• Tidak ada hasil yang ditemukan

Intuitionistic Q-Fuzzy Ideals of Near-Rings

N/A
N/A
Protected

Academic year: 2024

Membagikan "Intuitionistic Q-Fuzzy Ideals of Near-Rings"

Copied!
11
0
0

Teks penuh

(1)

Vietnam Journal of Mathematics 40:1(2012) 95-105 V i e t n a m j l o u r n a l o f M A T H E M A T I C S

©VAST

Intuitionistic Q-Fuzzy Ideals of Near-Rings

J a n a r d a n D . Y a d a v ' a n d Y a s h a s h r e e S. P a w a r ^ ' 5 . G M. College. Kuiad, Maharashtra, India

^Department of Malhrmotirs, Shwaji University, Kolhapur, Maharashtra, India

Received July 30, 2011 Revised October 23, 2011

Abstract. In this paper we introduce and study the concept of intultionistic Q-fuzzy ideals of near-rings. Also we derive some properties of intultionistic Q-fuzzy ideals of near-rings.

2000 M a t h e m a t i c s S u b j e c t Classification. 03F055. 03E72, 16Y30.

Key words. Fuzzy set. intultionistic fuzzy set, Q-hizzy bet. intultionistic Q-fuzzy set, fuzzy idecJ over Q, intultionistic Q-fuzzy ideal, near-ring.

1. I n t r o d u c t i o n

Near-Ring is a generalized s t r u c t u r e of a ring. The theory of fuzzy sets was intro- duced by Zadeh [16], T h e fuzzy set theory has been developed in many directions by the research scholars. Rosenfeld [15] first introduced the fuzzification of the algebraic structures a n d defined fuzzy subgroups.

The intuitionistic fuzzy sets (IFSs) are substantial extensions of the ordinary fuzzy sets. IFSs are objects having degrees of membership and non-membership such t h a t their sum is less t h a n or equal to 1, T h e most important property of IFSs not shared by t h e fuzzy sets is t h a t model-like operators can be defined over IFSs. T h e IFSs have essentially higher describing possibilities t h a n fuzzy sets

The notion of intuitionistic fuzzy sets was introduced by Atanasov [3] as a generalization of t h e notion of fuzzy sets. Biswas [4] applied the concept of

(2)

96 J. D. Yadav, Y. S. Pawar mluili(mi,slic fuzzy sets lo t h e theory of groups a n d studied intuitionistic fuzzy subgroups of a group. T h e riolimi of an intuitionistic fuzzy ideal of a near- ring is given by J u n , Kim a n d Yon [10], Also C h o a n d J u n [5] introduced the notion of intuitionistic fuzzy /^-subgroups in a near-ring a n d related properties are investigated, Kjizaiin, Yainak a n d Yilmaz [11] introduced intuitionistic Q- fuzzy /?-subgroupK of near-rings, Kim [13] introduced sensible fuzzy fi-subgroups of near-rings with res|KTl to fl-iiorm. Kim [12] introduced ituitionistic Q-fuzzy

^('iiii])riirK' ideals of semigroups. Davvaz and Diidek [6] defined intuitionistic fuzzy /7,,-i<l('iils of a ring and derived their properties. Davvaz, Dudek a n d J u n [7]

introduced ml nil ionisl ic fuzzification of //..-submodules in a ff^-module. In this paper wc introduce I lie notion of intuitionistic Q-fuzzy ideals of near-rings and iiivcsligalc some related properties.

^. D e f i n i t i o n s a n d p r e l i m i n a r i e s

\\V recall some definitions for the sake of completeness. T h r o u g h o u t this paper Q denotes any non-empty set and R is a. near-ring.

D e f i n i t i o n 2 . 1 . [9. II] By a near-ring we mean a non-empty set R with two binary operations " -|- " and " • " satisfying the following axioms:

(i) {R,+) IS a group;

(ii) {R, •) is a semi-group;

(iii) X • {y -\- z) = x • y -\- X • z ioT aW X, y. z £ R.

Precisely speaking, it is a left near-ring because it satisfies t h e left distributive law. We will use the word "near-ring" instead of '"left near-ring". We denote xy instead of i • y. Nole t h a t l O = 0 a n d x{-y) = -xy. b u t Oz 7^ 0 for x.y^R.

