TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
PHẠM LÊ MINH
NÂNG CAO HIỆU QUẢ PHÁT HIỆN
MÃ ĐỘC SỬ DỤNG CÁC KỸ THUẬT HỌC MÁY
LUẬN VĂN THẠC SĨ CÔNG NGHỆ THÔNG TIN
Hà Nội – 2019
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ
PHẠM LÊ MINH
NÂNG CAO HIỆU QUẢ PHÁT HIỆN
MÃ ĐỘC SỬ DỤNG CÁC KỸ THUẬT HỌC MÁY
Chuyên ngành: An toàn thông tin Mã số: 8480202.01
LUẬN VĂN THẠC SĨ CÔNG NGHỆ THÔNG TIN
NGƯỜI HƯỚNG DẪN KHOA HỌC: TS NGUYỄN ĐẠI THỌ
Hà Nội – 2019
LỜI CAM ĐOAN
Tôi xin cam đoan rằng luận văn thạc sĩ công nghệ thông tin “Nâng cao hiệu quả phát hiện mã độc sử dụng các kỹ thuật học máy” là công trình nghiên cứu của riêng tôi, không sao chép lại của người khác. Trong toàn bộ nội dung của luận văn, những điều đã được trình bày hoặc là của chính cá nhân tôi hoặc là được tổng hợp từ nhiều nguồn tài liệu. Tất cả các nguồn tài liệu tham khảo đều có xuất xứ rõ ràng và hợp pháp.
Tôi xin hoàn toàn chịu trách nhiệm và chịu mọi hình thức kỷ luật theo quy định cho lời cam đoan này.
Hà Nội, ngày …. tháng 05 năm 2019
Phạm Lê Minh
LỜI CẢM ƠN
Trước tiên tôi xin dành lời cảm ơn chân thành và sâu sắc đến thầy giáo, TS. Nguyễn Đại Thọ – người đã hướng dẫn, khuyến khích, chỉ bảo và hỗ trợ cho tôi những điều kiện tốt nhất từ khi bắt đầu cho tới khi hoàn thành công việc của mình.
Tôi xin dành lời cảm ơn chân thành tới các thầy cô giáo khoa Công nghệ thông tin, trường Đại học Công nghệ, ĐHQGHN đã tận tình đào tạo, cung cấp cho tôi những kiến thức vô cùng quý giá và đã tạo điều kiện tốt nhất cho tôi trong suốt quá trình học tập, nghiên cứu tại trường.
Đồng thời tôi xin cảm ơn tất cả những người thân yêu trong gia đình tôi cùng toàn thể bạn bè những người đã luôn giúp đỡ, động viên tôi những khi vấp phải những khó khăn, bế tắc.
Cuối cùng, tôi xin chân thành cảm ơn các đồng nghiệp của tôi tại Tổng Công ty Viễn thông Viettel – Tập đoàn Công nghiệp Viễn thông Quân đội đã giúp đỡ, tạo điều kiện thuận lợi cho tôi học tập và nghiên cứu chương trình thạc sĩ tại Đại học Công nghệ, ĐH QGHN.
MỤC LỤC
LỜI CAM ĐOAN ... i
LỜI CẢM ƠN ... ii
DANH MỤC HÌNH ... v
TÓM TẮT ... vi
MỞ ĐẦU ... 1
CHƯƠNG 1: TỔNG QUAN VỀ MÃ ĐỘC ... 4
1.1. Giới thiệu về mã độc ... 4
1.2. Phân loại mã độc ... 4
1.2.1. Virus [5]. ... 5
1.2.2. Worm [5] ... 7
1.2.3. Ransomware ... 8
1.2.4. Trojan ... 10
1.2.5. Backdoor [6] ... 10
1.2.6. Rootkits ... 11
1.3. Mục đích phân tích mã độc ... 12
1.4. Phương pháp phân tích mã độc ... 12
1.5. Trích xuất đặc trưng và các loại đặc trưng ... 14
1.5.1. Trích xuất đặc trưng ... 14
1.5.2. Các loại đặc trưng ... 15
CHƯƠNG 2: TỔNG QUAN VỀ HỌC MÁY ... 17
2.1. Giới thiệu về học máy ... 17
2.2. Phân loại các thuật toán học máy [2] ... 19
2.3. Thuật toán One-class SVM. ... 20
2.3.1. Giới thiệu thuật toán One-class SVM ... 20
2.3.2. Giới thiệu thuật toán SVM. ... 21
2.3.3. Thuật toán One-class SVM theo tác giả Schölkopf ... 25
2.3.4. Thuật toán One-class SVM theo tác giả Tax và Duin ... 26
2.4. Đánh giá hiệu quả thuật toán ... 26
CHƯƠNG 3: PHƯƠNG PHÁP ÁP DỤNG HỌC MÁY VÀO PHÂN TÍCH MÃ ĐỘC ... 30
3.1. Mô hình đề xuất thực hiện gồm các bước sau: ... 30
3.2. Thu thập và tiền xử lý xử liệu dữ liệu ... 31
3.2.1. Thu thập dữ liệu gói tin mạng ... 31
3.2.2. Trích chọn đặc trưng trong header của gói tin ... 32
3.2.3. Trích chọn đặc trưng từ payload gói tin ... 33
3.3. Lựa chọn đặc trưng ... 34
3.3.1. Lựa chọn đặc trưng từ header ... 34
3.3.2. Lựa chọn đặc trưng từ payload ... 35
3.4. Xây dựng mô hình học máy ... 36
3.5. Thực nghiệm và đánh giá kết quả ... 36
3.5.1. Dữ liệu thực nghiệm ... 36
3.5.2. Chương trình thực nghiệm ... 36
3.5.3. Đánh giá hiệu quả thuật toán ... 37
3.5.4. Kết quả thực nghiệm ... 37
KẾT LUẬN ... 39
TÀI LIỆU THAM KHẢO ... 41
DANH MỤC HÌNH
Hình 2.1: quy trình học máy ... 17
Hình 2.2: phân tích bài toán SVM ... 23
Hình 2.3: các điểm gần mặt phân cách nhất của hai class được khoanh tròn . 24 Hình 3.1: mô hình phân tích mã độc ... 30
Hình 3.2: thông tin gói tin http ... 31
Hình 3.3: thông tin header của giao thức http ... 32
Hình 3.4: thông tin payload trong gói tin http ... 32
Hình 3.5: trích xuất đặc trưng từ header ... 32
Hình 3.6: nội dung payload được trích xuất từ file .pcap ... 33
Hình 3.7: mô tả biểu diễn byte theo n-gram ... 33
Hình 3.8: payload được trích xuất theo phương pháp 2-gram ... 34
TÓM TẮT
Phần mềm độc hại (mã độc) là một trong những mối đe dọa bảo mật gây thiệt hại lớn nhất đối với Internet hiện nay. Việc phát hiện chính xác phần mềm độc hại hết sức khó khăn và nhiều thử thách do mã độc ngày càng tinh vi trong việc che dấu bản thân bằng các kỹ thuật như mã hóa nội dung (payload) và ngụy trang (obfucation). Ngoài ra, nhiều loại phần mềm độc hại phát triển nhanh chóng với nhiều thể loại tiếp tục cản trở việc phát hiện mã độc. Trong học máy, lựa chọn đặc trưng và trích xuất đặc trưng là một trong những thành phần quan trọng ảnh hưởng đến kết quả xây dựng mô hình học máy. Trong luận văn này chúng tôi tập trung vào hai cách trích xuất đặc trưng của gói tin mạng từ tiêu đề (header) và từ nội dung (payload), sau đó đánh giá hiệu quả của 02 phương pháp trích chọn đặc trưng mạng với cùng một thuật toán học máy được áp dụng là one-class SVM để phát hiện, phân loại mã độc.
Kết quả thưc nghiệm với các độ đo F1, Precision, Recall để đánh giá hiệu quả của thuật toán cho thấy phương pháp trích xuất từ header có độ chính xác cao hơn so với phương pháp trích xuất từ payload, cụ thể: phương pháp trích xuất từ header có kết quả với các độ đo Precision, Recall, F1 lần lượt là 95,93%, 95,83%, 95,84% so với phương pháp trích xuất từ payload cho kết quả lần lượt là là 87,78%, 71,16%, 78,60% đối với tập dữ liệu huấn luyện và kết quả 95,91%, 95,73%, 95,82% so với kết quả 85,58%, 69,82%, 76,91% đối với tập dữ liệu kiểm thử. Điều này cho thấy có thể phát hiện mã độc trong các gói tin mạng một cách hiệu quả chỉ bằng cách xem xét các thông tin tiêu đề, không cần tiêu tốn thời gian vào quét và phân tích nội dung của từng gói tin.
