• Tidak ada hasil yang ditemukan

Phat hien rui ro gian lan qua cac chi so tai chinh tren TICK

N/A
N/A
Protected

Academic year: 2024

Membagikan "Phat hien rui ro gian lan qua cac chi so tai chinh tren TICK"

Copied!
5
0
0

Teks penuh

(1)

Phat hien rui ro gian lan qua cac chi so tai chinh tren TICK

McaYfeM B A D U V T R A N HCfA BiCH NGQC"

PHtlMG ANH THCf"

T o m t a t

Tren ca sd phdn tich dQ lieu cua 80 cdng ty bi huy niim yet. NghiSn cdu dutfc thUc hi?n nham cung cap bdng chdng ve khd ndng phdt Men riii ro gian Idn tU cht sd'^idi chinh tren thf trudng chdng khodn Viet Nam. Nghien cdu cho thd'y, cdc chi soldi chinh cd khd ndng phdt hien rui ro gian lan, tit do, cd nhdng kien nghi dd'i vdi cdc bin lien quan.

Ttf khoa: chi sdZ, chi sdM, tin hieu gian Idn, thi trUdng chdng khodn Summary

Based on an analysis of 80 delisted companies, the study is conducted to clarify the ability of financial indicators to detect fraud risks on Vietnam stock market. It indicates that financial indicators can identify fraud risks, and then some recommendations for parties involved are proposed.

Keywords: Z index. M index, fraud .signal, slock market \

Giai THIEU

Gian lan bao cao tai chinh (BCTC) tren the' gidi cd xu htfdng gia tang va trd thanh vii'n de nghiem trong dd'i vdi cac doanh nghiep, chinh phu va cac nha dau ttf. Tai Viet Nam, nhifng trtfdng hpp da xay ra nhtf tai Cdng ty Bdng Bach Tuye't (BBT) va Cdng ty Co phan Dtfdc Vien Ddng (DVD) cd the khdng phai la nhffng trtfdng hdp duy nha't thieu minh bach d§n de'n thiet hai cho nha dau ttf. Nhffng gian lan BCTC gan day Clia cac cdng ty niem yet da dtfdc phiit hien va hau qua ga> ra cho thi Irtfdng va niem lin cua cdng chting khdng nhd.

Da cd nhieu nghien ctfu tren the' gidi ve vice sd dung chi sd' tai chinh de phat hien gian liJn tren BCTC. Bie't tinh loan \a sd dung cac chi so' tai chinh khdng chi ed >' nghia vdi nha phan tich tai chinh. ma cdn rat quan trong vdi nha dau ttf cung nhtf vdi chinh ban than doanh nghiep va cac chu nd.

Chii de ve gian lan BCTC ciia cac cdng ty niem

\e'l tren thi trtfdng chtfn2 khdan Vict Nam la \ a'n

de ludn dtfdc quan tam sau sac. Cd rat nhieu cac nghien ctfu tren the' gidi ve kha nang phat hien gian ISn dtfa vao stf phan tich cac chi so' lai chinh. Tuy nhien, tai Viet Nam viec ap dung cac chi so' tai chinh nhhm phat hien cac tin hieu gian lan tren BCTC tren thi irtfdng chtfng khoan cung chtfa dtfdc nghien ctfu nhieu.

CO SCf LY THUYET VA PHU'CfNG PHAP NGHIEN CLfU

Thed Hiep hoi cac nha dieu tra gian lan cua Hoa Ky (ACFE),_gian lan BCTC la bao cao sai lech do cd' y. hoac bd sdt nhffng nhan td' quan trpng, hoac dff heu ke loan sai lech \a hau qua gay ra cho ngtfdi dpc cd nhtfng quye'l dinh hoac diinh gia khdng chinh xac khi xem xet cac thdng tin tren BCTC

15/01/2017 \^ci^ diisi-i daiiu 22/02/2017

60

(2)

Nghi6n ctfu cua Beneish (1999) la nghien ctfu ti6n phong ve xSy diftig mo hinh dtf doan kha nang gian Ian BCTC.

