Day hpc Xac suat Thdng ke theo hUdng tang cifoing ren luyen kf nang sieu nhan thiilc cho hpc vien
Le Binh DUdng TnJflng Oai hoc Chmh trj Xa Thach Hda, huyen Thgch That, H^ mi Viet Mam Email' [email protected]
TOM TAT: Sieu nhSn thUc va cic kTning sieu nhgn thdc dUdc nhieu nha khoa hgc trong va ngoai nUdc nghien cUu, van dung vio qui trinh day hgc. Vide day hoc theo hudng ren luyen cho hgc vien mdt so kinang sieu nhan thdc se gdp phan phat trien tu duy cho hoc vien. Xie suit Thong ke la mdn hgc thuan igi cho vigc ren tuygn kTnang sieu nhin thUc cho hgc vien. Bai viit trinh bay quan niem, quy trinh day hgc Xie suit Thing ke theo hUdng tang cudng ren luyen kindng sieu nhgn thUc cho hgc vien.
lii KHOA: Si£u nhan t h i l c ; k l ndng sieu nhan thiJIc; day hpc toan.
4 NhSn bai 19/5/2019 -> Nhgn ket quS phan biSn va chinh sila 04/6/2019 4 Duyet flSig 25/7/2019
1. Dat v^n de
Li thuyet sieu nhan thiic (SNT) nghien cixu ve qua trinh tir duy, qua trinh nhan thiic cua con ngucri. Cau true SNT CO the dugrc phan thanh hai thanh phan kien thiic va kl n^ng (KN), Kien thiic SNT co the duac mo ta nhu nhiing kien thiic, nh|n thiic va sir hieu biet sau sac hern ve qua trinh nhan thiic cua chinh minh va cac san pham. KN SNT cho phep nguoi hpc len ke hoach, kiem soat va danh gia qua trinh hoc cua minh hon la chi dem thuan tap trung vao viec tucmg tac va kiem scat dau vao cua qua trinh hgc tap hay nh^n thiic [1].
D^y hgc (DH) toan noi chung va DH giai quyet van de (GQVD) toan hgc noi rieng la mgt hoat dgng quan trgng phat tnSn tri tu$ cua ca nhan. GQVD toan hgc dugc day cho nguoi hgc de phat trien kha nang chung trong viec GQVD trong cugc song thuc te. Khi DH toan, dieu can quan tam khong chi la day each giai mgt bai toan nay hay bai toan khac, ma con ca nhung suy luan cung qua trinh giai toan ddng thai giai thich nhiing lap luan va qua trinh do. Noi each khac, ta can quan tam den khia canh SNT. Xac suat Thong k6 (XSTK) la mgt trong nhiing m6n hpc khong chi gop phan ren luyen KN tu duy cho ngucri hgc. Day ciing la mon hgc thu^n Igi cho viec ren luy?n KN SNT cho hpc vien (HV). Bai viet trinh bay mgt so KN SNT, quan ni?m, quy trinh DH XSTK theo hucmg tSng cuang ren luyen KN SNT cho HV.
2. N d i d u n g n g h i e n cuTu 2.1. sieu nhan thuTc va ki nang sieu nhan thilTc
Theo Flavell (1976), SNT la: " 5 y hiiu biit ctia ed nhdn lien quan din qud trinh nhgn thuc cda bdn thdn, cdc sdn phdm va nhirng yiu td khde cd lien quan trong dd edn de cgp din vigc theo doi tieh cue, diiu chinh kit qua vd sdp xip ede qud irinh ndy di ludn hu&ng tai mue tiiu dgt ra"
[!]•
KN SNT la "Cac hoat dgng qudn li lien quan den vi?c giai quySt cac vSn dk" [2]. No lien quan den cac thdnh phan lap ke hoach, gidm sat va ddnh gia ciia SNT. No ciing dugc
ggi la "Su dieu chinh ve nhan thiic" trong do de cap den cac hoat dpng va hanh dpng thirc hi?n boi ca nhan de kiem soat nhan thirc rieng cua hg. Theo Flavell, KN SNT la cac chien luge ap dung c6 y thiic hoac tu dpng trong qua trinh hpc tap, hoat dong NT va giao tiep de dieu khien qud trinh nhan thiic trucrc, trong hoac sau mpt hoat dgng nhdn thuc [1], [3]. Chiing toi thdng nhdt hilu KN SNT theo Brown [4]: KN SNT de cap din khd ndng kiem sodt, gidm sdt vd tu dieu chinh cdc hogl ddng diin ra khi hge tap vd GQVD.
D I hieu sau sde hon ve SNT, chung ta can dua tren nen tdng ciia nhan thiic (NT). Chiing ta cdn phan bi?t dugc nhiing khia canh cdn ban ciia NT vd SNT. Vi du, nhirng KN dimg dg dpc tdi lieu (KN NT) khac vai nhirng KN can de theo doi miic dp hieu cua ban than ve tdi lieu do (KN SNT).
