Qng dung thuat toan self organizing map (som) trong cac ITnh vUc xay diTng, dja chat va dau khi
Application of self organizing map in construction, geology and petroleum industry
Ngay nhan bai: 13/3/2017 Ngay siia bai; 8/4/2017 Ngay chap nhan dang: 5/5/2017 TOM T A T
Trong nhBng nam gSn day, Tri tue nhan tao (Artificial Intelligence - AI) dang ngay cang thinh hanh va tdng bttdc k h ^ g djnh vi tri dau tau cho cudc each msing cdng ngh? lan thd tif. Tri tu^ nh&n tao dang len ldi va trd thanh mot phan khdng t h i thieu trong cudc sdng hang ngay ciia con ngiidi. Trong do, khai ni?m Ban do til td chdc (Self Organizing Map - SOM), mpt phan nhanh cda linh viic Tri tue nhan tgo, la mot cong cu phan vimg dfl lieu (clustering) hdu ich diidc ting dung rat r^ng rai va da thanh cong trong cac Hnh vi^c xa hpi nhd tam 1^, kinh doanh, y t l va ngay ca trong cdc iTnh vdc ky thu4t nhii co khi, xay diing va dia chat. Trong bai vift niiy, muc dich cua tac gii nhim gidi thieu thuat toan SOM va cdc dng dyng thiic tien trong linh viic dia chat va linh vUc xSy dying.
Ket qua cua nghien cdu la phan loai tiidng da theo dp sau va phan cum chi so gia xay diing va chi so gia vat heu xay dUng,
Tii ]A6a: Self - Organizing Map (SOM), Hierachical Clustering, Dia chat, Dia vat li gieng khoan, Kinh tS'xay diing.
ABSTRACT
In recent years. Artificial Intelligence (AI) has become an emerging subject and been recognized as the flagship ofthe Four Industrial Revolution. Artificial is subtly existmg and becommg vital in people's daily Hfe. Particulatly, Self Organizing Map (SOM), which is one ofthe major branches of AI, is an useful tool clustering data, applied succesfiilly and widespread for a variety of aspects of people's hfe such as psychology, business, medical and technical fields like mechanical, constuction and geology. In this paper, the primary purpose of authors is to introduce SOM concept and its application regarding specifically geology and construction. Results of the research are classification of depth according to facies and clustering two sets of indices of construction prices and building material costs.
Keywords: Self Organizing Map, Hierachical Clustering, Geology, Well logging.
Construction Economics
TS. Pham San Tiing, TS. Mai Cao Lan, TrUdng Minh Huy, Pham Bd Tuan Khoa Ky thuat Dia chat va Dau khi, Trddng Dai hpc Bach Khoa - Dgi hoc Qudc Gia TP.HCM
Pham Sdn Tung, Mai Cao Lan, Tru'dng Minh Huy, Pham Ba Tuan
I . G i d i t h l i u
SOM la ket quS cua thuat toan hpc khdng giam sit (Unsupervised learning) - la thuSt toan dua vJo cau triid cCia dif lieu 3iu vao de gi^m sd c h i l u cua dCr lieu do (dimension reduction) hoac phSn vung (clustering) rra khong c6 30 lieu dau ra hay cau tra ldi cu thi []1[2]. Ket qua cda SOIVI la ban do ph§n viling 30 lieu bao gdm car ndt (celt) cd tinh c h i t dac tinh tUdng t i ; nhau gom thiinli m6tCLim[2][3] l/u diem cua SOM la bieu dien mot d d i trUc quan dd lieu d^u vho da c h i l u (niiieu thuoc tfnh) tren b^n do khong gian hai c h i l u nhung van giCfdu^
tinh dac trKng cua dCr lifu ban 3iu. Thuat to5n SOM i/u viet hem thu§t toan thdng ke tmyen tiidng d dac tinh phan cum dCt lieu [4]. Cu t h i , cac do li^u CO xu hu'dng dng xii, dac tinh tu'ong ddng vdi nhau segom thanh mot cum nhcf thuat toSn SOM, trong khi thdng ke truyen thdng chl xac djnh gia tn trung binh, phiiong sai, dp l§cii chu^n va tan suat xuat hien cua dCr lieu ma khdng xet den xu hu'dng dng xd, dac tfnh tu'ong ddng trong bd dO lieu ei\i vao. Nhi/vay, nhd vao ket qu3 cDa SOM, ngUdi dpccocai nhin triic quan t d d o dua ra cac ket l u | n phu hop tuong dng.
Trong qua trinh khho sSt dia chit, cflng tac do log dja vat ly duoc tien hanh nhSm xac dinh c6c dac tinli ciia dat da theo dp sSu nhif log mat do, sdng am, tia gamma Nhu vay, sau khi t i l n hSnh do log dja vat 1^, ta thu ditac m6t bd dot heu rat Idn gdm cac dac tfnh mat do, v^n tdc song Sm, chi 50 tia gamma theo d6 sSu. TCf bo sd hlu do log nay, d i t da trong timg khoang do sau khao sSt se dtjac mmh giai thanh twdng 3i cu t h i . Vile phan tfcii theo tifng khoang do sSu nhu vay rat mat thdi gian va c6ng sOc. Nhu vay, vile Sp dyng t h u i t toan SOM giup nha phan tfch k h i c phyc ducJc kho khan niy. Thuit toan SOM se phan loai cac tang dat da d tifng khoang do sau vao cac nhdm tu'dng 3i cu the thay vi p h i n loai ttiii cong dSt da t d tren mat d i t xudng dd s i u khao sat.