Dtfa vao cac ky thuSt gian ISn thtfdng dtfdc su" dung, Beneish thie't lap mdt md hinh dff doan (goi la ty sd' M-Score) de ddnh gia cd hay khdng kha nSng cdng ty gian Ian BCTC. Md hinh nay giup cac nha kiem loan, nha dau ttf, cd quan quan ly nhSn dien mdt cdng ty cd kha nang gian lan BCTC hay khdng vdi xac sua't dtf doan diing 76%.

Cac nha dau ttf cung thtfdng xem xet he so' ddn bay tai chinh (Financial leverage) de danh gia tinh hinh nd nan cua doanh nghiep, tff dd quyet dinh mtfc dp riji ro khi dau ttf vao doanh nghiep dd. Tuy nhien, cd mdt chi so' cd the giiip cac nha dau ttf danh gia td't rui ro td't hdn, tham chi cd the dtf doan dtfdc nguy cd pha san cua doanh nghiep trong ttfdng lai gan. Dd chinh la he so' nguy cd pha san, hay cdn goi la Z-score do nha kinh te hoc Hoa Ky Edward I Altman thiet lap (Edward I. AUman, 1968). He sd'nay chi ap dung cho cac doanh nghiep chtf khdng ap dung cho cac dinh che'lai chinh nhtf ngan hang hay la cac cdng ty dau ttf till chinh. O Hoa Ky, chi sd'Z-score da dtf doan Itfdng dd'i chinh xac linh hinh pha -san cua cac doanh nghiep trong ttfdng lai gan. Cd khoang 95% doanh nghiep pha san dtfdc dtf bao nhd Z score irtfdc ngay sap licm indt nam. nhtfng ly ie nay giam xuong chi cdn 74% cho nhffng dtf bao trong \dng 2 nam.

Nghien ctfu ciia Zack, G. M. (2012) cho lhay, cd 9 chi so tai chinh dtf doan gian ian bao cao tai chinh bao gdiii' (Il Ty le nd phai tra/vd'n chii sd htfu (DEBT/EQ), (2) Ty lc doanh thu/tong laisan(SALE.S/TA).(3)T\' le ldi nhuan sau thue/doanh ihu (NP/SALES). (4) T\' le khoan phai thu /doanh thu (RFC/

SALES): (5) Ty lc !di nhuan sau thue/

ui'ng iin san (NPAfA). (6) Ty le vd'n Itfu dong/idng lai san (\VC/TA); (7) Ty le ldi nhuan trtfdc thtie7ldng tai san iGF/T.A):

C^) T\ le hiing idn kho/doanh ihu (INV/

SALES), (9) IN le nd ph.ii ii;i/tdiig liii vin(TD/T\l

Dtfa tren cac nghien cii'u Iren. iroiit;

nghien ctfu n.'i> nhiini lac gui nen hanh linh lo.in vJ tiinh ba\ cac chi sd Vl. Z

\i\ 9 chi sd I'll ctiinh hieu hidn eua c.ic tin lueii gum Lin iiedlLigs) irong .i n;iin trtfdc ilidi Llicm cdng l\ hi hu\ nieni \et de \ac dinli difdc xac sual \a\ ra sum Lin

BCTC va thong qua dd thay dtfdc nhffng bieu Men gian ISn BCTC. Thee dd, chi so'M va chi sd'Z dtfdc tinh va se dtfdc ma hda thanh gia tri 0 va 1 itfdng tfng vdi kha nang khdng gian Ian BCTC va cd gian lan BCTC vdi ngtfdng gian lan BCTC cua Z-score la 4.35 va M-score la -2.22. Ngoai ra, quy tfdc ve cac md'c thdi gian chung nhtf sau: Nam t: nam trtfdc nam cdng ty bi huy niem yet 1 nam; Nam t-1: nam trtfdc nam cdng ty bi huy niem yet 2 nam; Nam 1-2: nam trtfdc nam cdng ty bi huy niem yd't 3 nam.