Tuy nhien, rdt nhilu nhd nghien ciiu thira nhan vi?c phdn biet NT va SNT khong dl dang. Theo Flavell [3], SNT vd NT gi6ng nhau vk hinh thiic nhung khac nhau vk ngi dung va chiic nang.
vi noi dung: Ngi dung cua SNT Id kiln thiic, KN vd thong tin vk NT (mpt phdn cua the gi6i tinh thdn), trong khi npi dung cua NT la vk nhiing thii trong cd th6 giai thuc vd hinh dnh tinh thdn ciia chiing (Vi du: d6i tugng, con nguoi.
sy kien, hi^n tugng vat li, ddu hi?u , KN xii li cdc thi^c thk nay va thong tin ve cac nhiem vu).
vi chuc ndng: NT c6 chiic nang GQVD vd mang lai ket qua khi GQVD. Trong khi do, SNT diing dl dilu chinh dinh huong NT ciia cd nhan trong GQVD hay thuc hien nhi?m vu. Vi du, khi dgc mgt tdi lieu, nguoi dgc dimg cac KN dpc dk hilu tai lieu do (NT) nhung khi ngu6i dpc nhan thay minh khong hieu ngi dung dang dgc, hg c6 the dimg lai suy ngdm, lien he vcri ki6n thiic da co lien quan din noi dung va loai bo sy phan tam trong qua trinh dgc (SNT).
Mdc dii sy phan bi?t li thuylt c6 thi dupe tao ra giira SNT \a NT nhung trong thuc tl khi GQVD hay thyc hi?n mgt nhiem vu, ngucri hgc lien tuc thyc hi?n xen kg giila cdc qud trinh SNT vd NT. NT vd SNT co moi lien kit chdt ch5 khong tach rai nhung c6 thi phan bi?t mgt cdch tuong doi.
Nhitng hoat dgng NT Id doi tugng ciia SNT. SNT dya tren
Sfi 19 t h ^ 7/2019 13
NGHIEN COruULUAN
NT, NT nhu muc dich, SNT nhu phucmg tien. Do Id qud trinh dan xen, sy dan xen la phuang tien ho trp qua trinh NT trong boi canh GQVD.
Cdc nhd nghien ciiu phan chia eac KN SNT khong dong nhdt. Theo Brown [5], Desoete [6] da phan chia KN SNT gom co: Du doan, lap ke hoach, giam sat va ddnh gia. Theo Schraw [7], cac KN SNT ca ban bao g6m: Xay dyng ke hoach, giam sat sy hieu biet, ddnh gia. Van der Stel [8] phdn chia KN SNT thdnh: Dinh huong, lap kl hoach, danh gia, sua chira vd phan anh.
Tren ca scr nghien ciiu sy phan chia cdc KN SNT cita cac nha nghien cim d tren, bai viet nay tap trung vao bon KN SNT quan trgng doi v6i mon Toan, bao gorh: Dy doan (Prediction), tap kl hoach (Planning), giam sat (Monitoring) vd danh gia (Evaluation). Cac KN SNT tren se dugc trinh bay chi tiet trong Bang 1:
Bang 1 : Mdt s S K N SNT
Dil floan cb the dKdc mo ta nhif nhiing KN cho phep suy nghi ve nhiing miic tieu hoc tap, flac diem hoc tap thich hdp va thcii gian cb the.
Ngoai ra, dif floan con Ii6n ket cac van de nhat flinh vcli cac van cTe khac, phat trien tmc giac ve nhflng i3ieu kien tien quyet de thflc hien mot nhiem vu va phan biet ro rang va thflc te nhflng kho khan trong GQVD toan hoc [3].
Lap kg L$p ke hoach la mot hoat flbng cb chii y nham thiet lap hoach cac muc tieu phu de theo doi sfl tham gia mpt nhiem vu.