Trong linh vUc xay dUng, nSm b i t va dil doan 6tloc xu hu'dng b i l n ddi ve gia x i y dung cdng trinh cung nhU g\& vit lieu xay dUng tif cac bp sd lieu da b i l t trong qua khd l i uu t l i ^ cung nhuyeu td then ehdt trong qua trinh ra quyet dinh ciia nha dau tif va nha thgu xay difng. Thu|t toan SOM dem lai cho chiing ta c i i nhin trUc quan v l xu hudng b i l n ddi tUong ddng v l gia c i cua cic loai cong trinh hoac v i t lieu khac ntiau, Tif 36 ta cd t h i dif Boin mCfc dd bfen ddi g t i ciia mot y l u td neu nhU biet trudc xu hu'dng thay ddi ciia y l u to khac tuong tif trong cung mdt phan cym.
2. C d s d i i t h u y e t
150|iannrE[tESW 05.2017
2 . 1 . Bdn a d t i r t o chiifc (SOM) - Mang lifdl Konohen B i n do t i t t d chifc (Self-Organizing Map - SOM) dUOc Giao sU r Konohen phat trien ttf nam 1982 la mot cdng cu phan viing dCf heu vd :ung hu'u ich. Tif khi ra ddi, thuSt t o i n SOM da difOc itng dung rdng rai trong cudc sdng nhu tam ly, kinh te, y t l , ky thuat vi nhieu linh vUc khac [11(3].
Thuat toan SOM giup dOn g i i n hoa sd c h i l u (thudc tinh) ciia bd dQ iieu dau va k i t q u i cua thuat toan la b i n dd cd so chieu it hon, thudng la 2-D.Thuit toan SOM x i y dung tt^n n l n t i n g thuattoan hoc khdng giam sit (Unsupervised learning) tif bp vector d i u v i o . Hinh 1 b i l u dien mang ludi Konohen cd kfch ccf 4x4 (16 ndt) trong do moi niit ciia mang ludi dai dien cho mdt vector c6 sd c h i l u b i n g v6i sd chieu ciia vector dau vao Neu vector dau vao chda n chieu Vfy^; V2;...; l^) thi vector trpng sd ciia nut cung chda n chieu WCWiiVVj;. .,tV„) [21. Cac nut trong mang ludi Konohen ban dau chda gia tri ngau n h i l n ciia c i c thudc tinh trong khoing tif 0 d i n 1; sau do, qua tifng vdng lap gia trj ciia c^c thudc tfnh n i y se dUoc hieu chinh theo mot vector dUoc chpn ngau nhien tif b6 vector chuan hda t d bd vector dau v i o [3]. Sd vdng lap trong giai doan h i l u chinh thudng difac chpn c6 g i i trj gap 500 lan so vdi sd vector trong bd vector dau vao [1]. Cic bUdc tien hanh xay diing b i n do t u t d chdc se dUOc trinh bay cu t h i hdn trong phan tiep theo.
Hinh i.Li/fli Konohen 4)!4 2.1.1. Trinh t u t h u a t t o a n [1]
Budc 1: Xay dung mang l(/dl Konohen kich thudc n x n(nut) vdi thupc tinh trong cac nut ban dau dupc lua chpn ngau nhien trong khoing [0;!].
Budc 2: Chuan hda (Normalize) bd du' lieu dau v i o nhSm muc dfeh xie dinh mdc dd i n h hu'dng tUong ddi giifa cac thude tfnh trong vector ma khdng xet den i n h hu'dng don vj (thd nguyen) ciia cic thuoc tfnh b i n g cdng thdc sau:
Budc 3: Chon n g i u nhien mdt vector trong bo vector aa chuan hoa, sau dd xae dinh k h o i n g each t d vector da chon den tifng niJt t r l n mang ludi Konohen theo cdng thdc tinh khoing each Euclidean nhU sau:
Distance = n\b,-W,Y (II)
Budc 4: Xac dfnh nut cd khoang each n g i n nhat den vector da ehon v i niJt n i y duoc gpi l i Best matching unit (BMU)
Budc S- Tif BMU, x i c dmh ban kfnh vung i n h hUdng theo cong thde.