D e f i n i t i o n 2 . 2 . [1, 2, 8] An ideal / of a near-ring R is a subset of R such t h a t (i) ( / , + ) is a normal subgroup of {R, +);

(ii) RI C / :

(iii) (r + i)s-rs£ I for a l i i G / a n d r,s & R.

Note t h a t if / satisfies (i) a n d (ii) then it is called a left ideal of R.

If / satisfies (i) and (iii) then it is called a right ideal of R.

D e f i n i t i o n 2 . 3 . [U] A function n : R x Q-^ [0,1] is called a Q-fuzzy set.

D e f i n i t i o n 2 . 4 . [11] Let fi he a. Q-ftizzy set in fi a n d ( € [0,1], t h e n an upper Mevel cut of /j. is defined by

(/(W t) = {xeR\ ii{x, q)>t,qe Q}.

(3)

Intuitionistic Q-fuzzy ideals of near-nngs 97 D e f i n i t i o n 2 . 5 . [11] Let /i b e a Q-fuzzy set in H and t G [0,1], then a lower

t-level cut of fi is defined by

L(ir.t) = {x & R \ H{x.q) < t,q € Q}.

Definition 2 . 6 . [11] A n intuitionistic Q-fuzzy set A is an object having the form A = {{{x,q),i>x{.,•.q),\.^{x,q)) \x€R,q&Q}, where the functions//,4 : i ? x Q - > [0,1] and A 1 : RxQ -^ [0,1] denote the degree of membership a n d the degree of non niemliersliip of each element {x,q) G RxQ to the set A, respect n'cly, such t h a t

0<fiA{x.q)-i-XA{x,q)) < 1 for all J: G fi,q G Q.

Definition 2 . 7 . [11] A Q-fuzzv set /i is called a fuzzy fi-subnear-ring of R over Qif

(i) ii{x -y,q)> IIA{J^-q) A / i ^ ( y , q ) , (ii) ti{xy,q) > HA{X. q) A p,A{y, q) for all x,y € R and q £ Q.

D e f i n i t i o n 2 . 8 . [11] A Q-fuzzy set fi is called a fuzzy ii-subgroup of R over Q if

(i) p{x -y,q)> pLA{x,q) A HA{y, q), (;i\)p{rx,q)>iiA{x,q),

{m) p.{xr,q) > ij.A{x,q) for all I , y, r G i? a n d q e Q.

Definition 2 . 9 . [11] A Q-fuzzy set // is called a fuzzy ideal of R over Q if (i) p{x -y,q)> ^iA(x, q) A fiAiy, q),

{u) ii{rx,q) >HA{x,q), (iii) it{{x + i)y - xy) > ;x^(i, q) for all x,y,i e R and q £ Q.

3. I n t u i t i o n i s t i c Q - f u z z y i d e a l s o f n e a r - r i n g s

Now we introduce t h e intuitionistic Q-fuzzy ideals of near-rings as follows.

Definition 3 . 1 . An I Q F S A = (//>i, A^) of a near-ring R is called an intuition- istic Q-fiizzy subnear-ring of R if

(4)

'IS ,/ u. Yadav, Y. S. Pawar [i) li.\{x- !l.q) >l'A{r,<l}AlJ,A{y.']) '"id A ^ ( , T - ? / , g ) < A^(3:, 9) V A^(y,.7), (ii) ii.\(ni.q) > ii,\{.i.q)^ii.\i'h'l) an<l A^(j:y,f/) < A ^ ( x , q ) V AA(y,g) for all .r, // G /? and r/ G Q.

D e f i n i t i o n 3 . 2 . An IC^FS .1 = (/'/i,A/\) in a near-ring Ii is called an intuition- islic Q-fuzzy ideal of R if

(i) ihxlr -V,q) >/i.-\{i-.q)/\iiA{v,q) and A ^ ( x - y , 9 ) < AA(2r,g) V A>i(y,g), (ii)// \{g + x-y,q) = iiA{-'.q} »n<[ A^(y-l-X - ly. g) = A ^ ( x . g ) , (iii) /(.,(7-.r,f/) > //,^(,7:.(7) and XA{i.i.q) < A ^ ( x , g ) ,

(iv) /v ,((.r \' i)g - .ig.ii) >ih\{i.q) and XA{(X + i)y - xy,q)) < \A{i^q) for all .r, //. / e /? and q G Q.

