• Tidak ada hasil yang ditemukan

PDF Reducer Demo version

N/A
N/A
Protected

Academic year: 2024

Membagikan "PDF Reducer Demo version"

Copied!
3
0
0

Teks penuh

(1)

Mong Thi Nguyet vd£J/g Tap chi KHOA HOC & CONG NGHB 166(06). 161 -163

B I N H L Y K H O N G T 6 N T A I N G H I E M K H A C K H O N G C U A B A I T O A N B I E N D O I VOfI T O A N TU* B A O U E D I - G O U L A O U I C

Mong Thj Nguyet', Nong Thi Them Trudng Trung hgc Phd thong Thai Nguyen - Truang Dgi hgc Suphgm — DH Thai Nguyen TOM T A T

Bill toan bien luon la chii de nghifin ciiu duoc nhieu nha khoa hpc quan tSm bdi nhihig img dung ciia no trong cac nganh vat ly, hda hoc Dac biet, vice nghien ciiu nhttng bai loan bi6n chiia toan tii elliptic suy bien, vi§c chi ra di^u kien ton tai nghiSm, dieu kien khong ton tai nghiem ciia bai toan la kh6, phiic tap K^t qua dfit dupc co y nghia quan frpng trong vigc phat tri^n Iy diuyet toan hoc Trong bai bao nay, chiing tdi chi ra dieu kien khong ton tai nghiem ciia bai toan bien chiia toan tii Baouedi - Goulaouic trong R^ Dieu kien khong ton tai nghiem c6 y nghTa quan trpng, md ra hudng nghien ciiu ton tai nghiSm yeu ciia bai loan

Tir khoa Bdt todn bien. todn tu elliptic, todn tu Baouedi - Goulaouic. nghiem yeu.

Xet bai toan sau

Gia sii O. l a mien gidi npi trong R^, vdi bien tron va {0} e f i Ta xet bai toan'

d^u d^u , . d^u ^, . r. ^ -rT+T-J+SM^y+nu)=0 trong n (1) dx dy dz

u = 0 trong dO. (2) Trong A6f(u) e C(R) ,f(0) = 0. g(x) = \xf ,k e N '

Dat F(u)^ \f(t)dt, V = {L\, L ? 2 , i ^ ) l a v e c t a p h a p t u y e n don vi ngoai tren 5 n . 0

Ta se d u a ra dieu kien khong ton tai nghiem u ^ 0, u e H ^ ( Q ) ( khdng gian Sobolev) ciia Bai loan (1)= (2).

Dinh n g h l a . M ^ ' « ^ g o / M L^ - hinh sao ddi vdi {0} niu xUi •^-yv^+ik + l)!!}^ >Othdamdnhdu khdp nai trin dO.

fc + 1

Dinh ly. Gtd sir QldLk- hinh sao ddi v&i {0} vd thoa mdn (k + 3)F(w) - —-f{u)u <Okhiu ^ . Kht do khdng tdn tgt nghiem u^O.ueH^ (O) cho Bdi todn (I), (2).

De ehiing minh Djnh ly t a can sii dung ket qua ciia Bd de sau

B6 de. Gtd su u (x, y, z) Id nghiim cua Bdi todn (I), (2) thudc khong gian H^(Q). Kht do u(x, y, z) thda mdn ddng thirc

\{,i^k + i)F{u)-'^nu)ii)dxdyiz = l[xg\x)g(x)-kg\x))(—)'dxdyi2

du ' ' ' + i J {ii+ul+g''{x)u]){,xu,+yu, +(k + \)zu,)i,—fds.

en

Chimg mmh. D o O la mien tron bi c h | n nen theo dinh ly nhung Sobolev ta c6:

Tel: 01656 065503

(2)

Mong Th4 Nguyet vd D/g Tgp chi KHOA HOC & CUNtj NUtlfc lbbi,uox loi - IM / / ^ ( n l c C ' - ' t n ) , 0 < a < l ma

- ( x , F ( u ) ) = F(u) + xfiu) —.-^(y.Fm = F{u) + yf(u) — , - ( Z , F ( K ) ) = F(u) + z/(B)i Ap dung cong thiic Gauss - Green ta dupc

fF(u)<*trfv<fe = - {xf(u)—<kdyd2 = - iyf(u)—d\dydz,

i i * i ^

(/fc + l) ^Fiu)dxdydz = - (t + I) ^z/M—dxdydz.

n a Ma u(x,y.z) la nghiem ciia Bai toan (1), (2) nen ta co

(k + i)\F(fi)dxdydz = - j f ^ ^ + J ' ^ + (* + I ) z - ^ ]/(")<M«'z

J^l^ ai -^av azjl^ac' ay' ax'J t;' Taco

• J, &ex' " ^ 2J,UJ - ^ 2 i U J , r s« 3'" i J J 1 rfS"? J J: J I f r^iiY J r / , - J: -dxdydz = - — dxdydz X — v.^fe + :

du du ,

Vjds

dx dy I,= ixg\x)^^dxdydz

J dx dz

4 j , ' x ( | J * < , ^ . J x g ( x , g w ( | J < & ^ Z - i j x g ' ( x , ( | J , . . . j x g ' ( x ) | ^ V 3 ,

, r d^u du , , , 1 rfdu') , , , 1 r {du^ , r du du , I,^l^y—-dxdydz = -l\^-j dxdydz--j^y[^j .,ds^ lj^-.,ds.