al = n (III)
BUdc 6. Hieu chinh gia tri ciia cae thude tinh trong tifng nut theo vector da chon b i n g cdng thde sau:
W' = Wa-¥ea.Lo.iVo-Wo) (IV) vdi: La' tof^ dp hoc hdi ban dau (m|e dinh la 0.5)
So: mifc dd i n h hudng ban dau = exp( ^—) (V) BUdc 7; Sau khi h i l u ehinh toan bd mang lUdi Konohen, ta t i l n hanh q u i trinh lap (iteration) bat d i u tif bUdc 3, khi do gia trj sd dem vdng lap t se tang len 1 don vi eho den khi dat gia tri sd l i n lap N mong mudn, ddng thdi cac gi^ tr| eda a, 0,1 v i W cung thay doi theo t, cu I h l nhU sau:
ff(t) = ffoe(-l) (VI)
vdr X: h i n g sd khdng phu thude v i o sd lan lap = - (VII) Wisd lan ISp ciia thuat toan
eCt) = (VIII)
£,(0 = t o e - S (IX)
W{t + 1) = W{t) -H fl{t).L(t). (l'(t) - Wit-)) (X) 2.1.2. K^t q u i thuat toan SOM
Tif mdt mang lUdi trong do cac nOt cd g!i tri ciia cic thdng sd dUoc chpn mdt each n g i u nhi§n, sau khi t r i i qua q u i trinh huan Iuyln (training) t d bd dO l i l u dau v i o vdi sd vdng lap x i c djnh, k i t q u i thu^t toan la mot mang lUdi mdi vdi sd nut khdng ddi nhung c i c thdng sd niit da duoc hieu chinh vi vdi cae niit cang gan nhau, thudc tinh cOa cae ni3t c i n g tuong tU vdi nhau [2] Difa v i o cdng thu'c tinh khoing c i c h tif mdt phan t d b i t ky ciia bd dC lieu d i u v i o d i n tifng niit trgn mang lUdi k i t q u i , ta xac dmh dUOc mdt niit cy t h i chda p h i n tif dang x^t Lan lUOt ta cd the biet duoc tifng niit eda mang lUdi k i t q u i bao h i m nhung p h i n t d nao ciia bd d d l i l u ban dau. NhU v i y , thuat toan SOM khdng chi bieu dien bd 30 lieu dau vao khdng Id t h i n h mdt ban do t u t d chdc cd sd niit it hon rat n h i l u , ma cdn lam noi bat len dupc iing xif dac trUng hay sU tuong ddng ciia dc thdng sd trong bd 30 lieu d i u vao mdt each true quan. Ngoai ra ket q u i cua thuat t o i n SOM cdn giup cho vl§e p h i n eum theo phuong p h i p Hierachical (Hierachical Clustenng) bdt cdng k i n h vi sd lan lap hon r i t n h i l u . Phan tiep theo, tac g i i se gidi t h i l u va t h u i t toSn p h i n cum Hierachical va vi§c dng dung ciia t h u i t t o i n phan cum theo phuong phap Hierachical vao SOM.
2.2. Thuat toiin phan cum Hierachical
Thuat t o i n Hierachical la t h u | t toSn phan nhdm dd lieu ciua vao khoing each Euclidean ciia tat c i eac cap phan t d trong bd sd l i l u dUOc chuan hda tif bd di3 lieu ban d i u [5]. Vf du, neu bo dul lieu ban d i u cd 5 phan tif thi s6 doan t h i n g tao dupc tif S diem (bieu dien cho 5 phan tCf) la ( 5 - 1 ) ! = 41 = 24, nhu vay sd lan tinh khoang c i c h l i 24. K i t q u i cda thuat t o i n la mdt so dd phan n h i n h nhU Hinh 2. Vi tri cang nhieu nhanh re, viec p h i n nhdm c i n g chi tiet hay sd lupng nhdm can p h i n eum eang nhilu. Cu the trong hinh 2, n l u n h i p h i n tfch chl mudn phan dtf lieu thanh 2 nhdm thi x l t tai vi tn 1, khi dd hai nhdm dUoe chia bao gdm nhdm (A, B, C) va nhdm (D, E, F, G); trUdng hdp nha phan tich mudn phan loai d d lieu t h i n h 5 nhdm thi xet tai vi tri 3 vdl c i c nhdm tUong dng l i (A), (B, C), (D, E), (F) v^ (G). VI vay, thuat toan Hierachical cd Uu diem la nen t i n g ly t h u y l t cung nhU cdng thdc tinh t o i n tuong ddi don g i i n , ddng thdi ket qua thuat t o i n cd tinh trUc quan. Tuy nhien thu^t t o i n phan cym Hierachical se gap khd khan, n l u bd sd l i l u dau v i o r i t idn (vi du khoing 100,000 p h i n tir), khi ddsd lan tfnh khoing cich tang l l n d i n g ke (trong trudng hop dang x^t la 99.999 giai thifa lan), viec tfnh t o i n trd nen cdng kenh v i thdi gian x u i t k i t q u i se bi k l o dai.
De khae phue khd khan eiia t h u i t toan Hierachical khf bd dQ lieu dau v i o tuong ddi Idn, t i c gfa s d d y n g thu$t t o i n SOM d l ddn g i i n hda bd dd li^u d i u v i o t h i n h mang lUdi vdi sd ndt dai d i l n dO h l u ft hon rat n h i l u , sau do dng dyng t h u i t t o i n Hierachical de p h i n viing du' lieu tren mang iudf nay. Cu the trong bai b i o n i y , t i c g i i se dng dung thyc t i l n SOM va Hierachical clustering trong hai linh vUc: dia c h i t v i x i y dytig.
