0,0092
— =
8,47T
2L. 2,75 ^ = 3.33
J
Bd nghjch Iflu: tuy t h u p c vao t y le dien ap dieu khien, dien ap ra va dp tre khi thflc hien chuyen ddi lenh dieu khien ma ta cd eae t h d n g sd K „ T ,. Gia sfl quan t i n h b d
^ nl nl ^
nghich Iflu la 1ms tflc 0,001 giay, khi dien ap vao la lOV thi dien a p r a la 220V tflc la T =0,001 va K = 2 2 0 / 1 0 = 2 2 .
" nl ' nl
Ta chpn:
^M = ^rf« cos<p= 18 0,816 = 14,68(^) A,o = ^A, sin (p= 18.0,578= 10,404(^)
Xua't phat t f l : <^r - - ^ w ' j j
^ , ^ 0 ^
^n,^^ 0,047.10,404
D o d d :
^ ^ L J , ^ _ 0,047 14,86 V/^J^ 0,027 0,118
T,.a}^ 0,118.152,8
219,2
= 0,027
1-0,117 '0,117.0,0047
.0,027+14,68 =18,9
CJ'^'^<'_^-'PI = 215.2.^^ = 0.247 2 1 . / 0,6
D= — + ^ = 1 0 8 , 7 + 2 1 9 , 2 = 327,9
Bd dieu ehinh tdc d d : i?„ = 1 l+2r„;,jCi 1 + 47,/!
C 87-/;, \+T,p
1 l+2T„.p l + AT,p
D o n gian hoa ' ' - c %T^p \^T,p Neu l a y T = 0.1s t h i :
1 + 2(0.001+2 0,1)0 1+0,44/:' Rni = ^ 5 — < - ^ =
0,247.8.0,1'/J 0,0197/>
^ :
Rl..
1 + - D
• ' K Bd dieu ehinh : 2 — ' ' — T . p
DcrL. "^
1 + — ^ p 327,9 ^ I T 327,9.0,1170,0497
^ 327,9+p 0,001? '^'^^^P
«,.=
Bd dieu e h i n h :
2^^r,p aL "'^
1+0,0092? _l+0.0G92p J 2 O , 0 0 9 ^ a 069?
0,117.0,0497 ^
5.2.Md phong
Viec t d n g h p p cac ham truyen Risd, Risq, Rw deu dfla tren phflOng phap tuyen tinh hda, bu va lam trdn...Chlnh vl vay de cd t h e dfla vao flng d u n g trong dieu khien d d n g eo ta can phai tien hanh m d p h d n g va kiem nghiem eho d u n g dan. Dfldi day ta se lan Iflot kiem tra eae bd dieu khien nay:
S KHOA HOC - CONG NGHE
5.2.1. Bo dieu khien Risd
Hinh 13.Ddp Ung ddng l^^cua bd dieu khien ddng R^
5.2.2.Bo dieu chinh ddng Risq
. ^ Isq C u r r e n t
0.01 O 02 O 03 O 0,a DOS O 06 O 07 O OS O 09 0 1 t(S)
Hinh 14. Ddp Ung ddng 1^ eua bd dieu khien ddng R^^
5.2.3. Bd dieu chinh tdc do
1S0O 160O i*cx>
iroo I oao soo
«oo 400 300
A . \ ' ^-^loc f \ ^
1
1 j 1
1
i
1
Hinh 15. Ddp Ung toe dd eua bd dieu khien R Nhin ehung cac bd dieu khien ddi vdi cae thdng sd deu eho dap flng kha phu hpp vdi cac tieu chuan de ra.
Tiep theo ta se tien hanh md phdng cac thdng sd ddng, ap, mdmen ddi vdi md hinh ddng ed tren he true d-q.
Md hinh eiia ddng ed khi xet tren he toa dd dq phai thdng qua mot phep bien ddi toan hoc de dfla tfl tpa dp aP ve tpa dp dq. Ta cd the dung md hinh da xay dflng tfl hinh 4. Thay eae thdng sd da tfnh toan vao phan chfla cae Ifldng dq ta dflpc md hinh ddng eo nhfl sau:
™ ~ turn f
28 Dien A Ddi song
Hinh 16. Cde thdng so ddng ea
Va sau khi ghep vdi eae bd dieu chinh Risd, Risq, va Rw, ta cd md hinh md phdng.
& V en^
h-o-EHl
• - » i i «n
Scope
n
S:oMl
fl
Hinh 17. Md hinh ddng ca vdi cde bd dieu chinh Tien hanh mo phong va do cac thdng so:
- Khi ehay khdng t a i : ta gia sfl cho tdc dp la 150, cho Mdmen can la 0, do eae thdng sd se dflpc cac dd thj:
Hinh 18. Tdc dd ddng CO khi khdng tdi
\
\
\ •
Hinh 19. Ddng diin I I Cic khdng tdi
Hinh 20. Ddng diin I luc khdng tdi
KHOA HOC - CONG NGHE [ 3
\
Hinh 21. Momen Idc khdng tdi
Khi d d n g tai, gia sfl cho Me=50
Hinh 22 - Md phong cde tham so khi ddng tdi
Hinh 23. Ddng diin Isd khi cd tdi
Hinh 24. Ddng diin Isq khi ed tdi
\
Hinh 25. Diin dp Usq
1
KC
/
Hinh 26. Diin dp Usd
Zi^.'- ^JB.^^
Hinh 27. Mdmen lue ed tdi 6. Ket luan
Tren day la ket qua tinh toan va m d phdng trang thai lam viec khi cd tai va khdng ed tai eua mdt ddng ed khdng ddng bd vdi sd lieu da cho. Vdi ket qua thu dfloe, tae gia hy vpng rang phfldng phap dieu khien nay se dflpc ap dung m d t each hieu qua vao thflc te de dieu khien ddng cd khdng ddng bd.
7. Tai lieu t h a m khao [1] Bimal K. Bose
Modern Pow/er Electronics and AC Drives, 2001 [2] V Chitra, and R. S. Prabhakar
Induction Motor Speed Control using
Fuzzy Logic Controller, World Academy of Science, Engineering and Technology 23 2006
[3] R.Toufouti S.Meziane ,H. Benalla ,
Laboratory of Electrical Engineering University Constantine Algeria
Direct Torque Control for Induction Motor Using Fuzzy Logic, June, 2006
[4] Moleykutty George
Faculty of Engineering and Technology, Multimedia University Melaka Campus, 75450 Melaka, Malaysia
Speed Control of Separately Excited DC Motor, American Journal of Applied Sciences 5 (3): 227-233, 2008
[5] DembaDiallo, Member, IEEE, Mohamed El Hachemi Benbouzid, Senior Member, IEEE, and Abdessalam Makouf
A Fault-TolerantControlArehitectureforlnductlon Motor Drives In Automotive Applications, IEEE TRANSACTIONS ON VEHICULARTECHNOLOGY, VOL. 53, NO. 6, NOVEMBER 2004