If A = (//^,A^) siilishcs (i), (li) and (iii) then A is called an intuitionistic Q- fuzzy loft ideal of fi a n d H A = (//^, A^) satisfies (i). (ii) a n d (iv) then A is called an intuitionistic Q-fuzzy right ideal of fi.

E x a m p l e 3 . 3 . Let R = {a,b,c,d} b e a non-empty set with two binary opera- tions '•-!-" a n d "•" defined as follows:

- { - a b e d a b e d a a b c d a a a a a b b a d c b a a a a c c d b a c a a a a d d r a b d a a b b T h e n (fi,-l-.-) is a near-ring.

Define an intuitionistic Q-fuzzy ,scl. .4 = (/(4.A.1) in fi as follows fiA{(i,q) = 1, PA{b,q) = 1/3, ^lA{c,q) ^ 0, / i ^ ( d , q ) :^ 0, XA{a,q) = 0 . XA{b,q) = 1/3. A^(c.q) = 1. A,,((/.g) = 1 for all 9 € Q.

Then clearly A = (/x^. A..,) is an intuitionistic Q-fuzzy ideal of a near-ring R.

Basic properties of an intuitionistic Q-fuzzy ideal of R are proved in the following theorem.

T h e o r e m 3 . 4 . If A = (///j. A \) is an intuitionistic Q-fuzzy ideal of R then (i) p.A{0,q) >HA{x,q) and Ayi(0,g) <\A{x,q),

{ii) II.\{-x.q) - / ' . i ( . r , g ) andXA{-x,q) = A ^ ( x , g ) , (iii) P.A{X -y,q)> M/5(0,9) =» / / ^ ( x , q) = fiAiy, 9), (iv) A ^ ( i - y , 9 ) < A^(0,g) => XA{x,g) = XA{y,q) for all x,y € R and q £Q.

(5)

Intultionistic Q-fuzzy ideals of near-nngs ()9 Proof Let A = {iiA,X.\) be an intuitionistic Q-fuzzy ideal of R.

(i) liA{0,q) =fiA{x-x,q) > / / , i ( , r . 9 ) A ,/.,( r, y).

Therefore / i ^ ( 0 , 9 ) > /i/i(T,9) for all x G R and (/ G Q.

Similarly XA{0,q) < XA{x,q) for all a: G fi and q € Q (ii) |U,i(-a;,9) = / / ^ ( 0 - x . 9 ) > / M ( 0 , ( / ) A/i .1 (.;•,</) = / ( 4 ( a : . 9 ) .

Now/i^(x,9) = liA{-(-x).q) > in{-x,q) > fi \{r.q). Thus wc get/i>i(-3:,9) = pA{x,q) for all X G fi, 9 G Q.

Similarly A ^ ( - j , 9 ) = A.4(.r.q) for all x e R,q eQ.

(ill) \ V c h a v e / J A ( 3 - - y , q ) > t'.A{0.q). But ^.4(0,9) >^A{x~y,q). Thus PA{X- y.q) = liA{0.q).

Now consider

/i.4(x.9) = / M ( j - - y + y,9)

^ / ' . - i ( ( . i " - y ) + y,9)

> ^ A ( a : - y , 9 ) A / i ^ ( y , 9 ) - ^ A ( 0 , 9 ) A / i ^ ( y , 9 ) - / i A ( y , 9 ) -

Shnilarly we can prove t h a t fiA{y,q) > M.A(-1".9)- Hence fiA{x,q) — iJ.A{y,q) for

all I , y G fi. 9 e Q. • A necessary and sufficient condition for x — (x/>Xj) to be an intuitionistic

Q-fuzzy ideal of fi is given m t h e following theorem.

T h e o r e m 3 . 5 . Let R be a near-nng and xi be a charactenstic function of a subset I of fi. Then x = ( x / i X/) " a " intuitionistic Q-fuzzy ideal of R if and only if I IS an ideal of R.

Proof Let 7 be a right ideal of R.

(1) Let 9 G Q and x,y € R. T h e n we have the following three cases.

Case 1. Let x,y € I. T h e n xii^^Q) = l . X / ( y - 9 ) = l , X / ( a : - y , 9 ) = 1 and X'i{x,q) = 0 , x ; ( y , 9 ) = 0,xK^-y'l) = 0 . Therefore ^ / ( ^ ^ - y , 9 ) > X/(3^.9) ^ X/(y,9) and x^iix - y.q) < XJix,q)'^ X'jiy^Q) for all i , y G fi and 9 G Q.