Nhdm tac gia ciJng chia dd'i ttfdng khad sat thanh 02 nhdm theo mtfc do rui ro cd gian lan BCTC dtfa tren stf ke't hdp giffa chi sd'M va chi sd'Z:

- Nhdm 1: cd rui ro gian Ian BCTC (cd cung chi s6' M, Z vtfdt ngtfdng)

- Nhdm 2: khdng cd riii ro gian Ian BCTC (khdng cd hoac cd mdt trong hat chi sd'dtf bao vtfdt ngtfdng).

Sau khi phan loai dtfdc 2 nhdm cdng ty, tac gia siJ dung kiem dinh T-test trung binh 2 mau ddc lap (Independent Samples T-tesl) de xac dinh stf anh htfdng Clia 9 bie'n tin hieu gian lan de'n 2 nhdm cdng ty neu tren nhtf the' nao. Theo do cd 9 gia thuye't dtfdc dtfa ra.

Gia thuyet HI: Ty le INV/SALES cd stf khac biet dang ke gitfa nhdm quan sat cd gian lan BCTC va nhdm quan sat khdng cd gian Ian BCTC.

Gia thuye't H2: Ty le TDATA cd stf khtic bict dang ke giifa nhdm quan sat cd gian lan BCTC \a nhdm quan sat khdng cd gian lan BCTC.

Gia thuyel H3: Ty le WCAfA cd stf khac biei dang ke giffa nhdm quan sat cd gian lan BCTC vit nhdm quan sat khdng cd gian lan BCTC

Gia thuye't H4' Ty le NP/TA cd stf khac biet dang ke giffa nhdm quan sat cd gian lan BCTC vii nhdm quan siil khdng cd gian lan BCTC.

Giii thu>e'i H5 Ty le NP/SALES cd stf khac biet diing ke giffa nhdm quan sal cd gian lan BCTC \ i^i nhdm quan Siil khdng cd gian lan BCTC.

Gia thuye't H6 Ty le SALESAPA cd stf khac bict dang ke giffa nhdm quan sal cd gian lan BCTC va nhdm quan sal khdng cd gian lan BCTC.

Gia thuyel H7: T> le DEBT/EQ cd stf khac biet dang ke giffa nhdm quan sal cd gian liin BCTC va nhdm quan siit khdng cd gian liin BCTC"

Gia thuyet H8 Ty Id REC/SALES cd stf khac biei dang ke gitfa nhdm quan sat cd gian lan BCTC vii nhdm quan sat khdng cd gian lan BCTC

Gui thuye't H9 Ty le GP/TA cii stf khac biel diing ke gitfa nhdm quan sat cd gum lan BCTC \a nhdm quan siil khdng cd gian lan BC VC.

Nghieii ctfu na\ difa \;io mau khac^ sai la KO cdng ty bi ht!\' mem iren ihi irifdng chtfng khoan Viet Nam trong gun tloan ttf nam 2012 dcii 2015 cd cdng hd'da>

dti BCTC hdp nhiii trong siiai doan ttf nam 2009 den 2014 (\ic BCTC I^ong^Jlal doan itf uiim 20(19 de'n 2014 difdc ihu ihiip uf uebsiie \vwv\.vieislock vn C6 liu Cl 2"vS quan s.il dtfdc difa \ a o nghien cifu iBoi \u sddiuv^ cuih Viet sdihdp phdn llie,> cluuni quih li

(3)

BANQ 1: K I E H D p i H I N D E P E n D E N T SAMPLES T-TEST (GIA T H O V E T H I ) lM-saap1e t t e s t with e<)iial variances

Group 0 1 :Dlbined d i f f

obs 194 44 238

d i f f = leajiOB - a: d i f f . 0

Ha: d i f f < 0 PrCT < t ) = 0.4J71

Man Std. Err.