, f aua'u, , . i r f s u Y , . , If (su]' ,

L = y ^<im)'i& = — — dxdydz+ - y — I'.tfe.

/,=(t+i)fz^^&^=ttlrf^YArfyA_^r/^Y,^rf„(t+i)rz**v,&

'J a ' a -^ 2 iUJ 2 J, UJ ' ^ l a x & '

' ^ ' i a,-az ^ 2 i U J 2 i U J ^ i , a^«>'

/,=(* + l ) J z g ' ( x ) | 0 r f x 4 * = - ^ J g ' ( x ) g j A r f « / z + ^ J z ^ ' ( x ) g J . , * .

(3)

Mong Th} Nguyet va£)/g Tap chi KHOA HOC & CONG NGHE 166(06)' 161-163

V^y{k + 3)\F(u)dxcfydz = yi,,mk^ = i^,-^A = v , ^ A = y^ — . i j ^ dx 'dv dy ^dv dz ^dv Thay vao ta dugc (3) Dieu phai chiing minh.

Ta chiing minh Dinh ly'

Gia sii u {x,y,z) e H"" (Q) la nghipm ciia Bai toan (1), (2). Suy ra u{x,y.z) thda man (3) Mat khac, theo gia thiet Dinh ly cd {k + 3)F(u) ^ / ( « ) u < 0 vdi « ^ 0 .

^y^y^^\[{^^k)F{u) + !^f{u)u^dxdydz^\{xg\x)g{^^^^

Suy ra, khdng ton tai W ?t 0 la nghi?m ciia Bai toan (I), (2).

T A I L I E U THAM K H A O

1. Ambroselri, A & Rabmowitz, P. (1973), "Dual variational meUiods in critical theory and applications", Journalof Function Analysis, 14,pp 349-381.

2. Chuong N M., Ke T D & Tn N. M (\999)/'Non - existence theorems for boundary value problems for some classes ofsemilinear degenrale elliptic operators " preprint

3. Tn, N.M (1998), "Critical Sobolev exponent for hypoelliptic operators", Acta Malhematic Vietnamica, .2i(l), pp. 83-94

4 Tn N. M , (2013), "Semilinear Degenerate Elliptic Differentical Equations", Local and global theories, Lambert Academic Publishing, p. 271.

S U M M A R Y

T H E T H E O R E M F O R T H E N O N E X I S T E N C E

OF N O N Z E R O S O L U T I O N S O F T H E B O U N D A R Y V A L U E P R O B L E M W I T H B A O U E D I - G O U L A O U I C O P E R A T O R

Mong Thi Nguyet', Nong Thi Them Tliai Nguyen High School - University of Education - TNU Boundary value problems have been attracting many scientists's interest because of their wide applications m chemistry and physics The studies on the boundary value problems involving degenerate elliptic operator, especially determination of the conditions for the existence and non existence of their solutions, are difficult and complicated However, their obtained results have an important significance to the development of malhematic theory. In diis paper, we generated the conditions for the non existence of the solutions of the boundary value problem containing Baouedi -Goulaouic operator in R^ The conditions for non existence of the solutions play an important role in suggesting the way of investigation for the existence conditions of weak solutions m this problem

Keywords: Boundary value problem, elliptic operators, Baouedi-Goulaouic operator, weak solutions

Ng^ nhdn bdi: 01/3/2017; Ngdy phdn biin: 10/3/2017; Ngdy duyit ddng: 31/5/2017

' Tet: 01656 065503

Referensi

Dokumen terkait

J h e o nghien ciTu ciia Magnan tai giu^ gidng phdi thu nhd ve phat sinh nguon gde, cau true va he thdng mien djch, - Tru'dc tien, lao tai cd the xay ra vdi benh canh lam sang cap

Nghien edu danh g i i cao gia trj eua Mtfc dd lan toa cQa truyin thdng xa hdi thdng qua; S d lupng thdng dlgp fruyln thdng cua doanti nghiep dUdc ngudi dung ehia se; So lupng ngudl dang

2010 cho rang, quyd't dinh mua nha cua khdch hdng tai llidnh phd Nannin, tinh Guangxi - Trung Qude bi anh hffdng, bdi: 1 Cac nhan td ben ngoai, bao gom: van hda, chinh sdeh eua nha

Ddi tu'dng nghien eiru dddc tham kham tai thdi diem vao vien, chi lay nhii'ng benh nhan cd Hunt-Hess dp 1 den 3 va theo doi trong suot qua trinh nam vien, sir dung thang diem Rankin eai

JOURNAL OF 108-CUNICAL MEDICINE ANDPHARMACY Voi.12-N°3/2017 Danh gia hieu qua phuang phap hiit dich lien tuc ha thanh mon di du phdng viem ph6i 6" benh nhan tho* may Evaluate the

TAP CHI Y DLfOC LAM S A N G 108 Tap 12 - So 4/2017 Nghien cihi mirc do khang khang sinh cua cac chung vi khuan phan lap duac tai dau catheter tmh mach duoi don 0^ benh nhan chan

Neonatal I.OATV^NOE Suy hd hap SHH la mdt hdi chiTng ciia nhieu nguyen nhan gay nen, la tinh trang benh ly rat hay gap d thdi ky sd sinh, nhat la trong nhutig gid dau sau sinh do day

Phan loai nhiem khuan ho hap cap d tre dddi 5 tuoi: Viem du'dng ho hap tren gom; viem miii, hong, viem VA, amidal, viem xoang, viem tai giife, viem xu'dng chum.... Viem du'dng ho hap