MỞ ĐẦU
Ngày nay cùng với sự phát triển mạnh mẽ của công nghệ thông tin và sự phát triển của Internet toàn cầu là các nguy cơ mất an toàn thông tin đang trở nên nguy hiểm và khó lường hơn, trong đó mã độc hại (malware) là một trong những mối hiểm họa nghiêm trọng trên Internet. Mã độc ngày càng tiến hóa với những biến thể đa dạng từ virus máy tính, worm, botnet…với các hình thức xâm nhập, che dấu ngày càng tinh vi. Số lượng và hình thái đa dạng của mã độc ngày càng tăng, trong khi các phần mềm phòng chống mã độc không thể phát hiện, ngăn chặn được hết dẫn đến hàng triệu máy tính bị nhiễm mã độc. Ở Việt Nam, theo số liệu thống kê của BKAV thì năm 2017 có đến 15 triệu máy tính ở Việt Nam bị nhiễm mã độc tương ứng thiệt hại khoảng 12.300 tỷ đồng. Ngoài ra, ngày nay để phát triển một mã độc mới không yêu cầu nhiều kỹ năng cao do tính sẵn có các công cụ tấn công trên internet. Tính sẵn sàng cao của các kỹ thuật chống phát hiện cũng như khả năng mua phần mềm độc hại trên thị trường chợ đen dẫn đến cơ hội trở thành một kẻ tấn công cho bất kỳ ai, không phụ thuộc vào cấp độ kỹ năng và trình độ chuyên môn. Do đó, bảo vệ hệ thống máy tính khỏi các phần mềm độc hại trên Intenet là một trong những nhiệm vụ quan trọng nhất về an ninh mạng cho người dùng, doanh nghiệp. Một cuộc tấn công đơn lẻ có thể dẫn đến dữ liệu bị xâm phạm và gây ra những hậu quả to lớn. Sự mất mát lớn và các cuộc tấn công thường xuyên đặt ra yêu cầu cần thiết phải có các phương pháp phát hiện chính xác và kịp thời. Các kỹ thuật phân tích tĩnh và phân tích động thường dựa vào cơ sở dữ liệu được xây dựng trước đó nên có một số hạn chế như khó có khả năng phát hiện ra các mã độc mới, các lỗ hổng chưa được công bố (zero-day) hay các biến thể của mã độc đã biết. Hơn nữa, ngày nay số lượng mã độc ngày càng tăng cao dẫn đến số lương mẫu ngày càng nhiểu đòi hỏi phải có một phương pháp phù hợp để phát hiện mã độc. Do đó hướng
nghiên cứu dựa vào các mô hình học máy để phát hiện và phân loại mã độc tỏ ra là phương pháp tìm năng và hiệu quả khi số lượng mẫu mã độc lớn và các biến thể của mã độc ngày càng đa dạng. Tuy nhiên một trong những vấn đề chính được quan tâm là làm thế nào để xây dựng được mô hình học máy hiệu quả và mang lại kết quả chính xác cao. Trong đó có một yếu tố quan trọng ảnh hưởng chính đến mô hình và hiệu qủa của các thuật toán học máy là lựa chọn đặc trưng và các phương pháp trích chọn đặc trưng phù hợp. Trong phần nghiên cứu của luận văn này chúng tôi lựa chọn đặc trưng mạng do đặc trưng mạng có thể nâng cao khả năng phát hiện các lỗ hổng chưa được biết (zero- day) và khắc phục được hạn chế về hiệu quả học máy đối với việc lựa chon các đặc trưng khác như đặc trưng về byte sequence, strings, API, opcode, system call ... được sử dụng làm đầu vào cho các thuật toán học máy thường cho kết quả không tốt đối với các mã độc được mã hóa, được ngụy trang (obfucated), biến thể của mã độc. Đồng thời, chúng tôi trình bày về 02 phương pháp trích chọn đặc trưng gói tin mạng gồm phương pháp trích chọn đặc trưng từ tiêu đề (header) của gói tin mạng và phương pháp trích chọn đặc trưng từ tải (payload) của gói tin mạng dựa trên phương án 2-gram. Sau đó dữ liệu đặc trưng này sẽ được trích chọn ra các đặc trưng phù hợp nhất làm đầu vào cho thuật toán học máy, trong luận văn này chúng tôi lựa chọn thuật toán one-class SVM do thuật toán one-class SVM là một trong những thuật toán phân loại phổ biến nhất và có khả năng phát hiện mã độc đã biết, mã độc mới (zero-day), các biến thể của mã độc và phân loại mã độc. Kết quả của luận văn được thực nghiệm dựa trên dữ liệu mẫu Android Malware dataset (CICAndMal2017) gồm 212788 mẫu, trong đó có 168186 mẫu sạch và 44202 mẫu mã độc thuộc họ Ransomware gồm các loại Charger, Jisut, Wannalocker.
Kết quả thực nghiệm với các độ đo F1, Precision, Recall để đánh giá hiệu quả của thuật toán cho thấy phương pháp trích xuất từ header có độ chính xác cao hơn so với phương pháp trích xuất từ payload, cụ thể: phương pháp trích xuất từ header có kết quả với các độ đo Precision, Recall, F1 lần lượt là 95,93%,
95,83%, 95,84% so với phương pháp trích xuất từ payload cho kết quả lần lượt là là 87,78%, 71,16%, 78,60% đối với tập dữ liệu huấn luyện và kết quả 95,91%, 95,73%, 95,82% so với kết quả 85,58%, 69,82%, 76,91% đối với tập dữ liệu kiểm thử.
Nội dung tiếp theo của luận văn này được chia làm 04 phần như sau:
Chương 1: Tổng quan về mã độc. Chương này này sẽ giới thiệu về các loại mã độc, phân loại mã độc, các kỹ thuật phân tích mã độc, các đặc trưng và trích chọn đặc trưng.
Chương 2: Tổng quan về kỹ thuật học máy. Chương này sẽ giới thiệu về học máy, phân loại các phương pháp học máy, thuật toán học máy svm, thuật toán one-class svm và các phương pháp đánh giá hiệu quả của học máy.
Chương 3: Giải pháp áp dụng học máy vào phân tích mã độc. Chương này sẽ trình bày về mô hình đề xuất, 02 phương pháp trích chọn đặc trưng gói tin mạng, lựa chọn đặc trưng, thực nghiệm và đánh giá kết quả thực nghiệm.
Kết luận và hướng phát triển của đề tài
CHƯƠNG 1: TỔNG QUAN VỀ MÃ ĐỘC
Chương này giới thiệu khái niệm về mã độc, phân loại mã độc, mục đích phân tích mã độc và các kỹ thuật phân tích mã độc.
1.1. Giới thiệu về mã độc
Mã độc (tên tiếng anh là malware – được viết tắt từ malicious software) là loại phần mềm bất kỳ được thiết kế có mục đích để gây tổn hại cho một máy tính, máy chủ, máy khách hoặc mạng máy tính. Các chương trình độc hại này có thể thực hiện nhiều chức năng, bao gồm ăn cắp, mã hóa hoặc xóa dữ liệu nhạy cảm, thay đổi hoặc chiếm đoạt các chức năng tính toán lõi và giám sát hoạt động máy tính của người dùng mà không được sự cho phép của họ.
Mã độc chỉ gây thiệt hại sau khi được cấy hoặc đưa vào máy tính mục tiêu và có thể ở dạng mã lệnh thực thi, tập lệnh, nội dung hoạt động và phần mềm khác. Mã độc có mục đích xấu, hoạt động trái phép với người dùng máy tính bình thường vì vậy mã độc không bao gồm phần mềm gây ra tác hại vô ý do một số thiếu sót liên quan đến lỗi phần mềm.
Các chương trình được cung cấp chính thức bởi các công ty có thể được coi là phần mềm độc hại nếu họ bí mật hành động chống lại lợi ích của người dùng máy tính. Ví dụ, tại một thời điểm, đĩa nhạc Compact của hãng Sony đã bí mật cài đặt một rootkit trên máy tính người mua với đích ngăn chặn sự sao chép bất hợp pháp nhưng đồng thời cũng thu thập thông tin về thói quen nghe nhạc của người dùng và vô tình tạo ra các lỗ hổng bảo mật.
Các giải pháp như phần mềm antivirus, tường lữa…thường được sử dụng để kiểm tra sự tồn tại, các hoạt động độc hại cũng như ngăn chặn phần mềm độc hại truy cập vào máy tính.