1.104813 .5351S43 1.285625 .397S228 1.13824 .4420696 -.1808129 1.141131

• e a i C l )

Ka: d i f f ! P r d T l > I t l ) .

Std. uey.

7.4!3837 2.636868 6.819918

[9SX Coflf. I n t e r v a l ] .0493107 2.160314 .4839442 2.087307 .2673523 2.009128 -2.428917 2.067291 t . -0.158S degrees o f freedoi = 236

= 0 Ha: d i f f > 0 0.8742 PrCT > t ) = 0.S629

BAMG 2: KIEM DJNH IMDEPENDENT SAMPLES T-TEST (GIA THQYET H2) TM-saiple t test with equal variances

Group 0 1 :oibined diff diff

« : diff Ka: d Pr(T < t

Obs 194 44 238

= iiean(O) -

= 0 f f < 0

= 0.0232

Mean s t d . E r r . .6794654 .0203518 .7688233 .0267841 .6959853 .0174379 -.0893579 .0446382 flieanCl)

Ha: d i f f ! PrCITI > | t | ) =

Std. Dev.

.2834677 .1776656 .2690191

[9S« conf. I n t e r v a l ] .6393249 .7196051

.714808 .8228385 .6616322 .7303384 -.1772981 -.0014178

t = -2.0018 degrees of freedca = 236

= 0 Ha: d i f f > 0 0.0464 pr(T > t ) . 0.9768

BANG 3: KIEM DINH INDEPENDEMT SAMPLES T-TEST (GlA THUYET H3)

•nvo-sample t t e s t vrith equal variances Group

0 1 :oinbined d i f f d i f f 10: d i f f

Ha: d Pr(T < t

Obs 194 44 238

iiiean(O) - 0 f f < 0

= 0.9664 Mean .0527567 -.0364331 .0362678 .0891898 meand)

PrCI Std. E r r . .0226947 .0184006 .0189289 .04S5183

Ha: d i f f ! T| > I t l ) =

Std. Dev.

.3161011 .1220556 .2920208

[9SX Conf. I n t e r v a l ] .0079952 .0975183 -.0735414 .OO067S2 -.0010225 .0735582 -.0063945 .1847742 t = 1.8383 degrees o f freedoa = 236

= 0 Ha: d i f f > 0 0.0673 PrCT > t ) = 0.0336

BAMG 4: KIEM DINH IMDEPEFiDENT SAMPLES T-TEST (GIA THUYET H4) Two-saraple t t e s t with equal variances

Group 0 1 coRibi ned d i f f

Obs 194 44 238

Mean -.0729832 -.081433 -.0745546 .0084998

Std. E r r . .0099429 .0361413 .0104634 .0270054

S t d . Dev.

.1384892 .2397345 .1614218

[9596 Conf.

-.092594 -.1543689 -.0951678 -.0447027

I n t e r v a l ] -.0533724

-.008597 -.053941^

. 061702^1 d i f f = meanCO) - m

(HO' d i f f = 0 1 Ha: d i f f < 0

Pr(T < t ) = 0.6234 e a n ( l )

P Ha:

rCITj > d i f f I t ! )

t = 0.3147 degrees o f freedom = 238

= 0 Ha: d i f f > 0 '

= 0.7532 PrCT > t ) = 0.3756

KET QUA NGHIEN COU Phan loifi hai nhdm cong ty ^ Nh6m tac gid phan chia doi ttfdng khao sdt thanh 02 nhom theo mtfc dp rfii ro c6 gian lan BCTC dtfa tren stf ket hap giCa chi so M va chi so Z, ket qua nhtf sau:

- Nh6m 1: cd rui ro gian ISn BCTC bao gom 44 quan sfit co cung chi so M >

- 2 . 2 2 v a c l u s o Z < 4 . 3 5 .