KN lap ke hoach la suy nghi trflbc phai hanh flbng nhfl the nao, khi nao va tai sao fle flat flfldc muc flich thong qua mot chuoi cac muc tieu phu dan den cac mgc tieu chinh cua van fle [6]
Giam sat KN giam sat cb the dflOc mO ta nhfl sfl kiem soat tfl dieu chinh cac KN NT flflOc sfl dung trong viec thflc hien thflc te fle xac djnh cac van de va sfla doi ke hoach [5], Gi^m sat de Ifla chon cac KN thich hdp va dieu chinh hanh vi khi yeu cau nhiem vu thay floi, biet sfl flung cac hieu biet ve kien thflc da cb v^ chon each hoc tap thich hdp [6]
Danh g\k Danh gia, cd the dinh nghia l<i nhflng phan anh dfldc thflc (v^ di§u hien sau khi mpt sfl ki^n da xSy ra [5], tfl db nhin vao chinh) nhiJng gi da lam c6 dan den mot ket qua mong muon
hay khong,
Cu the danh gia phcin anh ve ket qua va sfl hieu biet v i c^c Vein fle va sfl phii hpp cua k l hoach, thflc hi§n c^c phfldng phdp giai cung nhfl ve Unh flay dii ciia cdc cau ttk ldi tmng b6i cSnh ciia van fle [6],
2 . 2 . Quan ni^m, quy trinh day hoc toan theo fiudng tang cifoing ren luy^n ItT ndng sieu nhan thiKc cho hpc vien
2 . 2 . 1 . Day hoc va qua ttinh day hoc
Theo Tir diln Tiing Vipt ciia tde gid Hoang Phe [9]: "DH Id dgy vdn hoa theo nhiiiig chuong trinh nhat dinh". Chiing toi dong quan dilm voi tac gid D6 Nggc Dat: "DH la khai ni?ni chi boat dgng chung cua nguai d^y va nguoi hpc, hai hoat dgng nay song song t6n t^ va phat trien trong cimg mgt qua trinh th6ng nhdt Id qua trinh DH" [10]. Theo tac
gia Phan Trgng Ngg [llj, qua trinh DH Id chuoi lien tiep cdc hdnh dpng DH eiia nguai day vd nguoi hpc dan xen va mong tac vai nhau trong khoang khong gian vd thai gian nhdt dinh, nhdm thyc hi?n cac nhi?m vy DH
Qud trinh DH la hoat dong c6 myc dich. co to chuc. phoi hgp th6ng nhdt giira nguai day va nguai hpc nham trang bj kiln thiic, KN, phdt triin khd nang tu duy sang tao, giao dye nhihig phdm chdt nhan cdch cdn thiet cho ngum hpc, dap ling yeu cdu ciia xa hoi vd ITnh vyc hoat dong tuong lai. DH bao gio ciing diln ra theo mot qua trinh. Cdu true cua qua trinh DH g6m co muc dich ro rang, co to chirc chdt ehe, co chuang trinh noi dung xac dinh, co co sd vat chat, thiet bi kl thuat bao dam kit qud ddo tao theo yeu cau cua xa hpi va ITnh vuc hoat dpng tuong lai. Chirc ndng ciia qua trinh DH la hinh thdnh he th6ng kiln thiic, KN cho ngucri hpc, h-en CO sa do phat triin tri tue, gido due nhan each, chudn bj tam li cho hp buoc vao cupe song, eong tac mai.
2.2.2. Quan niem ve day hoc toan theo hUflng tang ctlting ren luyen ki nang sieu nhan thtic
Theo Tir diln Tiing Viet cua Hoang Phe [9], ren luy?n la
"Luyen tap nhilu Idn trong thyc te de dat t(ii nhiing phdm chdt hay trinh dp vihig vang, thong thao". Ren luyen KN la su luyen tap KN do nhilu lan trong moi trudng Iuy?n tap 6n djnh, tao nen sy thay ddi timg budc de hinh thanh ya phat triin KN do tir thdp den cao, tir chua hodn thi?n den hodn thien.
Nhu vay, ren luyen KN dugc hieu la viec l^p lai nhieu ldn mpt hoat dpng nham bien tri thiic cua chii the hoat dpng thanh KN, kl xao tuong iing vdi hoat dgng d6.Tii quan niem vl ren Iuyen KN tren, chiing toi quan niem: Ren luyin KN SNT eho HV Id viee td ehirc ede hogt ddng DH nhdm luyen tap cdc KN SNT lap di lap Igi nhiiu ldn trong moi trudng hgc tap nhdl dinh, tgo nin su thay ddi timg budc di hinh thdnh vd phdt triin KN dd tai trinh do virng vdng, thong thgo.
Thdng qua vi$c long ghep vdo bdi day cac boat dpng sir pham, giang vien se ren iuyen eho HV nhiing KN SNT nham giiip eho HV hieu dugc ban than ndm dugc npi dung gi, cdn yeu d npi dung gi de chii dpng khdc phyc ddng thcri giup HV cdch tiep can npi dung mdi, vdn de mdi mpt each chil dgng, tich eye trong hpc tdp.
Dya tren qua trinh DH mon Todn hien nay, chiing toi quan niem rang: DH todn theo huang tdng cuang ren luyin KN SNT Id viec td ehirc cdc hogt ddng DH tiin hdnh bdng cdch xdc djnh rd yeu cdu, ldm rd y dd vd thue hign cdc Id thugl de long ghep vdo ngi dung bdi dgy nhung hogt dgng cdn thiit nhdm ren luyin ede KN S.\T cho HV. Trone qud trinh DH mdn Todn, giang vien chii trgng xac djnh rd timg npi dung cd the ren luyen dugc nhimg KN SNT nao, tir do chu y din vi|c thiet ke bai d^y, cac kl thudt d^y dl cd thi ren dugc cac KN SNT dd.