^ -
Hinh 2 Vf du ve ket qua ciid tftual toan Hierchical 3. Apdung thirc ti4n
3.1. Ap dung SOM trong Imh vUc dia chat
Trong linh vUc dia chit, tac g i i iing dung SOM vao viec xac dmh tudng d i . T d b d diJ lieu dau vao la eae thudc tinh khac nhau ciia q u i trinh do log dja vat 1^ g i i n g khoan nhU log neutron, mat dp, sdng am va tia gamma, i p dung thuat t o i n SOM, ta thu duoc cic nhdm dp sau cd cic tfnh chat tUOng t u nhau chda trong cting mdt nut ciia mang ludi Konohen. K i t hpp vdi thuat t o i n phan cum Hierachical, ket q u i cudi eiing se la ban do t y td chdc vdi cae nOt duoc phan viing cu the theo tifng loaf tudng d i khac nhau, trong dd sd lupng tUdng da cu t h i ditpc xae dinh dua tren kinh nghfem ciia n h i mmh g i i i dfa chat.
3.1.1. Du'lilu alu vio
Dd lieu dau vao la bd diJI lieu do log dia vat ly gieng khoan bao gdm 4 thude tfnh chfnh,^dUOc do khoing dd sau ttf 1843.278 ft d i n dd sau 4248.302 ft vdl bUdc n h i y ciia dp sdu l i 0.154 ft (Bing 1). Cac gia tri trong cac edt DT, NPHI, RHOZ va GR la k i t q u i tu'ong dng vdi cdng tac do log sdng i m , log neutron, log mat dd v i log gamma.
Bing 1. Trich xuat gja trj cac thuoc tinh cJia dat da theo do sau (ft)
2300.1732 2300.3256 2300.4780 2300.6304 2300.7828 2300,9352 2301.0876 2301.2400 2301.3924 2301.5448 2301 6972 2301 8496 2302.0020 2302.1544
Olips/ft) 97.9137 98.7088 98.2979 97.2081 96.3349 95.9603 96.1051 96.2410 95.6345 9S 5068 94,9506 94,0766 95 5303 96.3451
NPHi (mVm^)
1 1 1 1 1 1 1 1 1 1 1 1 1
RHOZ(5/
cm^) 2.4313 2 4371 2.4439 2.4431 2.4424 2 4382 2.4439 2 4478 2 4602 2.4634 2.4624 2.4528 2.4411 2 4422
GR (qAPI) 85.1601 86.0917 85.4656 81.0737 82.0053 790555 83.7136 88.2132 88 4794 83.9397 82.6343 82.1020 84 7784 87.5732 3.1.2. Ket q u i
Dua trin 30 li|u dau vap, thuat toan SOM phan cum dif lieu thanh cac nilt trong mang ludi Konohen. d day, tac g i i chon kfch thUdc mang ludi la 30x30 = 900 niit de dai dien cho toan bd dCr lieu dau vao (Hinh 3).
Cic thdng sd co b i n khac can thiet lap ban dau bao gdm so lan lap N (chon gia trf 6000O), tdc dp hpe hdi L (chpn gia tn mac dinh 0.5). Sau khi mang ludi Konohen da dUoc xay dyng, t h u i t toan Hierachical sedupcap dung de thyc h i l n vile phan viJng d d l i l u dua tfen SOM kfch thUdc 30x30 ndt, khi dd t h u i t toan Hierachical chi yeu cau vi§c tfnh khoang each giifa 900 nilt dai 3tin cho toan bo du' lieu ft hdn rat nhieu so vdi viic tfnh khoing each giifa hon 15000 sd lieu.
Hinh 3 Ean do til to chiic Utldc (trai) va sau (phai) di/oc tien hanh qua trinh lap Mdi nilt tren mang lUdi deu chila bon thudc do la DT, GR, NPHI, RHOZ eiing ehfnh ia sd thuoc tinh cCia tifng khoing dd s i u trong bo dO lieu dau vao. Trong giai doan ban dau (sd budc lap t = 0), lUdi Konohen gom 900 nut CO gia tn ctia cac thupc tinh duoc chon ngau nhi§n. Sau nhieu vong lap (d d i y chon 60000), cac niit da dupc hf§u ehinh va sip x i p mot cich tr^t t u va CO quy tae hon. T h u i t t o i n SOM da hoan t i t viec thu gcfit s6 c h i l u cung nhUsd lu'ong dQ Ifgu, g i i m tai rat n h i l u It/Ong cdng viec tfnh t o i n trong khi ap dyng t h u i t toan Hierachical. Ttiy vao myc dich phan loai tudng da va kmh nghiem eiia nha minh g l i i dia ehit m i sd lu'tmg tifdng da se duoc ehon de phSn cym, cy the d day t i c gia chpn so lu'^g tudng da l i 6 (Hinh 4).