Similarly we can easily obtain the following two cases Case 2. Let x ^ I a n d y ^ I.

Case 3. Let i . y ^ / .

T h u s i n a n y c a s e w e h a v e x / ( 3 : - y , 9 ) >Xi{Xiq)^Xi{y^Q) andx'iix-y.q) <

X%x,9) V X / ( y , 9 } for all x,y € R a n d 9 € Q.

(2) Case 1. Let y e fi and x€ I.

Sincey-|-3:-y G 7 for a l l y G fi and a; G / , T h e r e f o r e x / ( y + a ^ - y ) = 1 = X/(^).

i-e. X/(y + x-y,q) = l = Xi{x,l) a n d xliv + x-y,q) = 0 = x'i{x,q)-

(6)

100 J. D. Yadav, Y. S. Pawar fVf.vr 2. Let ,(/ G R and x ^ I. T h e n v/('/ + x - y,q) = 0 = Xiix,q) a n d

\/(,'/ + -'"-.'/.</} -- I ^ \y(,c,(/). H c i i c e i n a n y c a s e w e g e t ) i : / ( y + 3 : - y , 9 ) = X/{3:>q) and \){!/ + x y.q) = \'i{x,q) for all x,y e R and q &Q.

(3) Lei . r , / / € fi, ("H,S( / Let / G / .

SiiiiT / is a right ideal of K. (,i I- ?)y - xy £ I for all x,y £ R a n d i G / . TiieicfoH' \ , ( [ c -h /)// - .•7:y,9) = \,xii'-'l} = 1 a n d X ; ( ( ^ + *)y " ^ ^ - 9 ) = 0, \ / ( ' . g ) = '), T h u s \/((,( I i)y - xg.q) ^ \iii.q) a n d ^ / ( ( a : + i)y - xy,q) <

\'l{i.q) for all x.y.i € R.q € Q.

Co.'^r 2. Let ; ^ / , Then X / ( ( ^ + O/V - ^ y . ? ) = X / ( ^ 9 ) = 0 a n d X;((a; + i ) y -

•Ul.'l) = \;{'-'l)= I

ii<'i"<' \ / ( ( . ' ( ')y-•'•,'/.9) > \ / ( i , q ) a n d x / ( ( i + 0 y - 3 ; y , g ) < \',ii.q) for all .(•.i/,t £ a (I E Q. T h u s x = ( x / t X y ) i" an intuitionistic Q-fuzzy right ideal of fi.

Similarly if / is a lefl ideal of R then we can easily prove t h a t x = ( x / ' X / ) is an intuitionistic Q-fuzzy left ideal of R.

Conversely let x = ( \ ; , \',) be an intuitionistic Q-fuzzy ideal in R. Then we shall prove t h a t I is an ideal of R.

(i) Since \ = ( \ / , \ ; ) is an intuitionistic Q-fuzzy ideal of R. Therefore xii.^ ~ y,Q) > \l{-r.<l) A \ / ( y , 9 ) and \'',{x -y,q) < x'j{x,q)V \'/{y.q} for all J . y 6 fi and q & Q.

Ux,y € I then \ / ( , r , 9 ) A xiiy.q) = 1 implies t h a t \ / ( j - - y , 9 ) = 1. Therefore x,y £ I ^ X - y e I. Hence (/, + ) is a subgroup of (fi.-t-).

(ii) Since X/(y + 3: - y , 9 ) = X/(^>9) a n d \ ' ; ( y + x -y,q) = x'jix.q). therefore clearly if x G / a n d y G fi t h e n X/(y + -i" - y . q ) = Xi{x,q) = 1 and \'j{y + x - y^ Q) = X;(x. q) = 0 implies t h a t y -I- J- - y € 7 for all i G / a n d y € R.

Hence (7, -h) is a normal subgroup of {R, -h).

(in) Since xi{rx,q) > Xii^^l) and \/(''-''-9) ^ xUx.q), therefore if i G / then Xii''x,q) > Xi{x,q) = 1 =* Xiirx,q) = 1 => r x G 7 for all r G R,x G 7.

Similarly if x ^ I then rx ^ I.

