KHAI PHA TRI TUE MARKETING TRONG T H d l DAI DCT LIEU L O N
Dam Nguygn Anh Khoa Tru&ng Dgi hoc Bdch Khoa - Dgi hgc Dd Ndng
EmaU: [email protected] Nguygn Van Ky Long
Tru&ng Bgi hoc FPT Email: [email protected]
Ngay nhan- 24/01/2020 Ngay nhan ban siia: 20/4/2020 Ngay duyet dang. 05/5/2020
Tom tat:
Di sinh ton vd phdt triin trong th&i dgi cong nghe ngdy nay chuyen ddi so Id xu huang tdt yiu cda mgi doanh nghiip. Trong liin Irinh ndy xu thi khai thdc tri tui marketing tu die lieu^
l&n Id chia khod song cdn cua doanh nghiep. Viec img dung cdc ky thudt khai phd dUlieii de ehuyin ddi du lieu l&n thdnh tri tue marketing giiip doanh nghiep ndng cao hieu biet vi thi tru&ng. khdch hdng, sdn phdm vd ddi thu cgnh tranh. Tuy nhiin, cdc nghien ciru ti'u&c day cdn bd ngo vdn di ndy, dgc biit la viec icng dung cdc md hinh vd ky thudt khai phd die tiiu.
Do do. nghien eim ndy trinh bdy long quan ede nghien cini vi Iri tue marketing ti-ong th&i dgi dir lieu l&n thdng qua viec irng dung cdc mo hinh vd cdng eu khai phd dU liiu Kit qud nghiin eiru di xudt cde md hinh. ky thudt khai phd dU-lieu eho tinig thdnh phdn cua tri tue marketing.
Bdi viit ndy cdng de xudt cdc hu&ng nghien ciru khd thi trong tuang lai Tix khoa: Tri tue marketing; Khai pha dii' lieu; Dii lieu Idn; Tdng quan nghign ciiu.
MaJEL:M31;M10.
Mining marketing intelligence in the age of big data Abstract-
To survive in the age of digitalization. enterprises have no choice but to exploit marketino intelligence from big data The application of data mining techniques to transform big daUi into markehng intelligence helps enteiprises gain insights on market, customers, products, and competitors. However, literature has recognized a gap in how to apply data mining models and techniques lo exploit marketing intelligence. To shed more light on this issue, this paper aims at conducting a literature review on marketing intelligence through data mining models and techniques. The findings of this paper discuss specific data mining techniques for each component of marketing intelligence on market, customers, products, and competitors The study also suggests future research directions for scholars to enrich literature in this domain.
Keyivords- Marketing intelligence, data mining, big data, literature review.
JELeodeM31:M10
l.Gioi thieu
Trong tbdi dai biing nd dii' Heu ngay nay, chuygn ddi sd la mgt tign trinh khdng thg tranh khdi ddi vdi doanb nghiep (Dam & cgng su, 2019, Verhoef & cgng su, 2019). Theo d6. ky nguyen "Tri me marketing"
(.Marketing Intelligence - tir day viet tat la MI) va
"Dii heu ldn" (Big Dala - BD) dS mo ra nhthtg ca hot tiem nang cho doanh nghiep (Sivarajah & cong su, 2017). BD dugc xem 14 ngudn ,uc town cho MI vol nhung.dac diem ve khdi luong. tde dd, tinh da
„ v a tmh xac thuc cua dit lieu (,a„sse„& cdng s.,2017.Lau&congsu,2016). Viec ung dung ca!
So 275 thdng 5/2020
\y ui»"^;"-- r''' '"•''•'• "•" '-•' "'•-'" "''''''"g - DM) tir BD dl thu thap thong tin ve khach hang, thi trudng, ddi thu canh h-anh giup doanh nghiep cd dugc MI va cai thien chiln lugc marketing trong thdi dai sd (Efrat &
cong su, 2017, Huster, 2005).
Bgn canh nhirng ca hgi day tigm nang trong ky nguyen du heu Idn, viec kliai thac MI tir BD se phai doi mat vdi mgt so thach thiic. Trudc hgt, doanb nghiep gap khd khan trong viec xac dinh cac ngudn du lieu Iign quan (Janssen & cgng su, 2017, Baesens
&cgng su, 2016, Mages & cdng su, 2013). Ngoai ra, doanh nghiep phai ddi mat vdi cac thach thirc trong viec phan Ioai cac thanh phan kbac nhau cua MI vdi tiing irng dung rieng biet (Liang & Liu, 2018, Fan
& cdng sir, 2015). Mac du viec ung dung BD trong marketing da thu hitt sir chii y ciia rat nhieu cac nha hoc gia, cac nghien cim da phan bd ngd cac ndi dung lien quail dgn viec sir dung cac md binh DM vao DDL trong cong tac marketing (Amado & cdng su, 2018, Pan & cpng sir, 2013, Liao & cgng su, 2012).