1.2. Phân loại mã độc
Có nhiều cách tiếp cận khác nhau để phân loại mã độc thành một số loại nhật định với các đặc điểm cụ thể như: tính nhân bản, sự nhiễm độc, tàng hình, lệnh và điểu khiển (C&C), các kỹ thuật che dấu, tập hợp các hành vi
được thể hiện trong quá trình chạy trên hệ điều hành. Hơn nữa, ngày càng khó xác định các phần mềm độc hại vì ngày nay tác giả của phần mềm độc hại có thể dễ dàng tiếp cận mã nguồn của một số mẫu phần mềm độc hại và kết hợp các chức năng của chúng để tạo ra các mẫu mới có cơ chế tự mở rộng khả năng và nhỏ gọn hơn. Mặc dù không có sự thống nhất chung về việc phân loại phần mềm độc hại, các loại phần mềm độc hại dựa trên mục đích và hành vi của chúng có thể được phân loại như sau:
1.2.1. Virus [5].
1.2.1.1. Khái niệm
Virus máy tính là một loại phần mềm độc hại phổ biến nhất, được ẩn dấu trong một chương trình có vẻ vô hại, có thể tự tạo ra các bản sao và lây lan vào các chương trình khác hoặc các tệp (file) khác để thực hiện một hành vi độc hại như xóa file, sao chép nội dung, mã hóa file...
1.2.1.2. Thành phần
Một virus máy tình gồm 03 thành phần:
o Cơ chế lây nhiễm: các phương tiện mà virus lây lan, cho phép tự nhân bản, cơ chế này gọi là vec-tơ lây nhiễm
o Bộ kích khởi (trigger): sự kiện hay điều kiện mà quyết định khi nào tải (payload) được kích hoạt
o Payload: một đoạn mã được chạy trên máy nạn nhân, dùng để thực hiện một số hoạt động phá hoại hoặc có thể liên quan đến hoạt động lành tính nào đó nhưng đáng chú ý.
1.2.1.3. Vòng đời của Virus
Vòng đời của Virus, thường bao gồm 04 giai đoạn sau:
o Giai đoạn ngủ đông: Giai đoạn này virus không hoạt động, Virus được kích hoạt bởi một số sự kiện như: như ngày, sự có mặt của chương trình khác hoặc tệp tin hoặc dung lượng ổ đĩa vượt quá giới hạn. Không phải tất cả các virus đều có giai đoạn này.
o Giai đoạn nhân bản: Virus sao chép bản sao của chính nó vào chương trình khác hoặc vào các vùng của hệ thống trên ổ cứng. Bản sao của nó có thể không giống với phiên bản lan truyền, virus thường biến hình để tránh phát hiện. Mỗi chương trình đã bị nhiễm sẽ chứa một bản sao của virus, bản thân virus sẽ bước vào giai đoạn nhân bản.
o Giai đoạn kích hoạt: Virus sẽ được kích hoạt để thực hiện chức năng mà nó đã dự định. Cũng như giai đoạn không hoạt động, giai đoạn kích hoạt có thể được thực hiện bởi một loạt các sự kiện hệ thống, bao gồm số lần bản sao của virus đã tạo ra các bản sao của chính nó.
o Giai đoạn thực thi: Chức năng của virus được thực hiện, chức năng có thể vô hại như một thông báo trên màn hình hoặc phá hoại chương trình và các tệp dữ liệu
1.2.1.4. Phân loại virus:
Virus cơ bản được phân làm hai loại: theo loại mục đích mà virus cố gắng lây nhiễm và theo phương pháp mà virus sử dụng để che dấu bản thân nhằm tránh phát hiện bởi người dùng và các phần mềm chống virus. Phân loại theo mục đích bao gồm các loại sau:
Lây nhiễm vào vùng khởi động (Boot sector infector): lây nhiễm một bản ghi khởi động chính hoặc bản khi khởi động và lây lan khi một hệ thống được khởi động từ đĩa chứa virus.
Lây nhiễm têp tin (file infector): lây nhiễm vào các tệp tin của hệ điều hành hoặc shell được thực thi.
Macro virus: lây nhiễm các tệp tin với mã macro được biên dịch bởi một ứng dụng.
Phân loại theo phương pháp mà Virus sử dụng bao gồm các loại sau:
Virus được mã hóa (Encrypted virus): phương pháp được thực hiện như sau. Một phần của virus tạo ra một khóa mã hóa ngẫu nhiên và mã hóa phần còn lại của virus. Khóa được lưu với virus. Khi một chương trình bị nhiễm được gọi, virus sử dụng khóa ngẫu nhiên được lưu trữ để giải
mã virus. Khi virus nhân bản, một khóa ngẫu nhiên khác nhau được lựa chọn. Bởi vì phần lớn virus được mã hóa bằng một khóa khác nhau cho mỗi trường hợp dẫn đến không có mẫu bit cố định để quan sát.
Virus tàng hình (Stealth virus): một hình thức của virus được thiết kế để che dấu bản thân nó khỏi sự phát hiện của phần mềm chống virus.
Virus đa hình (Polymorphic virus): một loại virus biến đổi theo mọi lây nhiễm, khiến cho việc phát hiện virus bằng chữ ký trở nên không thể.
Virus biến hóa (Metamorphic virus): giống như một virus biến hình, một virus biến hóa biến đổi với mọi sự lây nhiễm. Sự khác biệt là một virus biến hóa tự viết lại hoàn toàn ở mỗi vòng lặp để tăng độ khó phát hiện. Virus biến hóa có thể thay đổi hành vi, cũng như ngoại hình của chúng.
1.2.2. Worm [5]
Sâu (Worm) là một chương trình có thể tự sao chép và gửi các bản sao từ máy tính này sang máy tính khác qua các kết nối mạng. Khi đến nơi, worm có thể được kích hoạt và nhân bản lần nữa. Ngoài việc nhân bản, worm thường thực hiện một số chức năng không mong muốn như thu thập thông tin hệ thống, tìm kiếm lỗ hổng bảo mật... Worm là một loại phần mềm độc hại được ẩn náu trong máy tính, nhưng nó không phải là virus vì nó không được nhúng vào chương trình khác.Worm lây nhiễm từ máy tính này đến máy tính khác bằng cách khai thác lổ hổng bảo mật hoặc lỗ hổng do chính tác giả tạo ra.
Để tự nhân bản, một worm mạng sử dụng một số phương tiện mạng như sau:
Chức năng thư điện tử (Electronic mail facility): worm thư điện tử gửi bản sao của nó đến hệ thống khác, mã của nó được kích hoạt khi thư điện tử hoặc tệp đính kèm nhận được hoặc xem.
Khả năng thực thi từ xa (Remote execution capability): worm thực thi bản sao của chính nó trên hệ thống khác bằng cách sử dụng một cơ chế thực thi từ xa hoặc bằng cách khai thác lỗ hổng chương trình của một dịch vụ mạng để phá hủy hoạt động của chúng.
Khả năng truy cập từ xa (Remote login capability): worm đăng nhập vào hệ thống từ xa như một người dùng, sau đó sử dụng các lệnh để sao chép chính nó từ hệ thống này đến hệ thống khác và thực thi lệnh.
Ví dụ, một trong những sâu máy tính nổi tiếng nhất trong lịch sử máy tính có tên là Confiker. Confiker mục tiêu tấn công vào hệ điều hành Microsoft Window, phiên bản đầu tiên của sâu Confiker được phát hiện vào tháng 10 năm 2008 và đã lây nhiễm hàng triệu máy tính trên thế giới. Confiker khai thác một lỗ hổng về dịch vụ mạng được xây dựng trên hệ điều hành Window, bao gồm tất các các phiên bản từ Window 2008 đến Windows server 2008 được nhân bản qua Internet. Lỗ hổng này có tên là MS08_067, cho phép một kẻ tấn cống thực thi mã lệnh từ xa và chiếm toàn bộ quyền điều khiển máy tính từ xa.