- Nhdm 2: khdng c6 rui ro gian ISn BCTC bao gom 194 quan s i t khdng cd hoac cd mdt trong hai chi so dtf bao^vtfdt ogtfdng gian I|n BCTC (hoac chi so M >

-2.22 hoac chi so Z < 4.35).

Kiem dfnh sU khdc biet cua cdc tin hi^u gian I4n

Ki€m dinh Independence-samples T-test dtfdc s5 dung de xac dinh stf anh htfdng cua 9 chi sd^ tin hieu gian ISn se cho biet cd stf khac biet ve tin hieu gian lan giffa nhdm cong ty cd nguy cd (nhdir 1) va khdng cd nguy cd (nhdm 2) hay khong.

Theo k^t qua kiem dinh ttf Bang 1, 4, 5, 6, 9 cho thay, cdc chi so'; INV/

SALES; NP/TA; NP/SALES; SALES/

TA; GP/TA khdng cd y nghia thong ke d mtfc 59c. tffc la khdng cd anh htfdng dang ke den ca hai nhom quan sat.

Nghia la c i c gia thuy6't HI; H4; H5:

H6; H9 bi bac bd.

Cdn lai d Bang 2 cho thay, Sig = 0.046 < 0l05: Bang 3: Sig = 0.067 < 0.1;

Bang 7: Sig = 0.026 < 0.05; Bang 8: Sig

= 0.002 < 0.05, nen ta ket luan cd stf khac biet va cd y nghia thong kB ve tri trung binh giffa hai nhdm cdng ty. Ttfc la d dd tin cay 95'7c. tin hi6u gian lan ma cia the la ty le TDH^A; WC/TA; DEBT/EQ;

REC/SALES giffa nhdm cdng ty cd nguy cd va khong cd nguy cd gian lan BCTC la khac nhau.

So sdnh kei qud nghien ciiu Cac ke't qua kiem tra gia thiet cho tha'y rang, cd mot sif khac biet dang ke cija ty le Nd phai tra/Tong tai san (TD/

TA).'vd'n Itfu dong/Tong tai san (WC/

TA): Nd phai tra/Von chij sd hffu (DEBT/

EQ) va chi so'Khoan phai thu/Doanh thu (REC/SALES) giffa nhdm quan sat cd gian lan BCTC va khdng gian lan BCTC.

Nhiyng phat hien nay ttfdng tij- nhu cac nshien ctfu trtfdc dd cija Spachis (2002) v i K i r k o s e t a l ( 2 0 0 7 ) .

Spathis (2002) \ a Kirkos et al (2007) xac dmh rang, gia tri trung binh (Mean)

62

(4)

doi vdi DEBT/EQ ci3a cac cdng ty cd gian lan BCTC la 2.706, trong khi cac cdng ty khdng cd gian ISn la cM 1.075.

Ttfdng ttf nhtf vSy, cac cong ty cd gian ian BCTC cd gik tri trung binh (Mean) doi vdi ty 1$ TD/TA ia 0.629, trong khi tj 16 nay chi la 0.437 cho cic cdng ty khdng cd gian lan.

Di^u dd cung ttfdng ttf vdi kd't qua nghien ctfu nay vdi gia tri trung binh (Mean) t j 16 TDATA ciia nhdm quan sat CO gian l$n BCTC la 0.768 cao hdn so vdi nhdm quan sdt khdng cd gian l§n BCTC la 0.679. Bgn canh dd, t^ 1$ DEBT/EQ cua nhdm quan sat cd gian ISn BCTC la 30.5 cao hdn so vdi nhdm quan sat khong c6 gian lan BCTC la 3.695:

Tinh thanh khoan thap cd the la dong cd cho cac nha quan IJ? tham gia vao viec gian lan BCTC. Chi sd' thanh khodn dtfdc tinh toan thdng qua nhilu chi so' va trong dd cd ty le WC/TA. Chi s6 njly cho thS'y s\i khdc bidt dang kd' giffa nhdm cdng ty cd gian ISn BCTC va nhdm cdng ty khdng cd gian lan BCTC vl dirdng nhtf cac cdng ty gian ian BCTC cd tinh thanh khoan thap hdn cac cdng ty khdng cd gian ISn BCTC. Lap luan tren cung ttfdng ddng vdi ket qua nghien ctfu cua tac gia, vdi gia tri trung binh (Mean) cQa WC/TA ciaa nhdm quan sat cd gian ISn BCTC la -0.036, thSp hon so vdi nhdm quan sat khong cd gian Ian BCTC la 0.052.

Nghi6n ctfu thtfc nghiem ciaa Spathis (2002), Kirkos et al (2007) cung da chiJng minh kha nang cac nha quan ly dieu chinh ty le REC/SALES la rat rd rang. Theo dd, khoan phai thu cac cdng ty gian lan BCTC cd xu htfdng cao hdn so vdi cdng ty khdng gian Ian BCTC.

Kd't luSn tren gan vdi kS't qua nghien cd\i cua nhdm tdc gia, vdi gia tri trung binh (Mean) cua REC/SALES 6 nhdm quan sdt cd gian Ian BCTC la 2.886, cao hdn so vdi nhdm quan sat khdng cd gian lan BCTC la 0.402.

KET LUAN VA KIEN NGH!

K6't qua thu difOc cho ket luan ve 4 chi so DEBT/EQ; TD/TA; WC/TA va REC/SALES la cd kha nang dtf bao nhdm cdng ty cd nguy cd va khong co nguy CO gian lan BCTC. Ket qua Amc ung hd hoan toan thdng qua cac nghien ciitf trtfdc do. Vdi ket qua nghien ctfu nay. nhdm tac gia khuyen nghi bo sung

BAMG 5: Kl^m DJKH INDEPEMDENT SAMPLES T-TEST (GlA THQYET H5) TVKi-saniple t test with equal variances

Group 0 1 combined diff

Obs 194 44 238

diff = niean(O) - Ho: diff = 0

Ha: diff < 0 PrCT < t) . 0.8S33

Mean - . U 0 3 1 6 4 -.6415932 -.20SS3S6 .5312788

std. Err.

.2290407 .3164267 .195858 .5044185 meanCl)

Ha: d i f f 1=

PKlTl > Itl) . Std. Dev.

3.190168 2.098937 3.021551

degrees 0 0.2933

[95« conf.

-.5620606 -1.279728 -.5943807 -.4624614

Interval]

,3414273 -.003458 .1773094 1.525015 t = 1.0532 of freedon = 236

Ha: diff > 0 pr(T > t ) = 0.1467

BANG 6: KIEM DINH INDEPENDENT SAMPLES T-TEST (GL4 THUYET H6) TVfo-saniple t test with equal variances

Group 0 1 combined diff

obs 194 44 Z38

diff = nean(O) - Ho: d i f f = 0

Ha: d i f f < 0 Pr(T < t ) = 0.8686

Mean .7452882 .6223038 .722S516 .1229844

S t d . E r r . .044582S .11S8107 .0425496 .1095485 nean(l)

Ha: d i f f ! prCin > I t l ) =

S t d . Dev.