Theo do, viec tdng quan cac nghien cim ve MI trong thdi dai BD thdng qua viec ling dung cac md hnih va cong cu DM la that sir can tbiet ddi vdi cac nha hgc gia ciing nhu la ddi vdi doanh nghiep.
Nghien cim nay se giiip bd sung cac khoang trdng Iy thuyet ve chu de MI trong ky nguygn bung no thong tin hien nay. Nghien ciiu nay cdn gdp pban thu hep khoang each giira liai lmh vuc Marketing va He thong Thong tin. Do dd, rauc tieu nghidn cim cua bai viet nay jiudng ddn danh gia tdng quan ly thuygt trong viec ling dung cac md hinh DM tir BD de khai ihac ML Muc tigu dau tien cua nghign cim la phan loai ML Muc tigu thir hai la xac dinb cac ngudn BD thich hgp cho hing Ioai ML Ben canh d6, bai viet con tong hgp cac nghien ciru trudc nham dg xuat md hinh va cong cu DM phii hgp tu'ang ling cbo timg loai MI vdi muc dich hd trg cho vide nghien ciiu tong quan cac nghign ciiu tnrdc day ve kbai pha tii tue marketing.
Bai nghien ciiu duac trinh bay nhu sau: Tigp theo phan dat van de la muc 2 de cap ca sd ly thuyet ve MI va DM. Muc 3 trinh bay phuang phap nghien ciru bao gdm thu thap va thdng kg dii lieu. Ket qua phan tich, phan Ioai MI vdi cac md binh va ky thuat DM dugc trinh bay d muc 4. Cudi cimg, muc 5 neu ket luan vdi phan thao luan chuydn sau vg cac ddng gop cung nhu cac hudng nghien ciru quan trgng trong tuong Iai.
2.T6ng quan nghien cuu 2.1. Tri tue marketing
Tong quan Iy thuyet tiiidc day chua thuc sir dua ra mdt dinh nghTa hay khai niem thong nbSt vg MI (Lies, 2019). Digm khac biet ca ban giua djnh nghTa truygn thong va dinh nghTa hien dai vg MI nim d phuang phap thu thap tiidng tin (Huster, 2005, Lau
& cgng su, 2012). Theo each tigp can fruygn thdng, MI phu thudc vao khao sat thi tru'dng va cac ngudn thong tin ndi bg trong doanh nghiep dg thu thap thdng tin ve kbacb hang, ddi thii canh tranh, thi trudng va vg nganh (Huster, 2005, Kohli & Jaworski, 1990, Xu & cdng su, 2016). Ngay nay, dinh nghTa v6 MI dugc hinh thanh tir viec ap dung cac md hinb va ky thuat DM nham phuc vu cho cac quygt dinh chign lugc ciia doanli nghiep (Chen & cdng su, 2012, Lau
& cgng su, 2016). Theo each tiep can nay, MI dugc dinh nghTa la qua trinli thu thap thdng tin ve khach hang, ddi thu, thi trudng va nganh thong qua cac md binh DM va sau dd dugc ap dung vao cac ke hoach marketing chien lugc cua doanb nghigp (Efrat
& cgng su, 2017, Huster, 2005).
Nghign ciru nay ke thira quan diem tir nhigu ngbien ciiu trudc day dg dinb ngliTa Ml nhu la mdt img dung ciia cac md hinh va ky thuat DM de kham pha MI vg thi trudng, san pliSm, khach hang va ddi thii canh tranh (Chen & cgng sir, 2012, Lau & cdng su, 2016). Cac quan diem nay dua trgn Iy thuyet Marketing hdn hgp (Marketing Mix)-, vi vay, dinb nghia nay hau nhu bao quat tat ca cac khia canb quan trgng nham muc dicb ho trg cac quyet dinli marketing (Fan & cdng su, 2015, Lau & cgng su, 2016). Tuy nhien, quan diim cua Marketing Mix truygn thong, 4P bao gdm san pham (product), gia ca (price), khuyen mai (promotion) va dia digm (place) bl phg binb la chi djnh hudng san pbam vi thigu su tap trung vao khach hang. Do do, nghien ciru nay bd sung P tbu nam (people) tap tiring vao khach hang (Fan & cgng su, 2015, Lau & cgng sir, 2016).