(iv) Since \,{{x -\- i)y - xy,q) > \,{i.q) a n d \){{x -\- i)y - xy,q) < x'iihq), therefore if j ' e / then

Xi{{x + i)y-.iy.q) > \i{i.q) - 1

=*• Xi{{x + i)y-xy,q) = 1

=^ {x + i)y- xye I for all x, y G fi a n d i e 7.

Similarly we can prove t h a t if z ^ 7 then {x + i)y- xy ^ I for all x, y e 7.

Heiicf 7 IS an ideal of R. g

For intersection of any number of intuitionistic Q - f u z z y ideals of R, we have

(7)

Intuitionistic Q-fuzzy ideals of near-nngs 10, T h e o r e m 3 . 6 . / / { A , [ i e / } is a family of intuitionistic Q-fuzzy tdeaU of R then

r\{A.\i e I) IS an intuitionistic Q-fuzzy ideal of R where I is an index set.

Proof. Let x.y.a.r e R a n d q eQ. Then (1) {nitA,)(x-»,?) = A { M / I , ( I - y , g ) \ i e l }

> (.A{llA,(x,q) \iSl))A{A{,n,(y,g) | i e / ) )

= {l^ifA.lx, q)\ieI])A {r\{nA,(y, 9) I i E / } ) , {U\Ai){x-y,q) = V{\A,{x-y,q) | i 6 / )

< (v{A.4,(x,g) I i 6 / ) ) v{v{A4,(!/,<;) I > e / } )

= {u{>.A:{.r.g) I i e /}) V iu{\A,{y,q) I . e /)), (2) (nMA.lCy + i - ! / , i ; ) = A{(ij,{!/ + . r - ! / , ? ) | t e / }

= A{/iA,(i,g) I ! € /}

= n{>ij,(i,9) l i e / } , (UA^i)to + 1 - !/, g) = v{Aj,(!, + 1 - !/, g) I i e /}

= V{Aj,(i,g) l i e / }

= U{A^,(i,5) l i e / } , (3) (n»<j,)(ri,5) = A{iiA,(rx,q) 1 . 6 / }

>A{^x,(i,?) l i e / )

= n{,i^,(i,5) | i € / ) , (UAj,)(rx,?) = V{A^,(ri,9) | i e / }

<v{\A,{x,g) l i e / }

= U{Aj,{i,g) l i e / } ,

(•*) (l''liAi)((x-l-a)y-xy,q) = /\{^IA,^^x-^a)y-xy,q) | i 6 / }

> A { M J , ( I , « ) I J E / }

= n{fi^,(i,g) I i € / } ,

(UAAi){(i + a)y - xy, g) = V{AA,((X + a)y -xy,q)\ie /}

< V { A A , ( I , « ) | i € / }

= UlXA,(x,q) l i e / )

for all x, y, a, 7- e /? and g €Q.

Hence n{v4, | i 6 / } is an intuitionistic Q-fuzzy ideal of R. • An intuitionistic Q-fuzzy ideal A oi R induces another intuitionistic Q-fuzzy

ideal of R is shown in the following theorem.

Theorem 3.7. If A = (jtA, ^A) IS on intuitionistic Q-fuzzy ideal of R then

(i) oA {tiA,f'\) is also an intuitionistic Q-fuzzy ideal of R;

(ii) *A = (A^, A.4) is also an intuitionistic Q-fuzzy ideal m R.

Proof. Let x , y , a , r e / i and g € Q.

(8)

102 J. D. Yadav, Y. S. Pawar (i) (1) II'A{J -»,<;) = i - / ' / i ( j ' --fi,g)< 1 -UiA{x,g)'\iiA{y,q))-

= { l - / M ( j , ' i ) ) V ( l - / M ( ! / , ? ) ) = M ' A ( x , ' 7 ) V r t ( ! / . 9 ) . [2] li',i[!l + x- II.q] ^ I - liA(y + x-y,q) = 1 - llA{x,q) = r t ( x , 9 ) - (:l) i,\(rx.q) = 1 - ,.,,(r,r,./) < 1 - tiA(r.q) = rt(x,g).

(4) ^ ( ( . r I a)ii .rg.g) ^ I -/IAUX •{-a)y-xy,q) < 1 - , 1 4 ( 0 , j ) = Ai'^Cu.g).

(ii) (I) A',,{r- ,;/,5) = l - A ^ ( , r », ?) > 1 - ( A ^ ( x , g ) V A.4(»,g)).

= (1 A,,(.i.(;)l A (1 - XA('l.g)) = A:,(x,g) A A^(!;,g).