.6209622 .7947343 .6564225

[9SX Conf. I n t e r v a l ] .6573568 .8332197 .3806824 .8639251 .638728 .8063752 -.0928334 .3388023 t = 1.1226 degrees o f freedom = 236

= 0 Ha: d i f f > 0 0.2627 PrCT > t ) = 0.1314

B A N G 7 : KIEM DINH INDEPENDENT SAMPLES T-TEST (GlA T H U Y E T H71 TiMO-sample t t e s t w i t h equal variances

Group 0 1 combi ned d i f f d i f f HO: d i f f

Ha: d pr(T < t

obs 194 44 238

meanCO) 0 f f < 0

= 0.0130 Mean 3.695838 30.5002 8.651267 -26.80436 mean(l)

P r ( | Std. E r r . 1.813415 23.98482 4.6S3564 11.96394

Ha: d i f f ! Tj > i t ! ) =

s t d . Dev. [95X conf. i n t e r v a l ] 25.25795 .1191815 7.27249S 159.0973 -17.86979 78.8702 72.25451 -.5754668 17.878

-50.37413 -3.234599 t = -2.2404 degrees o f freedom = 236

= 0 Ha: d i f f > 0 0.0260 PrCT > t ) = 0.9870

BANG 8: KIEM DINH INDEPENDENT SAMPLES T-TEST (GIA THUYET H8) Tivo-saniple t test with equal variances

Group 0 1 combined diff

obs 194 44 238

d i f f = tneanCO) - Ho: diff = 0

Ha; diff < 0 Pr{T < t) = 0.0011

Mean .4020296 2.886482 ,86134 -2.4844S2

Std. E r r . .1012289 1.639908 .3176992 .8040291 mean(l)

Ha: d i f f ! PrdTl > I t l ) .

Std. Dev.

1.409956 10.87792 4.90122S

degrees . 0

0.0022

IK% conf.

.2023726 -.4207089 .23S46S -4.068443

Interval]

.6016865 6.193672 1.48721S -.9004612 t . -3.0900 of freedom = 236

Ha: diff > 0 Pr(T > t) = 0.9989

(5)

BANG 9: KIEM DjNH INDEPENDENT SAMPLES T-TEST (GIA THUYET H9)

"nw-saiBple t test with equal variances Group

0 1 combined d i f f

Obs Mean Std. Err. Std. Dev. IK% Conf. interval]

194 -.0742772 ,009936 .1383926 -,0938743 -.0546801 44 -.0812214 ,0360491 .2391226 -.1539214 -.0085215 238 -,075561 ,0104476 .1611712 -.0961431 -.0549789 ,0069442 ,0269665 -.0461817 .06007 d i f f = leanfO) - >ean(l) t = 0.257i Ho: d i f f = 0 degrees of freedom = 236

Ha: d i f f < 0 Ha: d i f f != 0 Ha: d i f f > 0 Pr(T < t ) • 0,601S Pr{|T| > | t | ) = 0,7970 Pr(T > t ) = 0.398S

mdt so' bien phap de phat hien sdm va kiem soat do'i vdi nhom cac cong ty c6 nguy cd cao:

De bao ve quyen ldi cua minh, nha dau lu' nen than trong xem xel vdi nhiJng doanh nghiep cong bo BCTC khong diing thdi han Day la da'u hieu dau tien cho thay doanh nghiep thie'u minh bach, bdi neu tinh hinh kinh doanh dien ra nhu the nao deu du'dc phan anh vao so sach ke toan \a trong BCTC. thi viec hoan thanh va cdng bd' se ra'l nhanh

Trirdc khi xem BCTC da du'dc kiem toan. nha dau tu can chii y xem xet den y kie'n cua kiem roan vien v6 BCTC de danh gia mtfc do trung thu'c. hdp ly cua BCTC da dUOc kiem toan \ien phat hien. Trong iru'dng hdp phat hien cac van dc nghi van. co dong cd quyen yeu cau kiem toan \ien \a Ban giam do'c. Hdi dong quan In doanh nghiep giai trinh day dii de nim bat thdng lin va ra quyet dmh chinh xac-

Ciic nha dau tU hay than trong vdi nhu'ng giai trinh

\ e chenh lech ketqua kmh doanh trUdc va sau soat \et.

cCing nhir cong bo' BCTC da dUdc kiem toan. Doanh

nghiSp c6 r^t nhieu cdch de 1^ giai v l SU chenh lech nay, day la nhffng nguy cd an ehu'a gian lan rai cao, ndn nha dau tiT het stfc than trong, cu th^ nhffng chenh lech, nhiT: chenh lech ty gia, chenh I$ch ve trich lap d\i phdng, ch6nh 16ch ghi nhan doatji thu, chenh lech chi phi trich trifdc, chi phi tra triTdc va mot so' chenh Idch khac.