Hmh 4 Ket qua ph^n cum ihanh 6 ttfiJng Si khi SIS'dung Hierachical Dya v i o ket qua b i n do tU t d chdc nhU Hinh 3 (phii), tai mot do sau n h i t dmh vdi c i c thudc tinh tUong dng, ta cd the x i c dinh duac 36 sau do thupc nOt nao trong mang ludi Konohen. Dya v i o k i t q u i phan cym theo Hierachical nhuHinh 4, ta cd the xac dinh duoc m<>t niit b i t kJ thuSc loai tudng d i la gi. Nhu vay, khi k i t hop e i hai thuat toan SOM va thuat t o i n p h i n cum Hierachicai, ta s§ b i l t dupc tai dd sau bat ky trong khoing khio sat cd dac tinh ciia nhdm tUdng d i n i o (Bing 2). NhU vay, t i c gii ^ ' dng dung SOM va Hierachical vao cdng t i e phan loai tu'dng da theo dS sau. Ket q u i ciia cdng t i c hd trp cho viec hinh t h i n h b i n dd dia chat phuc vy cho linh vUc x i y dUng (xic dfnh tfnh n l n liin eiia dat da trong khu vtic), dau khf (xic dinh t i n g ed t i l m n i n g chda dau, khi thien nhien) v i m6i trudng (xac dmh tang chiia nUdc da t r i n h cic hoat ddng. edng tac ISm 6 n h i l m ngudn nUdc niy) v i c i c linh vUc khac.
Bing 2. Trich xuat ket q u i phan loai tUdng da theo dd siu Od sau (ft)
2471 623 2471 776 2471 928
Loai tudnq d i Lo^i4 Loai 4 Loai 4
S2|0BnKIIBX 05.2017
2472,080 2472 233 2472 385 2472 538 2472 690 2472 842 2472 995 2473147 2473 300 2473,452 2473 604 2473,757 2473 909 2474.062 2474.214 2474.366 2474.519 2474.671 2474.824 2474.976
Loai 4 Loai 4 Loai 4 Loai 4 Loai 4 Loai 4 Loai 4 Loai 4 Loai 4 Loai 4 Loai 4 Loai 5 Loai 5 Loai 5 Loai 5 Loai 5 Loai 5 Loai 5 Loai 5 Loai 5
Ngoai ifng dyng trong ITnh vUc dm chat, tac g i i cdn ilng dung SOM
•ong ITnh vUe xay dUng vdi khfa eanh kmh t l , giiip phan vting mifc dp lien ddi v l g i i eila eac ddi tUOng cong trinh va vat lieu xay difng, tao dieu
kf?n cho nha d i u tU cung nhu n h i thau tim dudc cic phuang phap tdi Uu ehi phf d i u tt;va x i y dung.
3.2. Ap dung SOM trong linh vifc xay dUng
liin khfa eanh kmh te ciia linh vUc xay dUng, thuat toan SOM ho trp cac nha phan tfch trong vi^c xif lidu' heu ve chi sd gia xay dung cdng trinh (XDCT) v i chi sd gia vat lieu xay dyng (VLXD), t u do giup ho nhan ra nhCing diem tuong ddng trong xu hudng bien ddi chi phi xay dung qua do dUa ra dU doan ve chi phi cho t h i n g hoac quy trong tuong laf hoac ddng thdi d i n h gia mdc dp hieu q u i trong edng tac d u d o i n .
3.2.1. DOT lieu dau vao
Dii lieu dau vao la Bing gia tri chi sd gia vat lieu xay dilng (Bing 3) va chi sd gia xay dung cdng trinh trong nam 2016 (Bing 4) t r o n g d d chisd g i i la mdt dai luong b i l u dien mUc dd thay ddi ciia chi phi cdng trinh va vat lieu so vdi mdt thdi diem duoc ehon lam moe [7], Bing 3 va Bang 4 I a y m d c s o s i n h l a n a m 2 0 1 5
Tif Bing 5.1, mac dii da dUoc thdng ke kha rd rang, tuy nhien n l u mudn tim ra cac ddi tupng dif lieu cd ciing xu hudng bien ddi thi phan tich vien p h i i thUc hien thii cdng, viee n i y se mat r i t n h i l u thdi gian va khd tranh khdi sal sdt dac biet ddf vdi trudng hdp sd lieu p h i i xd If q u i n h i l u . Trong trudng h c ^ nay, SOM se la edng eu vd eung hOU hfeu, hd trp cho vfec phan viing sd lieu hay cu t h i hon la phan dc ddi tucflig ed mdc dd bien ddi tuang ddng vdl nhau thanh mdt nhdm tif dd giiip ngudi phan tich ed mot eii nhin tnJc quan hon ve dng xd eiia gia vat lieu xay dung
Xl mang Cat x i y dung Oa xay dung Gach xay Go xay dung Th^p xay dung
Nhua dudng Gach lat VL tam Idp, bao che Kinh XD va khung nhdm
Son va VL k i l n true VND/USD V a t t u n g i n h d i ^ n V i t tu, dudng dng nude
Xang Diezen 0,05S
Bing 3. Chi s6 g i i v i t lieu xay dUn Jan-16