2.1.1.Tri tui marketing ve thi trtf&ng MI vg tbi trudng bao gom thdng tin vg cac ygu td ngoai sinh cd thg anb hudng ddn nhu cau va sd thich kbacb hang bien tai va tirong lai nhu cdng nghe, su canb tranb, phap luat va cac ydu td khac tac ddng tir mdi trudng bdn ngoai (Sorjonen & Uusitalo, 2003, Aggarwal & Singh, 2004). Cd thS tdm Iai, MI vg thi trudng bao gom cac Ioai MI tir cbinli tri - kinh te den van hda - xa hgi (Lau & cgng su, 2012, Navarro^
Garcia & cong su, 2016, Trim & Lee, 2008). Trudc
So 275 thdng 5/2020 59 IviiiliKU'ltiilliii^ii
day, cac nguon thdng tm truyen tbdng cua MI tri tue thu thap dugc tir khao sat, bao cao kinh doanh, bao cao thao luan vdi khach hang, nghidn ciru thi trudng...(Sorionen & Uusitalo, 2003, Aggarwal &
Singh, 2004). Ngay nay, cac ngudn thdng tin md thircmg dugc dg cap den nhir nhat ky true tuyen, sach trang dg thu thap thdng tin MI vg thi trudng (Fleisher, 2008).
2.1.2. Tri tui marketing ve sdn phdm
Hau het cac dinh nghTa MI ve san pbam dugc dinh nghTa tbeo quan diem ciia san pham thdng minh (Gabam & Bouzouia, 2009, Rijsdijk & cdng su, 2007). Ngay nay, MI ve san pham img dung cac ky thuat DM dg khai thac hieu biet sau sac ve san pham nham tang su bai Idng ciia kbacb hang va xac dinh cac ca hdi kinh doanb (Amarouche & cdng sir, 2015, Fan & cdng sir, 2015). Mdt tiong nhung each tdt nhat dg thda man nhu cau ciia kbacb hang la lang nghe danh gia, thao luan, thai do cua khach bang tren cac dien dan, phuang tien truygn thdng xa bdi, blog va trang web (Abrahams & cdng su, 2012, Gutt & cdng su, 2019). Viec khai thac cac ndi dung do khach hang tao ra va ndi dung vg san pham trgn cac website se cho phep doanh ngbiep khong chi dua ra quyet dinh phat trien cac san pham phil hgp vdi nhu cau ciia kliach hang ma cdn gidi thieu siin pham tuang irng den diing khach hang tiem nang (Abrabams&cgngsu, 20I3,Park&cdngsu, 2012).
2.1.3. Tri tue marketing vi ddi thii canh tranh MI vg ddi tbii canh tranh bao gdm cac tbdng tin vc cac san pham, gia ca, quang cao va kenh phan phdi ciia ddi tbii canli tranh (Navarro-Garcia & cgng su, 2016). Han the niia, MI giup doanh ngbiep nam bat dugc digm manli va digm ygu ciia ddi thii canh tranh, tir dd dir doan tnrdc dpng thai va chien lugc cua ddi thii (Wright & cgng su, 2002). Dg thu thap thdng tin ve ddi thu canh tranb, doanh nghiep cd thg tbu thap nhat ky du lieu tir cac trang web thucmg mai dien tir (Fan & cgng sir, 2015). Doanh ngbiep cd thg dimg cac thdng tin trong nhat ky dG lieu nay nhu thii bang doanh sd san pham, gia nigm yet hay ngay phat hanh de du bao nhu cau thi trudng, udc tinh cbi phi va dg CO gian ciia gia (Fan & cpng su, 2015). Ngay nay, khdng chi cac van ban ma ca hinh anh vdi cac thugc tinh nhu dinh dang hign thi, chat lugng hinh anh, sd lugt xem cilng cd thg anh budng ddn y dinh ciia ngudi mua (Di & cdng sir, 2014, Sukuniaran &
Sureka, 2006).
2.1.4. Tri lui marketing ve macn iiu.^&
Ml vg khach hang bao gdm thdng tin vg nhu cSu, sd thich, van hda, ldi sdng, siic mua, hanh vi mua sam phong tuc va thdi quen cua kliach hang tiem nang (Navarro-Garcia & cdng su, 2016). Trong thdi dai ky thuat sd, MI vg kliach hang dugc kliai thac d5u tien dua tren cac tiang web vdi cac tim kiem giao thuc huang dir lieu thdng qua cookie va nhat ky server (Chen & cdng su, 2012, Doan & cgng sir, 2011), Cac nha ngp thi cdn cd thg phan tich lich sii click chupt cua khach hang vdi thdng tin vg tan suat tmy cap, cac san phdm da xem va thdi gian truy cap tren mot trang web dg nSm bit thoi quen ludt web va hanli vi mua hang cua khach hang (Fan & cgng su, 2015, Park & cong sir, 2012). Daanh nghidp cd thg khai thac MI vg khach hang tir cac nguon ngi bg nhu hd so thanh toan, nhat ky web ciia cdng ty, hg thdng Quan Iy quan he khach hang (Rygielski &
cdng su, 2002). Ngoai ra, cdn cd cac ngudn thdng tm ben ngoai nhu tren phuong tien truygn thong xa bgi, trang web cua ddi tbii canh tranb, bay diem tin dung FICO (Fan & cdng su, 2015, Liang & Liu, 2018, Rygielski & cdng sir, 2002).