Dd'i vdi trudng hdp doanh nghiep nhan gdp vo'n bing tai san, dac biet la sap nhap, hdp nh§'l vdi doanh nghiep khac, CO dong can xem xet BCTC cua cong ty sap nhap, tinh hinh tai chinh, tai san, du an va chiJng thU tham dinh gia de xem xet viec nhan gdp vo'n. ty le hdp nhat, sap nhap.

Hien nay, cac doanh nghiep giam khoan dU phong nd xa'u do danh gia tinh hinh con nd dUdc cai thien, giam chi phi.

tang ldi nhuan nham "to hong" bUc tranh tai chinh ciia doanh nghiep \a cac thu thuat khac giiJa cdng ty "me" va "con"

nhhm giam chi phi. gia tang ldi nhuan.

Ngoai ra, cdn cd hien tUdng chuyen vd'n ldng vdng tU cac cong ty me, cong ty con... nham lam dep so sach. NhtJng thiJ thuat de lam dep BCTC cudi nam ciia nhu'ng doanh nghiep thudng la: day nd cho cdng ty "con" va cdng ty "con" nudi cdng t\ "me".

Ngoai cac dau hieu thUdng gap trong gian lan BCTC ndi tren. khi vem xet BCTC mdt doanh nghiep. nha dau tUnen chii y den cac \'a'n de. nhu kha nang hoat ddng hen tuc. cac giao djch Idn \a cac khoan tam Ung. cho \ a \ -de danh gia chat lUdng hoai ddng cua doanh nghiep.

TVI LIEU THAM KHAO

I. bdward I, Akman (1968) Financial Ratios. Discriniinani AnaKsis and ihe Prediction t Corporaie BAWIYUPWS. Journal of Finance. Sep 1968. 189-209

2 Hcmwali. N i20]?] Application of Beneish M-Scorc Models and Data Minin-j lo Dclc<

Financial Fraud. Pr<Kedia - Soi lat and Belunioral Scicmes. |21I|. pp 924-9.'^0

^ Kirkos Cl al (2007) Data Mining lechniques I'or Ihe detection of fraudulcni financi;

suilcmcnis. r.\pen .S\ stems uiili .Appticalions. 32. pp 99^-1003

4 Mcssod D Beneish (1999i. The Dcleciion of Famniiis Manipulalion. Fin,in, ml \nalys.

Journal. .Sepl/Oct 1999

-'^. Spathis 1201)2) Dciecling lalsificJ financial si;iiL-ments A compai Jii\ c sUid\ iism niulliciiIciKi a n a U s i s LUUI n m l l K a n a l c stalistical l e c h n i q u e s . Eumpean \icounlin:; Rc\u ii ] li ^, 5()9-?3.'^

6 T i a n \ i j n c T i a i n (2013) Phdn tich nlidii'^ bicii liicn '^uiii Idn Imo ,do lui chmh ihdn:: qua s kci hop (III sn Z \a Jii w") /-' ma , a, , nirj l\ mini \ci licn thi indiicj cliiOi:- khodn \ wi \,i>, \ u,-;

%aiM"li.ie si kinh I c . T i i r O i i g D a i hoc Kinh Ic T P Hn Chi M m h

Zack. G M i 2 ( l i : i Fuhnuuil Sun,iii,nl I uiud Snatc'^ies fn D, ic, iion ami hn, -^^ ,„

J n h i i \ \ i l c \ cV Sons

64

Referensi

Dokumen terkait