2.2.3. Quy trinh ren luyen ki nang sieu nhan thflc cho hoc vien Q u y t r i n h td chiic ren l u y ? n K N S N T c h o H V la m p t trat
14 TAP CHI KHOA HOC GiAO DUC VIET NAM
ty bao gom cdc giai doan, cac budc dugc sdp xep theo mdt h^t ty tii khi bdt ddu cho din khi kit thiic hoat dong.Theo tac gia Schraw [7], dk thiic diy SNT, KN SNT cdn thye hi?n cac budc: Nang cao hilu bilt vl SNT, ndng cao kiln thuc vl NT, ndng cao KN SNT, tao mdi trudng thuan Igi thuc day SNT. Dya tren cac quan dilm dd, chung toi dua ra quy trinh ren Iuyen KN SNT gdm cac budc nhu sau:
Bude I: Ndng cao kiln thiie vl SNT, KN SNT va ren Iuy?n KN SNT cho HV. Day la budc gop phan lam nang cao hilu bilt vl SNT theo budc 1 cua Shraw. Bk nang cao kien thiic ve SNT, giang vien can ldm ro y nghia, vai tro ciia KN SNT trong hgc tap, trong ITnh vuc nghe nghiep, trong cugc sdng. Tir do, HV thay duge nhu cdu cdn thilt phdi ren luy?n KN SNT.
Budc 2: Truyln dat KN SNT ca ban cho HV. Ddy la budc gop phan nang cao kiln thiic vl NT va nang cao KN SNT.
De ren luy^n dugc KN SNT cho HV, trudc tien gidng vien can truyen dat cho HV hieu rd cac KN SNT va each thirc thi hien ehiing ra sao trong hgc tap, qua trai nghiem. Cd thi bieu dien hoae mo hinh hda cdc KN SNT cho din khi HV hieu va thuc hanh dugc mgt each cy the, qua do HV bilt quy trinh thyc hien vd cac bude tien hdnh.
Buae 3: Thilt kl cdc bdi tap, cac tinh huSng su pham, tinh huong thuc te khuyen khich HV van dung KN SNT. Budc ndy gop phdn tao moi trudng thuan Igi thuc day SNT. De ndm viing KN, HV can lien tuc thyc hanh KN dd. Gidng vien va HV tao ra cdc tinh hudng su pham trong hgc tap, tinh hudng thyc te trong ITnh vyc nghe nghiep, trong cudc s6ng de HV thuc hanh Iuyen tap KN SNT. Giang vien khuyen khich va tao co hgi cho HV dugc thyc hanh cae KN SNT cho den khi thanh thao.
Buae 4- Kiem tra, danh gia ket qud ren luyen KN SNT cua HV. Day Id budc giup giang vien, HV nhin lai hieu qua dat duac ciia cac budc tren. Kiem tra, danh gia ket qua ren luyen KN SNT ciia HV la rat quan trgng. Thdng qua viec kiem tra, ddnh gid giiip HV nhdn ra dugc nhihig uu, nhupc diem. Qua dd, gidng vien cd the bd sung nhihig kien thiie c6n y6u va thieu, giiip HV hoan thien hcra ve KN SNT
2.2.4. Day hpc toan theo hiTdng tang cifflng ren luyen ki nang sieu nhan thiilc cho hpc vien
KN SNT chi cd the dugc hinh thanh, phat trien thong qua hoat dgng, bang boat dgng va cu the hem Id phat trien trong mdi trudng boat dpng hpc tap, trong boi canh hay trong mpt yeu cdu GQVD. Han niia, KN SNT cung khong tdn tai ddc ldp ma cd mdi quan he mat thiet vdi KN mdn hge. Vi vdy, gidng vien cdn chii y td chiic DH theo hucmg Idng ghep trong timg bdi hgc dk phdt triin KN SNT kit hgp trong qua trinh hinh thanh va phat triin KN mdn hge eho HV. Viec ldng ghep ren luypn KN SNT cho HV ttong DH mgt npi dung todn hge ndi chung vd trong day hoc XSTK ndi rieng cd the thuc hien nhu sau:
- Cdng bd muc tieu bai hoc va myc tieu phat trien KN SNT can ldng ghep dl HV dinh hudng hdnh ddng, gidng vien cdn neu ro myc tieu kien thirc, KN mdn hge vd cdc KN
SNT md HV cdn ren luyen qua bai hgc.
- Td ehiic cdc tinh hudng DH de hinh thanh kiln thiic, KN mon hgc vd ren Iuyen KN SNT cho HV. Giang vien td chiic cac tinh hu6ng DH trong dd chiia dung tinh huong cd van dk bugc ngudi hgc phdi tich eye tham gia ren Iuyen KN SNT Khi to chiic DH, giang vien khong chi ehii ttpng ngi dung kien thiie ma cdn phdi quan tam den cae phucmg phap tien hanh, he thong cac hoat dgng, thao tac tuong ting nhdm td chiic, ddn ddt timg budc thyc hien de hinh thanh KN SNT cho HV.