1.2.3. Ransomware
Ransomware (mã độc tống tiền) gồm nhiều lớp phần mềm độc hại với mục đích hạn chế truy cập đến hệ thống máy tính mà nó đã lây nhiễm và đòi hỏi phải trả một khoản tiền cho kẻ tấn công nhằm xóa bỏ hạn chế truy cập mà nó đã tạo ra trước đó. Một vài dạng của ransomware mã hóa tệp tin, dữ liệu trên ổ đĩa cứng nhằm tống tiền, trong khi một vài dạng khác thì đơn giản hơn như chúng khóa hệ thống lại và hiển thị một thông báo để thuyết phục nạn nhân trả tiền. Mã độc tống tiền thường lan truyền qua email với các file đính kèm, như các virus máy tính khác, khi mở file đính kèm này thì máy tính của người dùng sẽ bị kiểm soát. Khi đó, mã độc quét toàn bộ ổ đĩa của máy tính và mã hóa các file bằng mã hóa công khai. Hầu hết các tập tin quan trọng trên máy tính người dùng với định dạng .doc, pdf, xls, zip... sẽ không mở được nữa. Để giải mã bắt buộc phải có khóa bí bật, mà khóa bí mật chỉ có kẻ tấn công mới có và nạn nhân sẽ nhận được thông báo trên màn hình (desktop) đòi tiền chuộc nếu muốn giải mã file. Một số loại mã độc ransomware như sau:
Charger: mã độc này sẽ sao chép tất cả các dữ liệu từ tin nhắn dạng text, danh bạ, nhật ký ...và tìm kiếm quyền admin từ người dùng. Nếu người
dùng chấp nhận yêu cầu của mã độc, thì phần mềm mềm độc hại sẽ tấn công người dùng và một tin nhắn cảnh báo cho người dùng biết là thiết bị của người dùng đã bị khóa và các dữ liệu cá nhân sẽ được bán trên thị trường nếu người dùng không chấp nhận trả tiền chuộc. Các nạn nhân của mã độc Charger sẽ yêu cầu phải trả khoảng 0.2 bitcoins (khoảng 8000$ USD) nếu muốn mở khóa (unblock) thiết bị.
Jisut: Không giống như những mã độc ransomware khác thường yêu cầu tiền chuộc thì Jisut tiếp cận theo một cách khác và không quan tâm về sự nặc danh. Trên màn hình xuất hiện con ngựa con bao gồm thông tin liên quan trên mạng xã hội QQ ở Trung Quốc và thuyết phục nạn nhân liên hệ với tác giả để lấy lại các tệp tin của họ. Nếu thông tin trên QQ là đúng thì chủ nhân của mã độc là các thanh niên từ 16 đến 21 tuổi sẽ xuất hiện. Các biến thể đầu tiên của Jisut Android/LockScreen xuất hiện nữa đầu năm 2014, từ thời điểm 2014 đến bây giờ đã phát hiện hàng trăm biến thể của Jisut với các hành vi khác nhau hoặc các tin nhắn đòi tiền chuộc khác nhau nhưng tất cả dựa trên cùng một mẫu mã độc. Khi mã độc Jisut được kích hoạt thì nó sẽ tạo ra một màn hình hoạt động được hiện lên với đầy đủ màn hình với màu đen, nếu người dùng thay đổi giao diện hoặc tắt, khởi động lại thiết bị thì một thông báo sẽ được hiển thị lên hoặc một bài hát sẽ được thực thi.
WannaLocker: mã độc này là một loại khác của ransomware Wannacry, ban đầu nhắm đến người dùng Android ở Trung Quốc và mở rộng ra toàn thế giới. Mã độc này lây nhiễm các tệp tin (files) trên bộ lưu trữ của thiết bị và mã hóa các tệp tin bằng thuật toát mã hóa AES. Khi các tệp tin bị mã hóa, mã độc sẽ hiện lên một thông báo đòi tiền chuộc tương tự như WannaCry, nó cung cấp thông tin về dữ liệu đã được mã hóa và các khả năng đê phục hội chúng bằng ngôn ngữ tiếng trung.
WannaLocker yêu cầu số tiền chuộc là 40 Renmibi Trung Quốc và cách liên lạc để thực hiện giao dịch chuyển tiền và khôi phục dữ liệu.
1.2.4. Trojan
Trojan là một loại phần mềm giả mạo phổ biến, chúng thường ẩn náu trong chương trình phần mềm hữu ích để thực hiện các nhiệm vụ mong muốn và hợp pháp nhưng thực chất là thực hiện một số chức năng độc hại như xóa file, thu thập thông tin hệ thống và gửi cho máy chủ điều khiển, ăn cắp thông tin tài khoản người dùng ....Những chức năng mong muốn và hợp pháp chỉ là phần bề mặt giả tạo nhằm che dấu cho các thao táo độc hại. Không giống như virus, trojan không có chức năng tự sao chép nhưng lại có chức năng phá hoại tương tự virus. Một số dạng Trojans cơ bản như sau:
Remote Access Trojans: cho phép kẻ tấn công kiểm soát toàn bộ hệ thống từ xa
Data-Sending Trojans: Trojan gửi thông tin nhạy cảm của nạn nhân cho kẻ tấn công
Destructive Trojans: Trojan phá hủy hệ thống
Denied-of-Service – DoS Attack Trojan: Trojan phục vụ tấn công Ddos
HTTP, FTP Trojans: Trojan tự tạo thành HTTP hay FTP server để kẻ tấn công khai thác lỗi
Security Software Disable Trojan: Có tác dụng tắt tính năng bảo mật trong các máy tính nạn nhân
1.2.5. Backdoor [6]
Backdoor (cửa hậu) là một loại phần mềm độc hại cung cấp cho kẻ tấn công quyền truy cập từ xa vào máy nạn nhân. Backdoor là loại phần mềm độc hại phổ biến nhất và chúng có đủ hình dạng, kích cỡ với khả năng khác nhau.
Mã backdoor thường thực hiện đầy đủ các khả năng, vì vậy khi sử dụng backdoor kẻ tấn công thường không cần tải thêm các phần mềm độc hại khác hoặc mã chương trình. Backdoor thường cho phép kẻ tấn công kết nối đến máy tính từ xa với ít quyền hoặc không cần xác thực và đi kèm với một số chức năng phổ biến như khả năng thao tác các khóa registry, liệt kê các cửa sổ hiện thị, tạo thư mục, tìm kiếm tập tin, truy cập từ xa bằng tài khoản riêng, thực thi lệnh hệ thống....Một số loại backdoor như sau:
Reverse Shell: là một kết nối bắt nguồn từ một máy bị nhiễm và cung cắp quyền truy cập shell cho kẻ tấn công vào máy tính đó. Khi ở trong reverse shell, kẻ tấn công có thể thực thi các lệnh trên máy của nạn nhân ngay trên máy của kẻ tấn công.
RATs: công cụ quản trị từ xa (RAT) được sử dụng để quản lý các máy tính từ xa. RAT thường được sử dụng trong các cuộc tấn công có chủ đích với mục tiêu cụ thể, chẳng hạn như đánh cắp thông tin.
Botnet: là tập hợp các máy chủ bị xâm nhập, được gọi là zombie, được điểu khiển bởi máy chủ botnet. Mục tiêu của botnet là tạo ra một mạng lưới zombie lớn để botnet phát tán mềm mềm độc hại hoặc thực hiện tấn công từ chối dịch vụ (DDoS).
1.2.6. Rootkits
Rootkit là một bộ công cụ phần mềm do kẻ xâm nhập đưa vào máy tính nạn nhân nhằm mục đích cho phép mình quay lại xâm nhập máy tính đó và dùng nó cho các mục đích xấu mà không bị phát hiện. Một số mục đích của kẻ xâm nhập khi sử dụng rootkit bao gồm:
Thu thập dữ liệu về các máy tính trong cùng mạng và thông tin của người dùng như mật khẩu, thông tin tài chính.
Tạo hoặc chuyển tiếp spam.
Gây lỗi hoặc sai trong hoạt động của máy tính.
Rootkit được thiết kế tốt có khả năng che giấu hoặc xóa bỏ bất cứ dấu vết nào của việc nó truy cập vào máy tính, sự tồn tại và hoạt động của nó. Ví dụ, nó có thể sữa nhật ký (log) của hệ thống để hệ điều hành không ghi hoặc xóa bỏ tất cả các thông tin liên quan đến việc nó đăng nhập vào máy, thông tin các lần truy cập tiếp theo của kẻ xâm nhập, thông tin về các chương trình mà rootkit chạy. Rootkit không phải là virus do nó không tự nhân bản và không có cơ chế hoạt động tự chủ. Rootkit nằm hoàn toàn dưới quyền kiểm soát của kẻ tấn công.
1.3. Mục đích phân tích mã độc
Khái niệm: phân tích phần mềm độc hại là quá trình xác định chức năng và mục đích của mẫu phần mềm độc hại đã cho là virus, worm, Trojan Horse .. hay biến thể của mã độc đã biết hoặc mã độc mới.