2.2.Khaiphd die lieu
Sau md hinh DM dien hinh vdi cac ky thuat lien quan dugc trinh bay nhu sau (Chen & cdng su, 2012, Seng & Chen, 2010, Sivarajah & cdng su, 2017):
Mo hinh Phan loai dugc sir dung dg dua ra du bao vg hanh vi cua khach hang (Fan & cdng sir, 2015) hoac xac dinb cac thupc tinb cua cac cum dir lieu (Bose & Mahapatia, 2001). Cac ky thuat phan loai thudng dugc su dung nhu la neural networks (mang na-ron). Decision trees (md hinh cay quyet dinh). Naive Bayes, Support Vector Machines, market basket analysis (phan tich gid bang), genetic algorithms (thuat toan di tiiiygn), va dign kien if then-else (Ngai & cpng su, 2011, Ngai & cone su 2009). • 6 . '
Mo hinh Kit hop dugc sir dung dg tim hilu mdi quan he giira cac san pham ma khach hang mua- vi vay, cac doanh nghigp cd thg xac djnh cac san phim CO xLi hudng bd sung cha nhau (Bose & Mahapatia 2001, Seng & Chen, 2010). Cdc ky thuat kdt hap thuong dugc su dung nhu association rules (luat kdt r o n N 7 ' ' " ' ' ^ ' ' " ^P™^' (Chen & cong su, 2012, Ngai & cdng sir, 2009). '
Mo hinh Phan cum duac sir dung dg phan khuc
trL^!^^^"'^^-^^^^4(Faii&l
su, 2015, Hosseini &
rang su. 2010). Cac ky thuat So 275 thdng S/2020
Bang 1. Thong ke s6 lirong bai bao khoa hoc theo ten Ten tap chi khoa hoc
Expett Systems with Applicadons Decision Support Systems Joumal of Business Research IEEE
Information and Management MIS Quarterly
European Joumal of Marketing Marketing Intelligence & Planning Joumal of the Academy of Marketing Science Journal of Marketing
Others Total
So luffng
10 7 4 3 3 3 2 2 1 1 19 55
tap chi Ty le %
18.18%
P.73%
7.27%
5.45%
5.45%
5 45%
3.64%
3.64%
1 82%
1 82%
34 55%
100 00%
Ngudn: Tinh todn ciia tde gid.
phan cum phd bien nhat la K-means, Naive Bayes, mo hinh phan tich REM (tinh chat mdi xay ra, tan suit va miic dg chi tien), phan tich gid hang, mang no-ron va self-organizing map (hay cdn ggi la ky thuat phan cum SOM) (Hosseini & cdng su, 2010, Seng & Chen, 2010, Sivarajah & cdng su, 2017).
Mo hinh Hoi quy dugc sir dung dg dua ra du bao hoac tim mdi quan he nhan qua giii'a cac bien (Ngai & cpng sir, 2009). Cac ky thuat hdi quy pho bien dugc sir dung la hdi quy tuyen tinh va hoi quy logistic (Seng & Chen, 2010, Sivarajah & cgng sir, 2017).
Mo hinh Dy bao dugc sir dung dg du bao cac gia hi trong tuong Iai dua tien cac ghi chep Iich su (Bose
& Mahapatia, 2001, Enke & Thawomwong, 2005).
Cac ky thuat du bao phd bign nliat dirge sir dung la phan tich gid hang, mang na-ron, survival analysis (ky thuat phan tich sdng cdn), hdi quy tuyen tinh va hoi quy logistic (Enke & Thawomwong, 2005, Seng
& Chen, 2010).
MS hinh Kham pha chuoi dugc sir dung de xac dinh cac su ket hgp hoac md ta thii tu cac hanh vi theo thdi gian (Rygielski & cdng sir, 2002). Ky thuat kham pha chudi thudng dugc sii' dung la ky thual thong kg va Iy thuyet tap bgp (Ngai & cdng sir, 2009).