- Cling cd kien thiic, KN. Gidng vien tdng ket Iai nhiing kiln thiic, KN ma HV da dugc hgc, giai thieh y nghTa khi HV hgc dugc nhimg kien thiic ndy. Gidng vien yeu cdu HV ty tong ket xem da hgc dugc kien thire gi? Ndm dugc kien thiic gi? Nhirng kien thiic nao thieu sdt cdn ghi ro de len ke hoach tu bo sung. GV Idm ro nhiing KN SNT dugc long ghep qua timg hoat ddng nhu thi nao.
- Ket thiic ngi dung hpc, giang vien nhdn xet, ddnh gia ve qua trinh hpc tap, tham gia boat dgng va y thiic ren Iuyen KN SNT cua HV Dinh hudng cho HV hoat dgng ty hgc, tu ren Iuyen thdng qua he thdng bai tap, tinh hudng, dy dn de HV phat triin KN tot nhdt.
Day hgc ren Iuyen KN SNT trudc het Id cdch td chiic cua gidng vien vdi nhiing bien phap dugc phoi hgp hgp li, phii hgp trinh dp cua HV, vdi dieu kien giang day. Dudi sy td chirc, hudng dan eua gidng vien, HV can ty giac, tieh eye ty ren Iuyen de hinh thanh KN SNT cho bdn than.
Td chiic day hgc theo hudng tdng cudng ren Iuyen KN SNT cho HV dugc tien hanh theo hai giai do^n:
Giai dogn I. Giang vien ddng vai tro td chiic, hudng dan con HV ddng vai ttd chii dgng, ty giae, tieh eye ty dieu khien qua trinh ren Iuy?n ciia bdn than. Vai ttd ciia gidng vien va HV ttong viec phdt trien SNT dugc the hien qua Hinh 1 nhu sau:
Ngiroi day NgirM hflc
Djnh hirdng/Hudng dan Nghien cuu, lim toi
Trpng tai, co van, ket lu^n, kiem tra
Tu kiem tta Ty dieu chinh
Hinh 1. Vai trd cua ngudi dgy vd ngirdi hge trong viec phdi triin SNT
Giai dogn 2 • HV ddng cd 2 vai ttd vira Id ngucri day vira Id ngudi hgc ttong qua ren luyen KN SNT. Day la giai doan quan trpng nhdt de HV bien qua trinh ren luypn thdnh qua trinh ty ren luy?n. Cd nhu vdy, qua trinh r^n luypn KN SNT ciia HV mdi d^t kit qud cao. Giai doan 2 Id giai doan ngudi
SiS 19 thinfl 7/2019 15
NGHIEN Cl/U Ll' L U A N
hgc chii ddng hodn toan tir viec td chirc den thuc hien, ngudi hgc ty td chirc (c6 the theo dinh hudng ciia giang vien, cd the do ban than tu dat ra) vd ty thyc hien, tu gidm sdt, ddnh gia toan bd qua trinh thyc hien cua ban thdn. Vai ttd cua HV trong vipe phdt trien SNT d giai doan nay duge the hien qua Hinh 2 nhu sau:
Ngiroi hQC
i
Dinh hudng/Hucmg din
1
To chirc
i
Trpng tai, co van, kit luan, kiem tta
-
t
Nghien ciiu, tim toi
i
Thuc hien
i
T u kiem tra Tu dieu chinh Hinh 2: Vai trd eua nguai hge trong viic phdt triin SNT
HV cd the ren luyen KN SNT ttong giai doan nay theo cdc hinh thire: Ty dat cau hdi va ty ttd ldi, gidi quySt cdc nhiera vu do giao vien hoae do ban than dat ra. Dac biet, binh thirc d^y hgc theo dy an la hinh thiic hieu qud de thyc hien giai doan nay. Day la hinh thiic vira tao ca hgi tdt de HV cd the thyc hi^n dugc tdt cd cdc KN SNT vira Id co hpi de HV van dyng kien thiie da hge vao thyc tien, budc dau lam quen vdi giai quyet cae van dS thyc tien. Tuy nhien, ddy Id hinh thiic ddi hdi HV phai bd cdng sire va thdi gian thyc hipn nhieu. Do dd, giang vien can cdn cir vao npi dung hpc, vao khd nang, vao dieu kien cu the eua HV de dua ra nhimg dy an, tir dy an nhd va vira den dy dn ldn mot cdch phii hgp.
Cd the ren luypn KN SNT thong qua cac hinh thirc day hpe:
Ddt cau hdi; khai thac tinh hudng sai ldm; day hpc GQVD;
day hgc theo dy an.