Các mục đích của phân tích mã độc: có ba mục đích chính trong việc phân tích mã độc bao gồm phát hiện mã độc, phân tích sự tương tự giữa các phần mềm độc hại và phân loại các phần mềm độc hại. Chi tiết ba mục đích của phân tích mã độc như sau: [2]
Phát hiện mã độc nhằm mục đích phát hiện một tập tin có phải là mã độc hay không.
Phân tích sự tương tự giữa các phần mềm độc hại nhằm mục đích kiểm tra sự giống nhau, khác nhau giữa các phần mềm độc hại để phát hiện biến thể của mã độc đã biết hoặc lớp mã độc mới.
Phân loại phần mềm độc hại: cho phép phân loại phần mềm độc hại vào các nhóm phần mềm đọc hại khác nhau như nhóm virus, horm, rootkit...
1.4. Phương pháp phân tích mã độc
Hiện tại có một số kỹ thuật được dùng để phân tích mã độc, gồm có phân tích tĩnh, phân tích động và phân tích lai, chi tiết các các kỹ thuật như sau:
Phân tích tĩnh là phương pháp phân tích phần mềm mà không cần thực thi chúng. Các thông tin thu được có thể bao gồm các metadata của chương trình, định dạng, dung lượng…các chuỗi ký tự xuất hiên trong mã nguồn, các thư viện được thêm vào (import), các lời gọi hàm có thể được sử dụng, mã nguồn chương trình dưới dạng Assembly…Ưu điểm của phương pháp này là có thể biết được tất cả các khả năng thực hiện có thể của chương trình, tuy nhiên đối với mã độc thì việc phân tích tĩnh thường gặp khó khăn do việc mã hóa (Encrypt), đóng gói (Packed), ngụy trang (Obfuscated). Một số kỹ thuật được sử dụng cho phân tích tĩnh bao gồm [8]:
Kỹ thuật phát hiện dựa trên chữ ký (signature based detection technique) còn gọi là khớp mẫu hoặc chuỗi hoặc mặt nạ hoặc kỹ thuật
dấu vân tay. Chữ ký là một chuỗi các bit được người viết phần mềm độc hại chèn vào chương trình ứng dụng được viết bởi những người phát triển mã độc và cho phép nhận ra một loại mã độc cụ thể. Để phát hiện phần mềm độc hại trong mã của chương trình, người rà soát mã độc hại sẽ tìm kiếm một số chữ ký đã được định nghĩa trước đó trong mã chương trình. Ví dụ, các từ khóa được tìm kiếm như địa chỉ IP, lời gọi chương trình….
Kỹ thuật phát hiện heuristic (heuristic detection technique) được biết như là kỹ thuật chủ động. Có nhiều sự tương đồng giữa kỹ thuật phân tích chữ ký số và kỹ thuật heuristic tuy nhiên có một sự khác nhau rõ ràng của kỹ thuật phân tích heuristic là việc thay cho tìm kiềm một chữ ký cụ thể trong đoạn mã chương trình thì người kiểm tra mã độc sẽ tìm những lệnh và chỉ thị mà không có trong chương trình. Thuận lợi chính của kỹ thuật này là có thể dễ dàng phát hiện ra các biến thể mới của mã độc mà chưa được phát hiện trước đây.
Phân tích động là phương pháp theo dõi, phân tích hành vi thực hiện, các tương tác của phần mềm với môi trường thông qua việc thực thi các phần mềm đó. Khi phân tích động mã độc cũng đồng nghĩa với việc ta phải chạy mã độc đó, do vậy chúng ta cần có một môi trường an toàn để tránh các tác hại đối với hệ thống cũng như bên ngoài. Hộp cát (Sandbox) là một cơ chế bảo mật để chạy các chương trình không đáng tin cậy trong một môi trường an toàn mà không sợ làm hệ thống "thực". Ưu điểm của phương pháp phân tích này đó là có thể theo dõi các hành động thực sự được thực hiện bởi mã độc trong khi đối với phân tích tĩnh, khi gặp rẽ nhánh chúng ta không thể biết mã độc sẽ đi theo nhánh nào. Thách thức của phương pháp này là môi trường sandbox phải an toàn, tránh bị phát hiện đồng thời phải đáp ứng được các điều kiện để mã độc bộc lộ tối đa hành vi của mình. Có hai cách tiếp cận chính cho phương pháp phân tích động gồm có:
Phân tích sự khác biệt giữa các thời điểm được xác định: với phương pháp này, mẫu phần mềm độc hại đã được phân tích trong một khoảng thời gian nhất định, sau đó thay đổi cấu hình hệ thống và phân mềm độc hại sẽ được phân tích lại như ban đầu [7]
Quan sát hành vi thời gian chạy: theo cách tiếp cận này, phần mềm độc hại sẽ thực hiên các hành động độc hại được giám sát các hành vi bằng công cụ chuyên dụng [7]
Phân tích lai (hybrid): kỹ thuật phân tích này là sự kết hợp giữa phân tích tĩnh và phân tích động, thường tuân theo một quy trình đơn giản ban đầu kiểm tra bất kỳ chữ ký trong mã chương trình, nếu phát hiện bất kỳ chữ ký nào xuất hiện thì sẽ giám sát hành vi của mã này [8]
1.5. Trích xuất đặc trưng và các loại đặc trưng 1.5.1. Trích xuất đặc trưng
Quá trình trích xuất đặc trưng được thực hiện bằng việc phân tích tĩnh hoặc phân tích động hoặc cả hai loại phân tích tĩnh và phân tích động. Cách tiếp cận dựa trên phân tích tĩnh được thực hiện bằng cách xem xét nội dung của các mẫu mã độc mà không cần chúng thực thi (không cần chạy chương trình), trong khi cách tiếp cận dựa trên phân tích động được thực hiện dựa trên các mẫu mã được được thực thi để kiểm tra các hành vi của nó. Mốt số kỹ thuật có thể được sử dụng cho phân tích động như: trình sữa lỗi (debugger) được sử dụng cho việc phân tích các lớp chỉ thị (instruction), các bộ mô phỏng (simulators) biểu diễn và hiện thị các hành vi tương tự như trong môi trường thật của mã độc, trong khi các bộ giả lập (emulators) nhân bản hành vi của một hệ thống với độ chính xác cao hơn nhưng yêu cầu nhiều tài nguyên hơn. Sandboxes là các hệ điều hành được ảo hóa cung cấp một môi trường đánh tin cậy và cô lập để kích hoạt các mã độc. Các dấu vết thực thi (excution traces) thường được sử dụng để trích xuất các đặc trưng khi sử dụng phân tích động. Ngoài ra, một số công cụ và kỹ thuật khác thường được sử dụng để trích xuất đặc như: các mã disassembly và biều đồ luồng dữ liệu (data-flow)
và điều khiển (control). Mã dịch ngược assembly là thành phần quan trọng cho việc trích xuất các byte tuần tự (Byte sequence và Opcode), trong khi biểu đồ luồng dữ liệu và điều khiển được sử dụng để trích xuất các lời gọi hệ thống (system calls) và API.
1.5.2. Các loại đặc trưng
Có 8 loại đặc trưng điển hình bao gồm [2]:
Chuỗi byte (bytes sequence): phân tích các chuỗi byte cụ thể trong tệp tin nhị phân được sử dụng phổ biến trong phân tích tĩnh. Một số công trình sử dụng chuỗi các byte với kích thước cụ thể và đa số công trình khác sử dụng n-grams (n-grams là một chuỗi các byte).
Opcodes: opcodes xác định các hoạt động (operation) ở mức máy được thực thi bởi một file thực thi và có thể được trích xuất thông qua phân tích tĩnh bằng cách kiểm tra các mã assembly. Chuỗi tuần tự opcode là một trong những đặc trưng phổ biến được sử dụng, nó đếm số lần xuất hiện của opcode cụ thể trong assemby.
API và các lời gọi hệ thống (System calls): tương tự opcodes, API và các lời gọi hệ thống cho phép phân tích hành vi của mã độc nhưng ở mức cao. Chúng có thể được trích xuất bằng phân tích tĩnh hoặc phân tích động bằng cách phân tích mã assembly được dịch ngược hoặc một danh sách các lời gọi hệ thống. Một trong những cấu trúc dữ liệu phổ biến để biểu diễn hành vi PE và trích xuất cấu trúc chương trình là đồ thị luồng điều khiển (control flow graph).