(^1 X'A(V+ •'' - »-l) = ' - >'A(y + X - y,g) = 1 - A j ( x , g ) = A^(T.g).

(••1) A:,,(r,r,,) - 1 - A A ( r i , , ) > 1 - A ^ ( i , g ) = A5,(x,g).

(4) A',,((.i ) " ) , ' / - .'•;';.«)= 1 - A : i ( { x - K i ) ! ; - i ! ; , , ) > 1 - A^Ca.g) = A ^ ( a , g ) . llenre <i.\ - (/i/i,/i^) a n d • 1 = ( A ^ , A ^ ) are intuitionistic Q-fuzzy ideals of

R. m

Kioiii t h e above theorem we olitain the following

T h e o r e m 3 . 8 . .1 = {I^A.^A) IS on intuitionistic Q-fuzzy ideal of R if and only if oA mid • 1 ajT intultionistic Q-fuzzy ideals of R.

For a given A = {HA, ^A), we define

RtiA = {xeR\ HA{x,q) = (</l(0,rj)) a n d /lA^ = {x € /J I X.iix.q) = A A ( 0 , ? ) ) . We prove an i m p o r t a n t p r o p e r t y of R^IA and R\A in t h e following theorem.

T h e o r e m 3 . 9 . / / an IQFS .1 = {pA, ^A) IS an intuitionistic Q-fuzzy ideal of R then the sets RjiA and RXA are ideals of R for all q E Q.

Proof. Let .4 = ((ZA, XA) b e an intuitionistic Q-fuzzy ideal of R. Let x.y e R/IA a n d g e Q . T h e n in(x.q) = ltA(0,g),ltA{y,q) = / i . i ( 0 , g ) .

(i) Now 0 e R therefore 0 G RfiA. Hence R/IA is a n o n - e m p t y subset of R.

(ii) Since A = {fiA,XA) is an intuitionistic Q-fuzzy ideal of R, C/i(x - .V. g) > / u ( j - , q) A iiAiy, g) = ( i j ( 0 , g).

But/1.4(0,9) > / i . 4 ( x - y , 9). Therefore M A ( i - y , g ) = / I A ( 0 , 9 ) . T h u s x - y € R/IA for all x,y € R. Hence (RtiA,-^) is a s u b g r o u p of {R,-h).

(iii) Again since A = [IIA,XA) IS an intuitionistic Q-fuzzy ideal of R, fiAiy-hx- y.q) =^tA{x,q) = ( 1 ^ ( 0 , ? ) .

Therefore J - l - x - y e RIIA for all x,y e R. Hence (/J/i^, + ) is a n o r m a l subgroup of ( / ? , + ) .

(iv) Since f<A(rx,9) > /iA(x,g) for all x , r 6 /J a n d 9 e Q, therefore iiAlrx,q) >

C A ( X , 9 ) . B u t iiA{0,q) > IZA{rx,q). Hence iiA(rx,q) = f i x ( 0 , 9 ) implies t h a t rx e /i/i>i for all r e / ? , x e /?/i.4, i.e., i?/i/x.4 C Rfz^.

(9)

Intuitionistic Q-fuzzy ideals of near-nngs 103 Hence RfiA is a left ideal of R.

( v ) N e x t ^ > i ( ( u - | - i ) u - u u , 9 ) > fiA{i,q) = ^ 4 ( 0 . 9 } for all u,w e fi,i G fi/i^. But PA{Q,Q)>l^A{{u + i)v-vr.q) T h e r e f o r e / ; . i ( ( i ( - I - ? ) ' ' - ('",9) = / t ^ ( 0 , 9 ) for all u,v G R,i G R/iA- Hence (it + i)v - iic G R[IA for all u,v € R and v S fi/i^.

Thus fi//>i is a right ideal of R. B Theorem 3 . 1 0 . If an IQFS A = (IIA.XA) is an niliuliom.slir Q-fuzzy ideal

of R then the sets t / ( ^ ^ , ( ) and L(A^.f) are ideals of R for all q ^ Q,t e

7^(w)n7„(A^).

Proof Lei 9 G Q and t € I,n{fiA) C\ 7,„(A^), Wc luw'e U{ti.t) =^ {x € R \ iiA{x.q) > t,q € Q}, L{fi,t)^{xeR I XA{x,q) <t.q€Q}.