3.Phir(nig phap nghien cihi S.l.Thu thdp durlieu
Cac nghien cim khoa hoc vg MI va DM n^m trong nhieu CO sd dir lieu kbac nhau. Do dd, nghidn cu'u
nay se xay dung tdng quan tai lieu nghien ciiu tir cac ngudn hgc thuat uy tin kbac nhau nhu Science Direct, Emerald, Business Source Premier, EBSCOhost, PraQuest, Google Scholarship va IEEE Transaction (Ngai & cdng sir, 2009). Cac tir khda dugc sir dung nhu ''^marketing intelligence" (tri me marketing), hoac ^''data-driven marketing" (marketing dinh hudng dii lieu), va '"data mining techniques" (ky thuat DM) dg tim kiem cac bai bao tir cac ngudn dii beu dang tin cay tien. Cac bai bao khoa bgc se dugc thu thap tir cac tap chi Marketing va tap chi Quan Iy hang dau the gidi nhu Journal of Business Research, European Joumal of Marketing, Joumal of the Academy of Marketing Science, Joumal of Marketing,... (Amado & cgng su, 2018). Ngoai ra, cac bai bao khoa hgc tii' cac tap cbi vg He tbdng thdng tin cdng dugc nghien cim tdng hgp ciing nbu:
Expert Systems with Applications, MIS Quarteriy, Decision Support Systems, IEEE, Information and Management, Decision Support Systems,... (Chen
& cdng sir, 2012). Dg dam bao tinh hgp le va do tm cay trong qua trinh tim kigm tai beu, ky thuat tim kigm Forward-Backward dugc tien hanh nham dam baa ritng 55 bai bao khoa hgc dugc chgn cd thg dai dien cho nghien ciiu trong ITnh vuc nay (Webster &
Watson, 2002).
3.2.Thdng ke du-lieu
T§t ca cac tap chi da Iua chpn d tren deu nam trong danh sacb cua Scimago Joumal & Country Rank nam 2018. Bang 1 cho thSy ty Ie cua cac bai baa khoa hgc dugc nghign ciru dgn tii' tap chi Expert
So 275 thang 5/2020
men
0
^
0 ,'
fV 'VJ -a- r v ^ r v
^ ,
Hinh 1. Thfing ke bai bao theo nan
\ 001^ s
^' -,
0
f v
1 xuat ban
R
'>!
o*
'
r
0 0
t y iO ^
^ ^ ^
^00
Ngudn: Tinh todn ciia ldc gid.
Systems with Applications la kha Idn (18.18%), tigp theo la tap chi Decision Support Systems (12.73%,), va Joumal of Business Research (7.27%). Mgt sd tap chi khoa hpc kbac ciing dugc tham kliao nhieu la IEEE, Infomiation and Management, MIS Quarterly.
Nghign cim nay cdng thdng kg bai vigt theo nam xuat ban va thg hien theo Hinh 1. Trong Hinh I, c6 the thay sd lugng bai bao da tang tir nam 2001 den 2019 vdi sd lugng cao nhat vao nam 2005. Giai daan tir nam 2008 dgn 2012 cho thay sd lugng bai vigt trong ITnb vuc nay tang dan. Tuy nhign, cd sir bien dgng ve sd lupng bai bao tir 2013 ddn 2019.
4,Ket qua va thao luan
4.1.Khai phd Tri tue marketing ve thi tru-dng Ml ve tbi trudng cd thg dugc chia thanh hai loai:
kinli tg - chinh tri va van hda - xa hdi (NavaiTO- Garcia & cgng su, 2016, Trim & Lee, 2008). Cd dugc MI ve thj tnrong, doanh nghiep cd the dua ra cac quygt dinh chien lugc nliu cd ndn tham nhap vao tbi tnidng mdi bay klidng, san pham hien tai cd phii bgp vdi ygu td van hda cua tiii trudng muc tidu hay khdng... Cac md hinh phan cum, du bao, ket hgp, phan Ioai va hdi quy tbudng dugc sir dung de DM thdng tin kinh te - chlnh tri va van hda - xa bgi (Chen
& Zimbra, 2010, Chung & cdng sir, 2005), Mdt loat cac ky thuat khai pha cung dugc ap dung kem vdi cac md hinh nay nham dap ling cac muc dich cua doanh nghiep. Vi du: mgt sd ky thuat dugc sii dung nhu sentiment and effect analysis (phan tich tam ly); cay quygt dinh, md hinh SVM va md hinh hdi quy logistic de du bao va kham pha cac mdi tucmg quan an. genetic algorithms de toi uu hda tim kidm thdng tin \ e thi trudng trdn web (Bai, 2011. Chen &
Zimbra. 2010. Chung & cgng su, 2005)
4.2.Khaiplid Tri tue marketing vi khdch hdng Dua tren cdng tac quan ly quan he khach hang, MI vg khach bang bao gdm bdn cip do: Nhan dien khach hang: Thu hiit su chii y cua khach hang; Duy tri quan he khach bang; Phat intxx gia tii thang du (Hosseini & cpng sir, 2010, Ngai & cgng su, 2009).