100 100 100 100 100 100 100 96 100 100 100 100.16
97 100 91.53 81.31
Feb-16 100 100 100 100 100 100 100 94 100 100 100 10016
95 100 83.28 72,14
Mar-16 100 100 100 100 100 100 100 91 100 100 100 100.16
93.5 100 80.65 72 36
q trong 3 quy Siu nam 2016 E7][8][91 Apr-16
99 100.5 100.6 100 100 100 76.13 93.67 99.5 100 100 99 8 94,5 100 85 78 75.08
May-16 96.5 101.5 101 100 100 100 72.9 93.67 98.5 100 100 100.13 93,74 100 89.87 82.39
Jun-16 94.5 102 101 100 100 100 7484 93.67 97 100 100 99.98 93.26 100 94.11 89.39
10]
Jul-16 96.67 103.36 101.88 100 100 100 77.59 93.67 98.33 100 100 99.98 93,83 100 91 91,93
Aug-16 96,57 102.35 101.37 100 100 100 78.71 93 67 98.33 100 100 99.98 93.83 100 83.94 85,68
Sep-16 96.67 102.85 101.67 100 100 100 78.71 93 67 98.33 100 100 100.23 93.83 100 92.44 91.69
Nha dddi 8 t a n g Nha tti 9 d i m 5
t a n q N h a t t f 1 6 d e n 19
t a n g Jan-16
99.57 99.61 99,54
Ban{
Feb-16 99.33
9 9 4 9 9 31
4 . C h i s d Mar-16
9 9 1 9 99 29 99.21
l i i x i y diTng c o n g trinh trong nam 2 0 1 6 [7][8][9][10]
Apr-16 99.32 99.33 99.25
May-16 99.3 99.22 99.19
Jun-16 99.27 99.12 99,12
Jul-16 99,52 99,39 99,4
Aug-16 99.4 99,29 99.27
Sep-16 99.5 99.39 99.39
Oct-16 99.6 99,64 99.68
Nov-16 99 66
99.7 99.75
Dec-16 99.65 99 68 99 73
N h a d t i r 2 D d l n 2 S t h i n g Nha 1 t a n g tUdng
gach mai t d n Nha 1 t i n g khep kin, g^ch chju lUc, m i l BTCT N h i 2 3 t i n g , k h u n g mai BTCT Bi&t t h y 2 3 t a n g , khung mai BTCT CT giao d u e CT van hda Try s d c o q u a n
C T y t l CTHTKT d d t h i
CT thiiy loi Cl nha xudng
CT d u d n g be t d n g c r c i u d u d n g
99.51
99.82
99.68
99.52
99.62 99.37 99.42 9 9 6 3 99.78 9 9 5 6 99.28 99.73 98.43 9 8 2 8
99.24
99.72
99.52
99.25
99.41 99,04 99,11 99 43 99.63 99.32 98.92 99.59 97.65 97.44
99.12 99.15
99.64
99,36
99.02
99,29 98.98 98.93 99.3 9 9 5 4 99,16 98,92 99.56 97.65 97 45
99.66
99.46
99.18
99,38 99.46 99,05 99,37 99.46 96.71 98,97 99,6 94.85 97.57
9 9 0 3
99.52
99.33
99.05
99.32 99.49 99.05 99 33 99.64 96.41 99 99.57 94.92 9 8 1 5
98.92
99.41
99.22
98 96
99 28 9 9 4 5 99,02 99,29 9 9 59 96,62 99.03 99.5 95.57 98.72
99.23
99.6
99.45
99.16
99.46 99.63 99 2 4 99.47 99.7 97.22 99 56 99,92 96.58 99.14
99.11
99.56
99,19
99,11
99,38 99.53 99.12 99.38 99.62 97.17 99.23 99.72 96.07 98.52
99.25
99.59
99.43
99.15
99.45 99.65 99.25 99.46 99.8 97.3 99,51 99.86 96.64 99.1
99.61
99.61
99.47
99.17
99.49 100.29 99.57 99.66 101.48 95.72 99.68 99.97 94.83 99.28
99.69
99.63
99 5
99,2
99 51 100.38 99.65 99 71 101.67 95.2 99.82 100.07 94.35 99.44
99.66
9 9 «
99.49
99,2
99,5 100.36 99.62 997 101,67 96,2S 99.76 100JI5 95.49 9936
Tucfng t y n h u chi so gia vat lieu xay dung, n l u cd mdt e i i nhin trUe quan hon cung nhu n h i n ra dUpc xu hUdng bien doi ciia loai ddi tuong cdng trinh, ngUdi dpc cd the t$n dung dUac thdng tin v l chi so gia d l sd dung sd lieu h i l u q u i hOn nhUdUa ra c i c q u y l t dinh d i u tu, len ke hoach xay dung hoac lap d u a n mdt cich hop l ^ v i kmh te nham tdi uu ngudn vdn dau tit.
3.2.2. Ket q u i
Ddi vdi b i n g sd h&u chl sd g i i x i y dung cdng trinh, do b6 sd hlu kha nhd nen ta se d i l u chinh gia tri eho eac thdng so cita thuat t o i n SOM phii hdp vdi fad sd lieu. Cy t h i , ludi Konohen se dUac ehon ed kich thudc 4x4 (16 nut), sd lan l i p N dUdc chpn se l i 8000 v i tdc dp hoc hdi ban d i u se g i d n g u y e n g i a t r j m ^ c d j n h i a O . S . Ket q u i ta thu dupc mot lUdi gdm 16 niit dupc phan lam 4 nhdm dai dien cho 17 ddi tupng eiia bd dO' lieu chi sd g i i xay dUng edng trinh.