(i) Let x,y € U{ii,t). T h e n HA(-i'-q) > t and HA{y,q) > t. Since P,A{X -y,q) >

PA{x.q) A / i ^ ( y , 9 ) > t. therefore x - y G U{fi,t) for all x . y G U{p,t). Hence lV[p,,t).-\-) is a subgroup of (fi, -I-).

(ii) Let I G U{fi,t) and y ^ R. Again since /i/i(y + x - y,q) = HA{x,q) > t, therefore y - 1 - i — y G U{f.i. t) for all x G (7(^,() and y ^ R Hence (t/(/(, t ) , + ) is a normal subgroup of (fi. + ) .

(iii) Let X G U{p.,t) a n d r G fi. Then ^ ^ ( r x . 9 ) > A*/t(a:,9) > t implies rx G (/(//,() for aU I G f/(/i,t) and r G 71, i.e., RU{ti,t) C t l ( / x , t ) . Hence U{ii,t) is a left ideal of R.

(iv) Let i e E7(/z,f) and x , y G R. Then /(^((j: + i)y - 3:y,9) > M/i(*i9) > *•

Therefore ( i - i - i ) y - x y G t / ( / i , 0 for all i G C/j^.f) and x . y e fi. Hence C/(fi,i)

is a right ideal of R. • As in Theorem 3.10 we have

Theorem 3 . 1 1 . If A = {IIA,XA) IS an intuitionistic Q-fuzzy subset of R such that all non-empty level sets U{iiA,t) and L{XA,t) are ideals of R then A ^ {I^A,XA) IS an intuitionistic Q-fuzzy ideal of R.

Proof Suppose A = {(IAAA) is an intuitionistic Q-fuzzy set of R such t h a t all non-empty level sets U{p.A,t) a n d L{XA,t) are ideals of R.

{i) Let to = HA{x,q) A HA{yyq) a n d i i = A A ( X , 9 ) V A,l(y,9) for x . y G R,q&Q.

Then x,y G f7(^A,*o) also x , y G L{^AM)- Therefore x - y G t7(/t^,io) and s - y € L ( / i ^ , f i ) . T h u s / i ^ ( x - y , 9) > to = M ^ ( x , 9 ) A ^ ^ ( y , 9 ) a n d / i A ( x - y , 9 ) <

f i = / i v i ( x , 9 ) V / / ^ ( y , 9 ) .

(ii) Let to = iiA{x,q) and ti = A ^ ( x , 9 ) . T h e n x G U{IXAM) also x € I(A>i,ti) and y G 7?.

Since U{pA,t) a n d L{XA,t) are ideals of fi, they are normal. Therefore y+x-y G

^[p-A.ta) and y - l - x - y G L ( A ^ , f i ) for all x G t / ( / i ^ , t o ) - Now X G L ( A ^ , t i ) a n d y G fi

(10)

104 J. D. Yadav, Y. S. Pawar

=S'/M(l7 + . ' ' - y , 9 ) > / M ( X . 9 ) and A/i(y-|-x - y . 9 ) < A ^ ( x , 9 ) . (iii) I,cl I2 - / / 4 ( ' ' . ' / ) a i K U 3 = : A ^ ( x . 9 ) f o r . r 6 fi and 9 € Q. T h e n x € (7(/zyi,t2) and ,(•€ L{XA.I\)

Since U{nA,t2) find L{XA,U\) are loft ideals of R,TX G U{{iA,t2) a n d rx G L{XA.I.'.) for r € fi. Hence / ' , i ( ' ' f , 9 ) > '2 = PA{x,q) a n d A.4(rx,g) < (3 = A i ( ' - , 9 )

(iv) Let (2 =tiA{i,Q) and ty = A A ( * , 9 ) Tor X G fi a n d 9 G Q , T h e n i G t/(/i^,^2}

and i G L{XA, I:\).

Since V(11 A.I) is a right ideal of fi,

and

(,r -I /)y - xy G t / ( / M , ( 2 ) for all .r, y € R a n d i G t/(/iA,t2)

(X -f i)y - xy e L(A^.(3) for all x,y € R a n d i G L ( A ^ , i 3 ) . T h e r e f o r e / j A ( ( . r - I - i ) y - x y , 9) > (2 = / i v i ( i . 9 ) and

A^((x -I- i)y — xy,q) < t^ = XA{i,q) for all x.y,i 6 R a n d g G Q.