Hoạt động mạng (Network activity): một số lượng lớn các thông tin chính có thể thu được bằng cách quan sát việc tương tác mã thực thi với mạng. Địa chỉ kết nối và lưu lượng được tạo ra có thể rất có giá trị như kết nối với một lệnh và trung tâm điều khiển. Một số đặc trưng được sử dụng như giao thức, cổng TCP/UDP, các yêu cầu HTTP, kết nối DNS....
File system: các hành động của file được thực thi bởi các mã độc là thành phần cơ bản khi thu thập chứng cứ về sự tương tác của mã độc với
môi trường, ví dụ loại file gì được thêm, sữa, xóa, thay đổi; file gì bị nhiễm mã độc và file chưa bị nhiễm mã độc.
Các thanh ghi CPU (CPU Registers): cách các thanh ghi trong CPU được sử dụng có thể có giá trị như thanh ghi ẩn nào được sử dụng và các giá trị gì được lưu trong các thanh ghi, đặc biệt là các cờ (Flasgs).
Các đặc điểm file PE (PE file characteristics): phân tích tĩnh một PE có thể mang lại tập hợp các thông tin có giá trị như các phần (sections), các nhập (imports), các ký hiệu (symbols),
Chuỗi ký tự (Strings): một PE có thể được kiểm tra bằng cách tìm kiếm các ký tự cụ thể như dấu hiệu tác giả, tên file, thông tin hệ thống.
CHƯƠNG 2: TỔNG QUAN VỀ HỌC MÁY
2.1. Giới thiệu về học máy
Thời gian gần đây, trí tuệ nhân tạo (AI – Artificial Intelligence) và cụ thể hơn là học máy (Machine Learning) đang nổi lên như một bằng chứng của cách mạng công nghiệp lần thứ tư (lần 1 – động cơ hơi nước, lần 2 – năng lượng điện, lần 3 – công nghệ thông tin). Trí tuệ nhân tạo đang len lỏi vào mọi lĩnh vực trong đời sống của chúng ta như xẹ tự lái của Google và Tesla, hệ thống gợi ý sản phẩm của Amazon, hệ thống trợ lý ảo Siri của Apple, hệ thống gợi ý phim của Netfix....chỉ là một trong những ứng dụng AI/Machine Learning.
Học máy là một tập con của trí tuệ nhân tạo. Theo định nghĩa của Wikipedia thì, học máy là một lĩnh vực nhỏ của khoa học máy tính, nó có khả năng tự học hỏi dựa trên dữ liệu đưa vào mà không cần phải lập trình cụ thể.
Ý tưởng cơ bản của mọi quy trình học máy là xây dựng mô hình dựa trên một số thuật toán để thực hiện một nhiệm vụ cụ thể như phân loại, phân lớp, hồi quy... Giai đoạn huấn luyện được thực hiện dựa trên dữ liệu đầu vào và mô hình được xây dựng để dự đoán đầu ra. Kết quả đầu ra phụ thuộc mục tiêu ban đầu và việc thực hiện. Chi tiết quy trình học máy gồm các bước như sau [13]:
Hình 2.1: quy trình học máy
Quy trình học máy cơ bản được chia làm các giai đoạn sau:
Thu thập dữ liệu (gathering data): Quá trình thu thập dữ liệu phụ thuộc vào loại dự án mà chúng ta mong muốn xây dựng, ví dụ nếu chúng ta muốn xây dựng dự án học máy mà sử dụng dữ liệu thực để chúng ta có thể xây dựng một hệ thống IoT từ các dữ liệu cảm biến khác nhau. Dữ liệu chúng ta có thể thu thập từ các nguồn dữ liệu khác nhau như một tập tin, cơ sở dữ liệu, cảm biến ...
Tiền xử lý dữ liệu (data pre-processing): Tiền xử lý dữ liệu là một trong những giai đoạn quan trọng trong học máy, nó giúp xây dựng mô hình học máy chính xác. Tiền xử lý dữ liệu là một quá trình làm sạch dữ liệu thô, dữ liệu được thu thập từ nhiều nguồn trong thế giới thực và được chuyển thành một tập dữ liệu sạch. Dữ liệu thô ban đầu có một số đặc điểm như dữ liệu bị thiếu sót, không nhất quán, nhiễu vì vậy dữ liệu này phải được xử lý trước khi đưa vào học máy.
Xây dựng mô hình phù hợp cho loại dữ liệu (researching model): Mục tiêu chính của chúng ta là xây dựng mô hình thực hiện tốt nhất dựa trên một số thuật toán phân loại và phân lớp.
Huấn luyện và kiểm thử mô hình trên dữ liệu (training and testing model): để huấn luyện một mô hình, ban đầu chúng ta chia mô hình thành 03 giai đoạn bao gồm: dữ liệu huấn luyện (training data), dữ liệu xác nhận (validation data) và dữ liệu kiểm thử (testing data). Để huấn luyện bộ phân lớp ta sử dụng tập hợp dữ liệu huấn luyện (training data set), để tinh chỉnh các tham số ta sử dụng tập hợp xác nhận (validation set) và sau đó kiểm tra hiệu suất của bộ phân loại chưa biết sử dụng tập hợp dữ liệu kiểm thử (test data set). Một lưu ý quan trọng là trong quá trình huấn luyện bộ phân lớp là dữ liệu kiểm thử không được sử dụng để huấn luyện.
Đánh giá (evaluation): Đánh giá mô hình là một phần quan trọng trong quy trình phát triển mô hình, nó giúp tìm ra mô hình tốt nhất để đại diện
cho dữ liệu của chúng ta và mô hình được chọn sẽ hoạt động tốt như thế nào trong tương lai.
2.2. Phân loại các thuật toán học máy [2]
Có hai cách phổ biến để phân loại các thuật toán học máy. Một là dựa vào phương thức học (learning style) và hai là dựa trên chức năng (function) của thuật toán. Theo phương phức học thì các thuật toán học máy được chia làm 04 loại gồm: học có giám sát (Supervise learning), học không giám sát (Unsupervised learning), học bán giám sát (Semi-supervised learning) và học tăng cường (Reinforcement Learning). Chi tiết các loại học máy theo phương thức học như sau:
Học có giám sát: Là thuật toán dự đoán đầu ra (outcome) của một dữ liệu mới (new input) dựa trên các cặp (input, output) đã biết từ trước.
Các cặp dữ liệu này còn được gọi là “dữ liệu, nhãn”, tức (data, label).
Học có giám sát là loại phổ biến nhất trong các thuật toán học máy. Bài toán học có giám sát còn được chia nhỏ thành hai loại chính như sau:
Phân loại (Classification): Một bài toán được gọi là phân loại nếu các nhãn của dữ liệu đầu vào (input data) được chia thành một số hữu hạn nhóm: Ví dụ bài toán xác định xem một email có phải spam hay không?
Hồi quy (Regression): Nếu nhãn (label) không được chia thành các loại mà là một giá trị thực cụ thể. Ví dụ, một căn nhà rộng x 𝒎𝟐`, có y phòng ngủ và cách trung tâm thành phố z km sẽ có giá là bao nhiêu?
Học không giám sát: trong bài toán này, chúng ta không biết được nhãn hay outcome mà chỉ có dữ liệu đầu vào. Thuật toán học không giám sát sẽ dựa vào cấu trúc của dữ liệu để thực hiện một công việc nào đó, ví dụ như phân nhóm (clustering) hoặc giảm số chiều của dữ liệu (dimension reduction) để thuận tiện trong việc lưu trữ và tính toán. Bài toán học không giám sát được tiếp tục chia nhỏ thành hai loại sau:
Phân nhóm (clustering): Một bài toán phân nhóm toàn bộ dữ liệu Y thành các nhóm nhỏ dựa trên sự liên quan giữa các dữ liệu trong mỗi nhóm. Ví dụ, phân nhóm khách hàng dựa vào hành vi mua hàng
Kết hợp (association): là bài toán khi chúng ta muốn khám phá ra một quy luật dựa trên nhiều dữ liệu cho trước. Ví dụ, những khách hàng nữ mua quần áo thường có xu hướng mua thêm son môi; những khách hàng mua bóng đá thường mua thêm bảo hộ ống quyển và tất.
Học bán giám sát (Semi-supervised learning): Các bài toán khi chúng ta có một lượng lớn dữ liệu Z nhưng chỉ một trong chúng được gán nhãn.
Những bài toán thuộc nhóm này nằm giữa hai nhóm được nêu trên. Ví dụ, chỉ một phần các bức ảnh (ảnh về người, động vật, thực vật) được gán nhán và phần lớn các bức ảnh khác chưa được gán nhãn trên internet.