BJing 5. K£t q u i phan vCing duflllu chi sdgia xay d ^ g cong trinh 3 quj? dJu nam 2016
d o lieu, ho cd the chon thifc h i f n cac dUan cd mdc b i l n ddi chi phf tuong t u nhau. Hon nda, gia sif xu hUdng n i y t i l p tuc xay ra v i o quy IV nam 2016 thi viee phan vimg 30 l i l u se ho trp n h i thau trong viee chon cac loai edng trinh ed ehi phi thap han, giup ho khai t h i c tnet 3i bai toan kmh t l trong linh vUc xay dUng. Tiep theo, ta se t i l n h i n h phin viing dU li§u choquy IV nam 2016 d l k i l m tra tinh chinh xac ciia viec sif dgng 3 quy dau nam 2016 de dU doan. Ket qua duac tflnh bay trong bang 6.
Bing 6. Kit q u i p h i n loai chi sd g i i xay diTng cdng trinh qu^ IV nam 2016
N H d M 1 CT c i u dudng
NH0IVI3 CT gtio due
C T y t e CT nha xUdng Cdng Nghiep
N H d M 2 CTHTKT d d t h i CT dudng be tdng
NH6IVI4 N h i dudi 8 t i n g N h a t d 9 d l n l 5 t a n g Nhattf 16den 19tang Nha t d 2 0 den 25 tang Nha 1 tang tudng gach m i l tdn N h i 1 t i n g can hp kin, gach chiu lue, maf BTCT
N h i 2 3 tang, khung m i l BTCT Biet t h u 2 3 tang, khung mai BTCT
Try sd eo quan, van phe
NHOIVII CT cau dudng
CT van hda N h i t d 9 d l n l 5
tang
N H 6 M 3 CT g i i o due
C T y t l CT nha xudng
Cdng Nghiep CT thiiy lai
NHdlM2 CTHTKT d d t h i CT dudng betdng
NHdlVI4 NhachungCU N h i dudi 8 tang N h a t t f 1 6 d l n l 9 t i n g Nha t d 2 0 d i n 25 tang Cdng trinh nha rilng I I Nha 1 tang tUdng gach mai tdn Nha 1 t i n g can hd kin, gach chiu lUc, m i l BTCT,
N h i 2 3 tang, khung mai BTCT Biet t h u 2 3 tang, khung m i l BTCT
Tru sd eo quan, van phdnq
Dya vao k i t q u i Bang 5 ta ed t h i thay duae 4 nhdm bien ddi chinh trpng ehi sd gia vf du n h u ba loai cdng trinh cau dUdng, thiiy Ipi va v i n hda edsU b i l n ddi gia tUcmgtU nhau qua giai doan 3 quy dau n i m 2016.
Day la mdt edng cu rat htfu ich cho phfa n h i thau vi dua vao su phan vung
B i n g 6 cho t h i y su khac b i l t giifa vile phan tfch chl s6 g i i trong.S quy dau vdi quy IV nam 2016, hai muc da bi thaydoi vi trf trong vfec fJiSn viing dir lieu l i Cdng trinh thiiy Ipi v i N h i chung eU ttf 9 d i n 15 ting, rfi'flfi dd ehfnh xac eiia viee sd dung 3 q u j d i u nam 2016 d l dU doan qujthi!
IV l^n d i n 89.47%. Vdi ket q u i nay, viec tin tUdng vao dU d o i n dila tr^ri t h u i t toan SOM la ed eo sd va chdng mmh tfnh hfeu qua cao trong viec du d o i n mUc dp bien ddi ciia eac cum dCf lieu trong nam t i l p theo W vdi Bang sd lieu chi sd g i i vat lieu x i y difng, tUong t i / vdi chl sd gfa vii li^u xay dung, viec sd dung 2 thuat toan d l ddn g i i n hda va phin vung
154|BWiflE[Vffll 05.2017
d d l i f u d a c h o r a m d t b i n g p h a n l o a i c a c d d i t u a n g v s i t l i f u x i y dung mdt cieh true quan nhat. DUa vao dir lieu dau vao, vdi sU hd trd ciia cdng cy lap trinh, ta thu duoc k i t q u i n h u Bang 7
Bing 7. K i t q u i phan viing dCi lieu chi sd gid vat lieu xay diTng 3 quy dau nam 2016
NH6MI Nhua dudng
N H 0 M 3 D i e z e l 0 OSS
X a n g
N H 6 M 2 Gach l i t Vat t u nganh dien
Xi mang VL tam Idp, bao che
NHOM 4 Gach XD GoXD Thep XD Kinh XD va khung nhdm
CatXD DaXD Ty g i i VND/USD Son va VL kien true VL dudng dng nUde K i t q u i tai B i n g 7 eung cap mdt cai nhin trUc quan ve sy b i l n ddi gia e i cOa v | t lieu xay dyng, hd trp viee x i e dmh chi phf b i l n ddf ciia cac lo?i v i t Iflu cung nhU sU bien ddi tdng chi phi vat li&u thd eda eong trinh. Cu t h i , tuong tit vdi du' h l u chl sd gia xay dung cong trinh, ta se t i l n h i n h d u d o i n b i e n d d i g i a vat lieu xay dung ei}a qui? IV nam 2016 dya din 3 qu^ d i u nam 2016 vdi ket qua the hien trong B i n g 8.