Hence A = {fiA, XA) is an intuitionistic Q-fuzzy ideal of R.

4. C o n c l u s i o n

Near-ring theory has m a n y appUcations in t h e s t u d y of p e r m u t a t i o n groups, block schemes a n d projective geometry Near-rings provide a non-linear ana- logue to the development of Linear Algebra, combinatorial problems a n d useful for agricultural experiments. In this p a p e r we have presented t h e notion of intu- itionistic Q-fuzzy ideals of near-rings and derived t h e properties of these ideals.

A c k n o w l e d g e m e n t . T h e a u t h o r s are greateful to t h e referees for their con- structive comments for improving the p a p e r .

1. S, Abou-Zaid. On fuzzy subnear-rings and ideals. Fuzzy Sets Syst. 44 (1991) 139- 146.

i . S. Abou-Zaid, On fuzzy ideals and fuzzy quotient rings ot a ring. Puzzy Sets Syst.

59 (1993), 205-210.

3 K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst 20 (1986), 87-96, 4. R. Biswas. Intuitionistic fuzzy subgroups. Math. Forum 10 (1987), 37-46.

5. Y. U. Cho and Y, B. Jun, On intuitionistic fuzzy fi-subgroups of near-rings, J . Appl. Math. Comput. 18 (2005), 665-677.

6. B, Davvaz and W, A. Dudek, Intuitionistic fuzzy fiv-ideals. Int J. Math Math.

Sci. (2006), Article ID65921, 1-11.

(11)

Intuitionistic Q-fuzzy ideals of near-nngs 105 7, B. Davvaz, W. A, Dudek and Y. B. Jun, Intuitionistic fuzzy fi„-submodules, Inf

Sci. 176 (2006), 285-300,

B T. K. Dutta and B, K Biswas, Fuzzy idciU.s of near-ring. Bull. Calcutta Math. Soc.

89 (1997), -147-456

9. P Gunter, Near-Ring.% Nortli-Holland. Amsterdam,1983,

10, Y. B, Jun, K. H Kim and Y H. Yon, Intuitionistic fuzzy ideals of near-rings. J.

Inst. Math. Comput. Sci.. Math. Ser. 12 (1999), 221-228.

11 O. Kazanci, S, Yamak and S. Yilinaz, On intuitionistic Q-fuzzy fi-subgroups of near-rings, Int. Math Forum 2 (59)(2007), 2899-2910

12, K. H. Kim, On intuitionistic Q-fuzzy semiprime ideals in semigroups. Adv. Fuzzy Math 1 (2006). 15-21

13, K. H. Kim, On sensible fuzzy R-subgroups of near-rings with respect to s-norm, Int Math. Forum 2 (52){2007). 2551-2559.

i4. J, D. P. Meldrum, Near-Ilmgs and Their Links with Groups, Pitman Advanced Publishing. London, 1985.

15 A. Rosenfeld, Fuzzy groups. ,/ Math Attat Appl 35 (1971), 512-517.

16, L. A. Zadeh, Fuzzy acts, /??/, Control 8 (1965), 338-353,

Referensi

Dokumen terkait

Abstract: This paper proposes hybridization of fuzzy Q-learning and behavior-based control for autonomous mobile robot navigation problem in cluttered environment

In this paper, the notion of translation of fuzzy H -ideals in BCK/BCI - algebra are introduced and investigated some of their useful properties.. We have shown that the fuzzy

is a fuzzy subsemigroup of a bilinear form semigroup if and only if the level subset is a subsemigrup of , we obtain the following property of a fuzzy quasi- ideal of

lainnya, sehingga banyak peneliti yang mengembangkan ide dari Abou-Zaid, diantaranya: Kim S dan Kim H [10], Jun dan Ozturk [7] melakukan penelitian lanjutan pada ideal prima

A Fuzzy Q-Learning Approach to Navigation of an Autonomous Robot Sepideh Valiollahi Department of Electrical and Computer Engineering Babol University of Technology Babol, Iran

ABSTRACT In this paper, common fixed point results for two pairs of compatible mappings of type A-1 satisfying contractive condition on intuitionistic fuzzy metric space are

Penelitian ini telah menghasilkan sebuah robot berkaki enam pemadam api menggunakan metode Fuzzy Q-Learning FQL yang bertujuan untuk memaksimalkan pencarian jalur tercepat menuju