Phân loại dựa trên chức năng: Cách phân loại thứ hai dựa trên chức năng của các thuật toán. Ví dụ các thuật toán hồi quy (Linear regression, Logistic Regression, Stepwise Regresstion), các thuật toán phân loại (SVM, kernel SVM, Linear Classifier), các thuật toán phân cụm (k-Means clustering, k-Medians, EM)...
2.3. Thuật toán One-class SVM.
2.3.1. Giới thiệu thuật toán One-class SVM
Theo truyền thống nhiều vấn đề phân loại cố gắng giải quyết tình huống hai hoặc phân loại nhiều lớp và mục tiêu của ứng dụng học máy là phân biệt dữ liệu kiểm thử giữa một số lớp sử dụng dữ liệu huấn luyện.
Nhưng điều gì sẽ xảy ra nếu bạn chỉ có dữ liệu của một lớp và mục tiêu là kiểm tra dữ liệu mới và tìm hiểu xem nó có giống hay không giống với dữ liệu huấn luyện. Một phương pháp cho nhiệm vụ này đã trở nên phổ biến là máy véc tơ hỗ trợ một lớp (One-class Support Vector Machine). Ví dụ hãy tưởng tượng một loại thiết lập của nhà máy với các máy sản xuất rất lớn dưới sự giám sát của một số hệ thống tiên tiến và nhiệm vụ của hệ thống giám sát
là xác định khi có sự cố xảy ra, chất lượng của các sản phẩm có dưới chuẩn chất lượng không, các máy có tạo ra rung động gì lạ không hoặc một cái gì đó làm nhiệt độ tăng lên không? Việc thu thập dữ liệu huấn luyện về các tình huống tương đối dễ dàng do nó chỉ là trạng thái hoạt động bình thường nhưng mật khác dữ liệu huấn luyện thu thập từ các trạng thái bị lỗi là khá tốn kém và đôi khi là không thể thực hiện được. Để đối phó với vấn dề này, các giải pháp phân loại một lớp (one-class) được giới thiệu bằng cách chỉ cung cấp dữ liệu huấn luyện bình thường và thuật toán tạo ra một mô hình cho dữ liệu này.
Nếu dữ liệu được thu được quá khác nhau cùng với một số phép đo thì nó được gán nhãn ngoài lớp từ mô hình này.
Trong phạm vi của nghiên cứu này chúng tôi sẽ trình bày 02 cách tiếp cận về thuật toán One-class SVM, một cách tiếp cận theo tác giả Schölkopf và một cách tiếp cận theo các tác giả Tax và Duin. Trước khi đi vào chi tiết thuật toán One-Class SVM, chúng ta tìm hiểu thuật toán máy véc tơ hỗ trợ (SVM – Support Vector Machine).
2.3.2. Giới thiệu thuật toán SVM.
SVM (support vector machine) là một khái niệm trong thống kê và khoa học máy tính cho một tập hợp các phương pháp học có giám sát liên quan đến nhau để phân loại và phân tích hồi quy. SVM dạng chuẩn nhận dữ liệu đầu vào và phân loại chúng vào hai lớp khác nhau. Do đó SVM là một thuật toán phân loại nhị phân. Với một bộ các ví dụ huấn luyện thuộc hai thể loại cho trước, thuật toán huấn luyện SVM xây dựng một mô hình SVM để phân loại các ví dụ khác vào hai thể loại đó. Một mô hình SVM là một cách biểu diễn các điểm trong không gian và lựa chọn ranh giới giữa hai thể loại sao cho khoảng cách từ các ví dụ huấn luyện tới ranh giới là xa nhất có thể.
Các ví dụ mới cũng được biểu diễn trong cùng một không gian và được thuật toán dự đoán thuộc một trong hai thể loại tùy vào ví dụ đó nằm ở phía nào của ranh giới.
SVM xây dựng một siêu phẳng hoặc một tập hợp các siêu phẳng trong một không gian nhiều chiều hoặc vô hạn chiều, có thể được sử dụng cho phân loại, hồi quy, hoặc các nhiệm vụ khác. Một cách trực giác, để phân loại tốt nhất thì các siêu phẳng nằm ở càng xa các điểm dữ liệu của tất cả các lớp (gọi là hàm lề) càng tốt, vì nói chung lề càng lớn thì sai số tổng quát hóa của thuật toán phân loại càng bé.
Trong nhiều trường hợp, không thể phân chia các lớp dữ liệu một cách tuyến tính trong một không gian ban đầu được dùng để mô tả một vấn đề. Vì vậy, nhiều khi cần phải ánh xạ các điểm dữ liệu trong không gian ban đầu vào một không gian mới nhiều chiều hơn, để việc phân tách chúng trở nên dễ dàng hơn trong không gian mới. Để việc tính toán được hiệu quả, ánh xạ sử dụng trong thuật toán SVM chỉ đòi hỏi tích vô hướng của các vector dữ liệu trong không gian mới có thể được tính dễ dàng từ các tọa độ trong không gian cũ. Tích vô hướng này được xác định bằng một hàm hạt nhân K(x,y) phù hợp.
[1] Một siêu phẳng trong không gian mới được định nghĩa là tập hợp các điểm có tích vô hướng với một vectơ cố định trong không gian đó là một hằng số.
Vector xác định một siêu phẳng sử dụng trong SVM là một tổ hợp tuyến tính của các vector dữ liệu luyện tập trong không gian mới với các hệ số αi. Với siêu phẳng lựa chọn như trên, các điểm x trong không gian đặc trưng được ánh xạ vào một siêu mặt phẳng là các điểm thỏa mãn: Σi αi K(xi,x) = hằng số.
Ghi chú rằng nếu K(x,y) nhận giá trị ngày càng nhỏ khi y xa dần khỏi x thì mỗi số hạng của tổng trên được dùng để đo độ tương tự giữa x với điểm xi tương ứng trong dữ liệu luyện tập. Như vậy, tác dụng của tổng trên chính là so sánh khoảng cách giữa điểm cần dự đoán với các điểm dữ liệu đã biết. Lưu ý là tập hợp các điểm x được ánh xạ vào một siêu phẳng có thể có độ phức tạp tùy ý trong không gian ban đầu, nên có thể phân tách các tập hợp thậm chí không lồi trong không gian ban đầu.
Phân loại thống kê là một nhiệm vụ phổ biến trong học máy. Trong mô hình học có giám sát, thuật toán được cho trước một số điểm dữ liệu cùng với nhãn của chúng thuộc một trong hai lớp cho trước. Mục tiêu của thuật toán là
xác định xem một điểm dữ liệu mới sẽ được thuộc về lớp nào. Mỗi điểm dữ liệu được biểu diễn dưới dạng một vector p chiều và ta muốn biết liệu có thể chia tách hai lớp dữ liệu bằng một siêu phẳng p − 1 chiều, đây gọi là phân loại tuyến tính. Có nhiều siêu phẳng có thể phân loại được dữ liệu. Một lựa chọn hợp lý trong chúng là siêu phẳng có lề lớn nhất giữa hai lớp.
2.3.2.1. Xây dựng bài toán SVM
Giả sử rằng các cặp dữ liệu của training set là (𝒙𝟏, 𝒚𝟏), (𝒙𝟐, 𝒚𝟐),.., (𝒙𝟑, 𝒚𝟑) với vector 𝒙𝒊 𝞊 𝑹𝒅 thể hiện đầu vào của một điểm dữ liệu và 𝒚𝒊là nhãn của điểm dữ liệu đó, d là số chiều của dữ liệu và N là số điểm dữ liệu. Giả sử rằng nhãn của mỗi điểm dữ liệu được xác định bởi 𝒚𝒊 = 1 (lớp 1) hoặc 𝒚𝒊 = -1 (lớp 2). Để dễ hình dung, chúng ta cùng xét trường hợp trong không gian hai chiều dưới đây. Không gian hai chiều để dễ hình dung, các phép toán hoàn toàn có thể được tổng quát lên không gian nhiều chiều.