Bing 8. K^t q u i phan viing dO' lieu chi sd gia vat lieu xay duUg guy IV nam 2016
N H b M I NhUa dudng
Gach lat Vat ttf nganh dien
N H 4 M 3 Diezel 0.055
Xl mang
N H 6 M 2 VL tam ldp, bao ehe
Xang
NHOIVI4 Gach XD G6XD ThepXD Kinh XDva khung nhdm
CatXD O i X D xy gia VND/USD Sdn va VL kien trdc VL dudnq dng nUdc
dja v i t If, tif do hinh thanh b i n do dia chat phyc vu eho linh vyc xay dyng (xic djnh tfnh n l n Iim ciia dat da trong khu vUc), d i u khi (xac dinh tang cd t i l m nang chda dau, khf thien nhien) v i mdi trUdng (xie dmh t i n g chda nude da t r i n h cac hoat ddng, cdng t i e lam d n h i l m ngu6n nudc niy) v i cae ITnh vyc khac.06 chi t i l t cita ket qua phu thudc v i o thudc via so iuang nOt (cell) trong ludi Konohen cting nhu sd lan lap ciia thuat t o i n . Sd nut cang Idn v i sd lan lap cang nhieu thi dd chi t i l t va dd chinh x i c c i n g cao nhUng thdi gian thu dUpc cang lau, vl v i y viec x i c dinh g i i tri toi Uu la r i t e i n thiet.
Ddi vdl bai toan kmh te trong xay dUng, SOM giup ta x i c dinh dUpe c i c nhdm v i t lieu cung n h u cdng trinh cd xu hUdng bien ddi gia tuong t u nhau, tif dd cd the d u doan xu hUdng bien doi ciia mdt ddi tddng khi da biet xu hudng b i l n ddi ciia ddi tddng khae, nhUvay nha dau t u v a nha thau dua ra eac quyet dinh d i u tU, len ke hoach x i y dUng hoac lap d u i n mdt each hpp ly ve kinh te nham tdi Uu duoc ngudn vdn dau tU.
TAIUIUTHAMKHAO
11]Dr,SaedSayad, "Self-Organizing Maps", University of Toronto, 2010, [2] Sasinee Pniekprasert,Thatchaphol Saranurak, Tarat Diloksawatdiku!, "Self- organizing map (SOM)", Kasetsarl University, 2009
[31 Pavel Stefanovic, Oiga Kurasova, "Visual analysts of self - organizing maps", Vilnius University, 2011
[4] Laurence Fausett,"Fundamertals of Neurai Networks", Prentice Hall, 1994 [51 Orange Software tutorials on SOM
[5] "Quyet flinh ve viec c6ng bo chi so gia xay dung tiiang 01,02,03 va Quy I nam 2016", S i X3y Dilng t h i n l i pho Ha Uai, 2016
[7] "Quyet flmii vS vtk cong bo chi so gia )(ay dung tiiang 04,05,06 vi Quy II nam 2016", SS xay Dung thanh pho Ha Nor, 2016
[8] "Quyet flinh ve vile cong bo chf so gia xiy dung thang 07, OB, 09 va Qu# 111 nam 2016", SS xay Dung t h i n h pho Ha N6i, 2016.
[9] "Quyet dmh ve viec cong bo chi so gia xay dung thang 1 0 , 1 1 , 1 2 v i Quy IV nSm 2016", S i Xay0iingthSnhph6HaNoi.2017
C u t h e c d 4 m a t h i n g c d s U b i e n d d i k h a e d i l i G a c h l a t . V a t t U n g a n h d i e n , X l m a n g v i x a n g . M i f c d d c h f n h x i c c i i a v i § c d U d o a n b i e n d d i d a t 7 5 % . H a f d n g d u n g t r o n g v i e c p h a n v t i n g 30 l i e u c h o c h i s d g i a x a y d U n g cdng trinh v i chi sd g i i vat lieu x i y dung cho t h i y k h i nang p h i n lo^i cie doi tuong khic nhau dya tren thudc tinh eiia chiing v i ddng thdi dua t r l n k i t q u i ta cd t h i dU doan tUOng ddi chfnh xac su b i l n ddi cila cic thude tfnh trong tuong lai g i n .
4. Ket l u i n
Td khi ra ddf, b i n do tU td chdc (SOM) da cd rat nhieu iing dung rdng rai d c i c linh vUc khie nhau trong cudc sdng, gdp phan dUa trf tu§ nhan tao tifng bUdc t r d thanh nhSn t d then ehdt trong eudc cach^mang edng nghe l i n t h d tu, Tuy nhien, viee ifng dung SOM chl mdi phd bien trong c i c linh vuc xa hdi v i vi t h i nhCng t h e manh cua nd van chua dupe khai t h i c tnet de ve khfa canh ki t h u i t . Chinh vi li do dd, d i y l i mdt trong nhung n g h i l n cdu dau tien gidi thieu mdt hUdng tiep can mdi ciia SOM i p d u n g trong ki thuat xay dung va dia c h i t . Cac k i t q u i v i p h i n tfch ciia nghien cilu nay cho p h i p l u t ra nhifng ket luan sau:
Ddi vdi viec dng dung trong kTthuat dia chat, SOM da gop phan tich cue trong viic p h i n loai eie tUdng da khae nhau dUa vao sd lieu do log