De ren luypn cho HV kha ndng dy dodn, lap ke hoach hpc tap, giam sat, ddnh gia, dieu ehinh qua trinh NT vd qud trinh hpc cua ban than, gidng vien cd the su dyng phdi hgp cdc bien phdp, cdc kT thudt sau:
- Ldm mdu vd gidi thieh cho HV cdch thirc theo doi. dieu chinh, ddnh gid qud trinh tu duy eua chinh minh: Giang vien se ciing HV: Tim hieu xem kien thiic nen cd lien quan;
thao ludn de dy dodn, lap ke ho^ch GQVD. Gidng vien trao ddi vdi HV: Cdch tim kiem vd lien kit cae thdng tin quan ttpng; each nhin ra diem khdi dau vd nhiing khau then chdt dk giai bdi todn; each dua ra nhirng dy doan; cdch phdt trien cdc gia thuylt. each dilu chinh chuyen hudng khi g$p khd khdn; each ddnh gid ldi giai, ddnh gia qua trinh gidi, nit ra dugc y nghia vd kha ndng vdn dyng cho van de tuong ty.
- Su dgng cdc cdu hdi yeu eau HV suy nghT. xem xel vi vdn kiin thue, kinh nghigm cda bdn than, fir dd dua ra lifa chgn phirong hifdng gidi quyil vdn de. De gidi bai toan ndy.
cdn sir dyng nhihig kiln thirc, khai nipm, tinh chat. 'I'^v^ ' quy tde ndo? Da timg gdp vdn dl tuong ty va cdcb GQ
dd nhu the ndo? ..
- Sir dung ede cdu hdi yiu cau HVxdc dinh mgc neu. lgp ki hogch cho hogt dgng hge tap: Hay neu cdc budc can tien
hdnh de gidi bdi loan? . - Sir dung cdc cdu hdi yiu cdu HV gidm sdt. dieu chmh
qud trinh NT cua bdn thdn: Trong cac budc da neu de giai bai todn, budc ndo Id khd khan nhdt? T?i sao? Khi thyc hi?n budc ndy se gdp phdi khd khdn gi? Cd nhihig each nao de gidi quylt khd khan nay? Ta lya chpn each gidi quyet nao?
- Su dung ede cdu hdi yeu cau HVphdi ddnh gid qua irinh NT, qud trinh hgc tap vd kit qud dgt duge so v&i mue tiiu, ki hogch di ra: Trong gid hgc dd ldm dugc nhirag vipe gi?
Chua ldm duge vipe gi? Hay lap kl hoach giai quyet nhihig vipe con chua Idm dugc.
- Khuyen khich HV iham gta vdo ede eugc thdo lugn:
Trong cdc cugc thao luan dd, yeu cdu HV phdi neu dugc r6 rang, mach lac y dd thuc hipn GQVD ciia minh dl cdc HV khac nhan xet, ddnh gid.
- Dau mdi budi hge, gidng vien ghi nhimg kien thUe cdn hge. cudi moi budi hge gidng vien tdng kit Igi nhimg kien thirc HV dd dugc hge, gidi thich y nghia khi HV hgc dut;c nhung kien thire ndy.
- Yeu edu HV ghi "nhgt ki hgc tap": HV ghi vao "nh^t ki hgc tdp" tat ea nhiing gi da hgc dupe sau mdi budi hpc cd ve mat kien thiie vd NT, ghi l^i nhihig viec da lam dugc va ehua lam dugc so vdi myc tieu ke hoach da de ra. HV thudng xuyen xem l^i "nhat ki hpc tap" de ty ddnh gia sy tien bO ciia bdn thdn.
2.2.5. Vi du van dung
CJ phdn ndy, chiing tdi neu vi dy minh hga vipe td chirc ren luypn KN SNT cho HV thdng qua bai: Ki vgng todn cua biin ngau nhiin.
A. Myc ti6u /. Vi klin thirc:
Nam dugc khai nipm ki vgng todn ciia biin ngdu nhien rdi rae, biln ngdu nhien lien tuc, cac tinh chdt ciia ki vpng toan cua biln ngau nhien, y nghia eua sd ki vpng toan trong mdn XSTK, ling dyng eua ki vpng todn ttong thyc tien.
2. Vi kTnang.
- HV thanh th^o ttong vipe tinh sd ki vpng toan eiia cdc bien ngdu nhien rdi rae, biln ngdu nhien lien tyc.
- Cd kl iiang ddt va gidi quylt cdc bai todn ddt ra ttong thyc tien bdng van dyng cdc kiln thiic vl ki vpng todn ciia bien ngdu nhien.
- Bilt cdch kich hoat kiln thiic cd tniac. djnh hudng, Up ke ho^ch GQVD, gidm sat, danh gid vipc thyc hipn.
3. Vi thdi dg:
- HV tich eye trong vipe tham gia tim toi. phat hipn va chiem ITnh tri thirc.
- HV tich eye. chCi dgng ren luypn, ty ren luypn dl cd KN thanh th^o.
B. N$i dung 16 TAP CHI KHOA HOC GIAO DUC VIET NAM
Dgt van de: Mgt ehiln si bdn n vien dan vao bia hinh ttdn cd cdc vdng tinh dilm tii vdng 1 din vdn 10. Khi bdn tning cac vdng tinh dilm thi dugc dilm tuang iing vdi vdng sd dd va bdn khong ttiing thi dugc 0 dilm. Tinh dilm so ttTjng binh dat dugc cua chiln si dd?