Hình 2.2: phân tích bài toán SVM
Giả sử rằng các điểm vuông xanh thuộc lớp 1, các điểm tròn đỏ thuộc lớp -1 và mặt (𝑤𝑇𝑥 + 𝑏) = 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑏 là mặt phân chia giữa hai lớp (hình 2.2). Hơn nữa, lớp 1 nằm về phía dương, lớp -1 nằm về phía âm của mặt phân chia. Nếu ngược lại, ta chỉ cần đổi dấu của w và b. Chú ý rằng chúng ta cần đi tìm các hệ số w và b. Ta quan sát thấy một điểm quan trọng sau đây:
với cặp dữ liệu (𝑥𝑛, 𝑦𝑛) bất kỳ, khoảng cách từ điểm đó tới mặt phân chia là:
Điều này có thể dễ nhận thấy vì theo giả sử ở trên, ynluôn cùng dấu với phía của 𝑥𝑛. Từ đó suy ra yn cùng dấu với (𝑤𝑇xn + b) và tử số luôn là 1 số không âm. Với mặt phần chia như trên, giới hạn (margin) được tính là khoảng cách gần nhất từ 1 điểm tới mặt đó (bất kể điểm nào trong hai lớp):
Bài toán tối ưu trong SVM chính là bài toán tìm w và b sao cho margin này đạt giá trị lớn nhất:
Nhận xét quan trọng nhất là nếu ta thay vector hệ số w bởi kw và b bởi kb trong đó k là một hằng số dương thì mặt phân chia không thay đổi, tức khoảng cách từ từng điểm đến mặt phân chia không đổi, tức margin không đổi. Dựa trên tính chất này, ta có thể giả sử:
𝒚𝒏(
𝒘
𝑻𝒙𝒏 + b) = 1Với những điểm nằm gần mặt phân chia nhất như hình 2.3 dưới đây:
Hình 2.3: các điểm gần mặt phân cách nhất của hai class được khoanh tròn Như vậy, với mọi n, ta có:
𝒚𝒏(
𝒘
𝑻𝒙𝒏 + b) = 1Vậy bài toán tối ưu (1) có thể đưa về bài toán tối ưu có ràng buộc sau đây:
Bằng một biến đổi đơn giản, ta có thể đưa bài toán này về bài toán dưới đây:
Ở đây, chúng ta đã lấy nghịch đảo hàm mục tiêu, bình phương nó để được một hàm khả vi và nhân với 1/2 để biểu thức đạo hàm đẹp hơn. Xác định lớp (class) cho một điểm dữ liệu mới: sau khi tìm được mặt phân cách 𝑾𝑻𝒙 + 𝒃 = 𝟎 , class của bất kỳ một điểm nào sẽ được xác định đơn giản bằng cách:
class(x) = sgn(𝑤𝑻x + b)
trong đó hàm sgn là hàm xác định dấu, nhận giá trị 1 nếu đối số là không âm và -1 nếu ngược lại.
2.3.3. Thuật toán One-class SVM theo tác giả Schölkopf
Về cơ bản, thuật toán One-class SVM theo tác giả Schölkopf thực hiện tách tất cả các điểm dữ liệu khỏi điểm gốc (trong không gian đặc trưng F) và tối đa khoảng cách từ siêu phẳng này đến điểm gốc. Điều này dẫn đến một hàm nhị phân thu thập các vùng trong không gian đầu vào nơi mật độ xác suất của dữ liệu tồn tại vì vậy hàm này sẽ trả lại giá trị +1 trong một vùng bé (vùng thu thập các điểm dữ liệu huấn luyện) và -1 đối với các vùng khác.
Chúng ta xem xét dữ liệu huấn luyện 𝑥1,𝑥2,𝑥3, ... 𝑥𝑙 𝜖 𝑋 với l 𝜖 N là các mẫu và X là một số tập hợp, để đơn giản chúng ta nghĩ nó như một tập hợp con 𝑅𝑁, đặt ɸ là một chuyển đổi đặc trưng X -> F, ví dụ một chuyển đổi vào F không gian sản phẩm điểm sao cho có thể tính toán sản phẩm điểm trong hình ảnh của ɸ có thể được tính toán bằng hàm nhân đơn giản:
K(x, y) = (ɸ(x). ɸ(y)), với hàm nhân Gaussian
Chúng ta phát triển một thuật toán mà trả về môt hàm f lấy giá trị +1 trong một vùng nhỏ chứa đa số các điểm dữ liệu và -1 cho vùng khác. Chiến lược của chúng ta là ánh xạ dữ liệu ban đầu vào không gian đặc trưng tương ứng với hàm nhân và tách chúng khỏi không gian ban đầu với khoảng cách tối đa. Đối với một điểm X mới, giá trị f(x) được xác định bằng việc nào của siêu phẳng mà nó thuộc về trong không gian đặc trưng.
2.3.4. Thuật toán One-class SVM theo tác giả Tax và Duin
Phương pháp mô tả dữ liệu véc tơ hỗ trợ theo các tác giả Tax và Duin tạo ra một hình cầu thay cho cách tiếp cận mặt phẳng. Thuật toán thu được một ranh giới hình cầu trong không gian đặc trưng bao quanh dữ liệu. Khối lượng của siêu cầu này được giảm thiểu để giảm tác động của việc kết hợp các ngoại lệ trong giải pháp này.
Siêu cầu được tạo ra được đặc trưng bởi một tâm a và một bán kính R >
0, là khoảng cách từ tâm đến bất kỳ véc tơ hỗ trợ nào trên ranh giới. Tâm a là một tổ hợp tuyến tính của các véc tơ hỗ trợ (đó là các điểm dữ liễu huấn luyện mà hệ số nhân Lagrange khác không). Giống như công thức truyền thống, có thể yêu cầu tất cả các khoảng cách từ các điểm dữ liệu 𝑥𝑖 đều nhỏ hơn R. Một điểm dữ liệu mới z có thể được kiểm tra để đưa vào lớp hoặc đưa ra khỏi lớp.
Nếu khoảng cách từ điểm z đến tâm của hình cầu nhỏ hơn hoặc bằng bán kính R thì nó thuộc vào lớp, ngược lại nếu khoảng cách lớn hơn bán kính R thì điểm z mới không thuộc vào lớp.
2.4. Đánh giá hiệu quả thuật toán
Trong thực tế, chúng ta cần áp dụng nhiều thuật toán học máy để chọn ra mô hình phù hợp nhất cho bài toán của mình. Vấn đề đặt ra là làm thế nào để đạt được một đánh giá đáng tin cậy về hiệu quả của mô hình và chọn ra mô hình phù hợp. Ngoài các thuật toán học máy thì hiệu quả của mô hình còn phụ thuộc vào một số yếu tố khác như sự phân phố của lớp (class distribution), chi
phí của việc phân lớp sai (Cost of misclassification), kích thước của tập huấn luyện (Size of the training set), kích thước của tập kiểm thử (Size of the testing set). Trong phần này tôi sẽ trình bày một số phương pháp đánh giá hiệu quả của thuật toán như: ma trận nhầm lẫn (Confusion maxtrix), hold-out, kiểm tra chéo (Cross-validation), Stratified sampling
2.4.1. Ma trận nhầm lẫn (Confusion maxtrix):
Ma trận nhầm lẫn chỉ được sử dụng đối với các bài toán phân loại, không thể áp dụng với các bài toán hồi quy, ví dụ ma trận nhầm lẫn như sau:
Lớp 𝐶𝑖 Lớp được dự đoán bởi hệ thống
Thuộc Không thuộc
Phân lớp thực sự (đúng) Thuộc 𝑇𝑃𝑖 𝐹𝑁𝑖
Không thuộc 𝐹𝑃𝑖 𝑇𝑁𝑖
Các thông tin trong ma trận nhầm lẫn ta có các thông tin như:
𝑇𝑃𝑖 (𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒): Số lượng mẫu thuộc lớp dương được phân chính xác vào lớp dương
𝐹𝑃𝑖 (𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒): Số lượng mẫu không thuộc lớp dương bị phân loại nhầm vào lớp dương
𝑇𝑁𝑖 (True negative): Số lượng các mẫu không thuộc lớp dương được phân loại đúng
𝐹𝑁𝑖 (𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒): Số lượng mẫu thuộc lớp dương được phân vào lớp âm (phân loại sai).
Từ đây độ chính xác của mô hình được tính như sau:
o Precision đối với lớp 𝐶𝑖: bằng tổng số các mẫu thuộc lớp 𝐶𝑖 được phân loại chính xác chia cho tổng số các mẫu được phân loại vào lớp 𝐶𝑖
Precision(𝐶𝑖) = 𝑇𝑃𝑇𝑃𝑖
𝑖 +𝐹𝑃𝑖
o Recall đối với lớp 𝐶𝑖: bằng tổng sổ các mẫu thuộc lớp 𝐶𝑖 được phân loại chính xác tổng số các mẫu thuộc lớp 𝐶𝑖
Recall(𝐶𝑖) = 𝑇𝑃𝑖
𝑇𝑃𝑖 +𝐹𝑁𝑖