4 2.1.Nhdn diin khdch hang
Ml vg khach hang klidi dau b^ng viec xac dinh pban khuc nhdm khach hang cd cimg sd thich va klifi nang sinh igi tu'cmg duang (France & Ghose, 2018, Ngai & cdng sir, 2009). Theo dd, su dung md hinh pban cum va phan Ioai se rat hiiu ich trong viec phan chia khach hang thanh cac nhdm ddng nhat va tir dd xay dimg hd sa kliach hang (Amado & cdng su, 2018, Fan & cdng sir, 2015). Cu thg hon, hd sa khach hang se chiia thdng tin vg cac nlidm theo nban khau hpc (tudi, gidi tinh), hanh vi mua (nhu c§u, sire mua, sd thich, 16i sdng), thugc tinh mua (tinb chit mdi xay ra, tin suit, kich thudc), danh rauc san phim, va gia tn vdng ddi ctia khach hang (Baars
& Kemper, 2008, France & Ghose, 2018). 6 giai doan nay, md hinh cay quyet dinb tiong pban loai va ky thuat K-means n-ong phan cum la phii bgp dg pban khiic kbacb bang cd dac digm tirong tir nhau (Hosseim & cdng su, 2010). Sau dd, phuong phap phan tich khach hang muc tigu se duac su dung de chon phan khiic sinh Igi nhit (Woo & cdng'su 2005). - & . '
4.2.2 Thu hilt sir chu y ciia khdeh hdng Vox muc dich tbu hut sir chu y cac phan khiic muc t.eu, o buoc nay, md hinh phan Ioai la phii hop nhit Ngai & cgng su, 2009), Md hinh hdi quy va ma hmh phan cum cung thudng duge sii dung cha m - - dich nay. Ngu xem xet ky hon v^
md hinh phan loai.
cie ky thuat Naive Bayes, c . „ „ , , « ^ - - ; ; : 5 ; ; So 275 thdng 5/2020
"diuuy^"".'::'::™:^-;"- - {.-;:y thuat pbd bign nh§tdugc sii dung (Baesens & cgng su, 2016, Chen
&cpngsu, 2012, Ngai & cgng su, 2009). Them vaa do, phan tich REM cd the dugc ap dung de nam bat diroc hanh vi mua cua khach hang va cai thien chien liruc marketing de thu biit kbacb hang (Hosseini &
cpng su, 2010).
4.2.3.Diiy ti-i quan he khdch hdng
Cac chien lugc marketing dugc su dung phat trien h6 sa khach hang, nang cao long tin cua khach hang, phat tiidn he thdng dg xuat cho san pham cdng ty hoac chuang tiinh khach hang than thiet nblni muc dich tang sir bat Idng ciia khach hang va duy tri mSi quan he vdi khach hang lau dai (Payne &
Frow, 2005, Rygielski & cgng sir, 2002). Theo dd, cac phuang phap DM khac nhau dugc ap dung de hd Iro cac hoat ddng tren nhu phan loai, kdt hgp, pban cum, kham pha chudi va hdi quy (Ngai & cdng su, 2009). Theo do, luat ket hgp, cay quydt dinb, mang na-ron, mo hinh hdi quy logistic va thuat toan di truyen dugc ling dung nhieu (Liao & cgng su, 2012, Ngai & cpng su, 2009, Sivarajah & cgng su, 2017)
4.2.4.Phdt trien gid tri thdng du
Vol muc tigu tdi da hda viec tao ra gia tri thang du cho doanh nghiep, phat trign gia tri thang du bao gdm ba chien lugc chinh: iip/cross-seUing (Up-selling la ban nhung hang boa cd gia cao ban bang hda ma khach hang du dinh mua, cdn cross-selling la ban them cho khach hang nbirng hang hda cd lidn quan khac), gia tri vdng ddi khach hang va phan tich gid hang (Ngai & cdng su, 2009, Payne & Frow, 2005).