Cae hoat ddng ciia gidng vien, HV dupe the hien ttong Bang 2 nhu sau (xem Bdng 2):
Sau khi hinh thdnh khai niem ki vgng cua bien ngdu nhien, giang vien cho them cdc vi du van dung vdo thyc te ciia ki vpng de HV cd the tien hanh lap lai cae hoat dpng nhu ttong vi du tren, qua dd giiip HV biet each thiic tien
B^ng 2: Cdc hoat dpng cua gidng vien, HV khi thifc hien nhiem vu
hanh vd ty ren luyen ttong qua trinh gidi quyet nhiem vu.
C. Cung CO kien t h i i c , k ! nang
- Giang vien tong ket lai nhihig kien thiic, kT nang HV da dugc hpc, gidi thich y nghia khi HV hgc dugc nhiing kiln thiic nay.
- Gidng vien yeu cdu HV ty tdng ket Iai xem da hpc dugc kien thtic gi? Nam duge kien thiic gi? Nhung kiln thiic nao thieu sdt can ghi ro de Ien ke hoach ty bd sung.
- Gidng vien lam ro nhihig KN SNT da Idng ghep ttong timg boat dgng nhu the ndo.
D. Ket thuc noi dung hpc
Hoat dpng cua giang vien
Muc dfch cOa bai tocin Id gt? Tinh diem so tmng binh flat dflijc C6ng thflc tinh tmng binti Xcic dinh nhfl thg n^o?
- ; Vfli ni la s6 lan gia trj x
xudt h i | n , i \,1,.
06 the gicli quy^t dflpc bdi todn khong?
Ktio khSn cua bai to^n la gi?
Zit\ bao nhigu thfli gian d^ gicli quygt?
Bai tOcin kh6 giai quyet vi cac yeu to ciifla xdc djnii:
-Chfla biet r o n ;
- Chfla biet ro c6 bao nhieu lan ban ^ n g vdng 1, vong 2 , . . . , viing 10 vS bao nhieu lan khong ban tnjng
Cac budc can de gidi quygt bai t( - Xdc djnh dfldc yeu cau cua bdi todn - Xdc dinh dfldc cdi da bigt va chfla bigt - Ttiam so hod cdi chfla bigt
- Xdc (finii moi quan h§ gifla yeu cau vfli cdi da bigt vd chfla biet Cach giSi quygt bdi loan?
Trong cong thflc x =
Co the xdc dinti dfldc. x, = O; x^ = i, .\, = 2 ; . . < „ - Gpi: n so lan ban tnjng viing 1 - 1 , i = 1 , 2 , . . . , l l . Vay diem trung binh Id:
- n,-0 + n,-l + ,.,+
— . 0 +
Cdc bflflc thifc hign da ddy du chfla? Cfl tuan thu theo cdc bflflc khPng? Co sai xot trong qud trinh thflc hien khong'?
HV xem lai cdc bflflc xem c6 vdn de gi ve cdc bflflc va t i / dfla ra nhdn xet
Y nghia ciia cdc ti sfi: - ! - ; ^ - ; - -^ la tan s u i t bSn tning vong i - 1 , i = 1 , 2 , . , l l .
Cfl nh&n xdt gi khi n du Ifln?
khi n dil Ifln Ihi: — = p, la xdc sudt bdn tnJng vflng i
X ap,.0 + p,.l + p,.2 + ... + +p„ 10 NX: Pi.O + P j . H - p 3 . 2 + ... + + P | | . i O { * ) gpi Id ki vpng cua
9\itw ciia chign si dP.
- Giing vign ygu ci\i HV trinh bdy khdi niem ki vpng ciia bien n g i u nhign theo cdch hi^u ciia hp
- Giing vign chinh xdc hod khdi nIgm
Y nghia cua ki vpng Ki vpng cua bien ngau nhien co gia tn xap w vfli gid tn tmng binh s6 hpc cua biSn ngdu nhign
S619 t h ^ 7,2019
NGHIEN COTULfLUAN
- Giang vien nhdn xet, ddnh gia ve qua trinh hgc tap, tham gia boat ddng va y thiic ren luyen KN SNT cua HV.
- Gidng vien giao cho HV npi dung ty nghien ciiu, tu ren Iuyen.
- HV tu Iuyen tap khi giir vai tto giang vien, HV khi tu dua ra cau hdi vd ty ttd Idi cdc cau hoi ttong qud trinh giai quyet cac nhiem vu sau:
Bdi todn: Theo thdng ke ciia mot cdng ty bdo hiem thi mgt ngudi 25 tudi se song them tren mdt ndm cd xac suat Id 0,992, con mat ttong vdng mpt nam tdi la 0,008. Td ehire bao hiem do de nghi ngudi do mua bao hiem sinh m a n g cho I nam vdi so tien chi trd 10 trieu, cdn tiln ddng Id 100 nghin. Hdi Igi nhuan trung binh thu d u g c ciia cdng ty dd la bao nhieu?