Doi V01 hai chien lugc up/cross-selling va phan tich gio hang md hinh kham pha chuoi va md hinh kdt hop dugc sir dung (Baars & Kemper, 2008, Shaw
& cpng sir, 2001), cac ky thuat DM phd bign kem theo la luat kgt hgp va mang na-ron (>Jgai & cdng su, 2009) Ngoai ra, dg udc tinh gia tri vdng ddi cua khach hang, cac nha khoa hgc thudng ap dung cac mo hinh DM khac nhau nbu phan loai, pban cum, dir bao va hdi quy (Ngai & cdng sir, 2009, Seng &
Chen, 2010). Thea do, cac ky thuat DM tucmg ling la mang na-ron, luat kdt hpp, hdi quy tuygn tinh, survival analysis, chuoi Markov (Chen & Zimbra, 2010, Ngai & cdng sir, 2009).
4.3.Khaiphd Tri tue marketing ve sdn phdm Dtra tren djnh nghia dugc de xuat trong phan MI ve san phim, cd thg thiy ring Ml vg san phim bao gdm hai phuang dien: phat trign san pham (Amarouche & cdng su, 2015, France & Ghose,
So 275 thdng 5/2020
2018) va dd xuit san phim (Albadvi & Shahbazi, 2009, Park & cdng su, 2012).
4.3.1.Phdt trien sdn pham
Cac dac tinh san phim cd the dugc trich xuit thdng qua cac phuong phap khai thac van ban kit hgp vdi cac md hinh DM nhu phan ioai, kgt bgp va phan cum (Fan & cdng sir, 2015, France & Ghose, 2018). Dac tinh san phim cd thg la cac dir beu vg kich thudc, trgng lugng, mau sic, bao bi va cbiing Ioai cua san pham(Albadvi & Shahbazi, 2009, Efi-at
& cpng sir, 2017). Cac ky thuat khac nhau nhu ky thuat khai thac y kign (Opinion mining), md hinh hoa chu de (Topic modeling), he thdng tra Idi cau hdi (question-answering), ky thuat trich xuit thdng tin dugc thuc hien tiiy thugc theo cac muc tieu nghidn ciiu khac nhau (Chen & cdng sir, 2012). Cu thg hon. Topic modehng phii hgp nhat dg tim chu de chinh, trong khi question-answering la img dung ciia qua trinh xir Iy ngdn ngir tir nhien dg xay dung md hinb san pham (Product ontologies) nhim muc dicb hd tig cac tuong tac giira ngudi va may tinh (Amarouche & cdng su, 2015, France & Ghose, 2018). Cac ky thuat cdn lai nhu ky thuat khai thac y kidn va phan tich tam Iy duac dp dung xac dinh thai do va cam xiic ciia kliach hang (Lau & cdng su, 2014, Li & Li, 2013).
4.3.2. De xudt sdn phdm
Phuong dien nay ciia MI vg san pham nham muc dich Iam hai Idng timg khach hang bang each dua ra cac dg xuat ngng cho mdi khach hang thong qua viec phan tich du lieu tir Iich sii' click chugt, hd sa khach hang, nhat ky dien thoai va cac giao dich (Park &
cgng su, 2012). Trong cdng tac nghien ciiu, cac md hinb DM kliac nhau dugc sir dung dc xay dung cac he thdng dg xuat san pham nhir md hinb Kgt hgp, Phan loai, Phan cum va Hdi quy (Adomavicius &
Tuzhilin, 2005). Theo dd, cac ky thuat DM Iign quan di kem la K-Recent Neighbor, phan loai Bayestian, luat kgt hop, cay quygt dinh, mang na-ron, phan tich mdi lien kgt, bdi quy tiiygn tinh (Adomavicius
& Tuzhilin, 2005, Park & cdng su, 2012). Dac biet, k-Nearest neighbor la mpt trong nbirng ky thuat quan trgng va phii bgp nbit trong viec xay dung he thdng dg xuit san pham cho ngudi tieu dimg (Albadvi &
Shahbazi, 2009).
4.4.Khaiphd Tri tue marketing vS doi thii canh tranh Nhu da dg cap a phan Ml ve ddi thu canb tranb, MI vg doi tbu cung bao gdm 4P ciia ddi thii thea Marketing Mix - san phim, gia ca, khuyen mai va
kiiilili'-Jliiillricn
lieu vi tri nay cd dugc thdng qua cat iin'-' - long 4.4.1. Tri lue marketing ve sdn phdm ciia cdc doi
thu canh tranh
Cac nha khoa hgc dir beu kbai pha ndi dung web vdi cac md hinb phan cum, ket hop va cac ky thuat xay dtmg md hinb san pbam nham muc dicb theo ddi thdng tin ve san pham cua cac ddi thu canh tranh (Amarouche & cgng su, 2015, France & Ghose, 2018). Thdng qua viec irng dung luat kgt hgp, klidng chi cac tinh nang, dich vu kdm theo cua san pham ma cdn cac mdi de dga dgn tir cac san pham tbay thg cd the dugc thu thap tir danh gia ciia khach hang, xep hang san pham va md ta san phara (Amarouche
& cgng su, 2015, France & Ghose, 2018, Navarro- Garcia & cdng su, 2016).