Du dn: Hay thuc hien d u an hge tap lien quan d i n bai hpc tr6n c o sd cdc cau hdi dinh hudng sau: Ban co h i l u biet gi ve xd so kien thiet, 16 td, sd de? Ban da timg thir van may mua ve sd (hay xd sd, 16 to, ...) de thii van may triing t h u d n g hay chua? Ban cd gi v e nhimg ngudi xung quanh cd tham gia cac boat dgng nay? Ban cd nghe den te nan cd bac, Tai li^u tham khao
[I] Flavell, J. H, (1976), Metacognitive aspects of problem solving. In L. B. Resnick (Ed,), The nature of intelligence (pp. 231-235), Hillsdale, NJ' Erlbaum
[2] Blakey, E. & Spence, S., {1990), Developing metacognition, Eric Digest ED 327218
[3] Flavell, J,H., (1979), Metacognilion and cognitive monitoring: A new area of cognitive-developmental inquyry, American Psychologist, 34, p.906-11.
[4] Brown, A, (1978), Knowing when, where and how to remember: a problem of metacognition. Advances in instructional psychology vol 1.
[5] Brown A, {\9%1), Metacognition. excutive control, self- regulation and other more mysterious machanisms, in F.
E We inert.
[6] Desoete, A, (2008), Multi-method assessment of
ca d o hay choi 16 de? Theo ban cd t h i mua \ e sd de nhanh chdng cd ldi vd giau cd hay khdng? Dua ra mgi vdi con so hay cdng thiic chiing minh cho quan diem ciia minh.
3. Ket luan
KN SNT cho phep ngudi hgc sir dyng kien thiic co trudc d l thilt lap mdt chiln l u a c t i l p can mdt nhiem vu hgc tap, thyc hien cac b u d c cdn thilt dk G Q V D . phan dnh vd ddnh gia k i t qud, sua ddi each t i l p can khi can thiet. KN SNT dya tten sy k i t hgp gii^a h i l u b i l t vdi hanh dpng cua ban didn, ddi chilu vdi nhimg kinh nghiem ttong qua khir, dinh hudng hanh dpng ttong tinh hu6ng hien tai. HV cd KN SNT phat t n l n tdt cd t h i nghi v l mpt vdn de hoac tiep c^n mgt nhiem vu hgc tap mdi, lya ehpn chien luge phii hgp, va d u a ra q u y l t djnh v l mgt qua trinh hanh dgng de giai quyet cac vdn de hodc thyc hien nhiem vy thanh cdng. Day hpc todn theo hudng tang c u d n g ren luyen mdt sd KN SNT cho HV gdp phdn ndng cao chdt lugng D H , dac biet la phat ttien tu duy cho HV.
metacognitive skills in elementary school children, how you test IS what you get. Springer Science + Business Media.
Schraw, G., (1998), Promoting General Metacognitive Awareness, Intructional Science, 26(2), p 113-125.
Van der Stel, M., (2011), Development of metacognitive skills in young adolescents, Legatton Electronic Publishing, Rotterdam.
Hoang Phe, (1996), Tir diin Tiing Vi^t, NXB Da Nang, Da Nang.
[10] Do Ngoc Dat, (1977), Tiep cdn hien dgi hogt dgng dgy hgc, NXB Dai hpc Quoc Gia, Ha Ngi.
[11] Phan Trpng Ngo, (2005), Day hgc vd phuang phdp dgy hgc trong nha truang, NXB D?i hpc Su pham. Ha Noi.
[7]
[8]
[9]
HOW TO TEACHING MATHEMATICS IN ORDER TO IMPROVE METACOGNITIVE SKILLS FOR STUDENTS
Le Binh Duong Political Universrty
Commune Thach Hoa, Thach That Distnct, Hanoi, Vietnam.
Email: duong1109@gmail com
ABSTRACT Metacognition and metacognitive skills are important aspects in Ihe development ol student's thinking and knowledge building This work has overviewed Ihe concept, structure and contents of metacognition and metacognitive skills, following the pioneers in the research area ol metacognition and metacognitive development as John Flavell Ann Lesley Brown. Annemie Desoete, Gregory Schraw. and IVtanila Van der Stel In tlie framework ol this sludy. the author has focused on 4 metacognitive skills that are most important lor learning mathematics: Prediction Plannina Ivlonitoring. Evalualion; then detailed mathematics learning process from the point ol view of metacognition development. An example on the expectation value of random variables has been used lo demonstrate the above ohi • rl
conclusion. ainea KEYWORDS: Metacognition; metacognitive sicitis; matliematics teacliing.
TAP CHl KHOA HOC GIAO DUC VIET NAM