4.4.2.Tri tue marketing vi gid cd cita ddi thu canh tranh
MI gia ca ciia ddi thu canh tranh bao gdm chien lugc gia, chinb sach chigt khau ciia ddi thii canh tranh (Navarro-Garcia & cdng su, 2016). Md hinh hdi quy thudng dupc sii dung nghien ciru chien lugc
cd dinh vi GPS, WiFi, GSM, check-in tir cac mang xa hgi (Pan & cdng su, 2013, Scellato & cdng su, 2011). Vg mat marketing dudi gdc do ve dia diem, md hinh pban loai, du bao va hdi quy la cac mo binh DM hiru hieu nhit (Fan & cgng sir, 2015, Pan
& cgng sir, 2013). Theo do, cac ky thuat DM khac nhau dugc thuc hien nbu hoi quy tuyen tinh/phi tuydn tinli. Naive Bayes, mgng nff-ron va SVM (Pan
& cdng sir, 2013, Scellato & cdng su, 2011).
S.Kgt luan
Vdi muc dich day manh chuyen ddi sd va tang Igi the canb tianh cua doanh nghiep, nghien ciru nay trinh bay tdng quan cac nghidn ctru trudc day vg chu de khai thac MI thdng qua viec img dung cac md hinh va ky thuat DM. Theo each tiep can nay, cac thanh phan ca ban ciia MI dugc phan Ioai ca ban dua trdn Iy thuygt Marketing hdn bgp. Cac ngudn dir lieu Hdn quan, md hinb va ky thuat DM cung gia (Fan & cgng sir, 2015, Lau & cdng su, 2016), ^^ ^^^'^ ^e xuat cho tiing thanh phan cua Ml. Bai Dac biet, ky thuat hdi quy da bien dugc ap dung dg
xac dinb cac yeu td quygt dinb gia ddi tbu canh tianh (Fan & cdng sir, 2015). Cac md hinb kgt hgp cung hiiu ich de xac dinh cac ddi thu tiem nang, chign lugc gia va chinb sach chigt khiu cua ddi thii (Fan
& cgngsu, 2015).
4.4.3. Tri tue marketing ve khuyin mai ciia ddi thii cgnh tranh
Dg cd dugc MI vg chien lugc khuygn mai cua ddi
vidt nay xay dimg tdng quan ly thuyet chuygn sau dga tien 55 nghign ciiu khoa hgc lign quan tii cac co sd du lieu kbac nhau. Kgt qua nghign ciiu dg xuit cac md hinh va ky thuat kbai pha cho timg loai MI hrong ling. Nghien cim nay cung cho fliiy MI vg san pham, khach hang va khuygn mai dudng nhu thu hiit sir chil y nhigu hon so vdi MI vg gia ca va dia digm (France & Ghose, 2018). Do dd, cac hgc gia cd thg thu canh n-anli, doanh nghiep cin lay dir lieu vg thdi '^^' ^^ ^^^ ^narxg nghien ciiu vg gia ca va dia didm gian khuygn mai, kigu loai khuygn mai va doanh sd ^'^^"^ ^™"8 tuang lai.
ciia ddi thti canb tranh (Park & cdng su, 2012). Md hinh phil hgp nhat de phan tich tim higu mdi quan he giua cac ygu td frong chien lugc quang cao ciia ddi thii canh tranb chinh la md hinh hoi quy, dac biet la cac ky thuat hdi quy tuygn tinh (Fan & cdng sir, 2015, Lau & cgng su, 2016). Cac ky thuat DM phd bidn kliac dg xay dung cac he tbdng dg xuit la K-Nearest Neighbor, luat kgt bgp, phan tich moi hen kgt (Park & cdng su, 2012).
4.4.4. Tri tue marketing ve dia diem eua ddi thii cgnh tranh
Ngay nay, doanh ngbiep cd thg cd dugc MI vg dia diem cua ddi thii canh ganh bang each thu thap du Heu vg cac dia digm khach hang sir dung thdng qua djch vu dinh vi (Scellato & cdng su, 2011). Dii'
Nghien ciru nay cd nhiing ddng gdp nhit dinh ddi vdi doanh nghiep va gidi hgc thuat. Ci gdc dd doanh nghiep, cac ky thuat DM tirong img vdi timg Ioai MI se tang nang Iuc canh tianh cho doanh nghiep.
Cu the, MI se gmp doanh nghiep tigp can thi tnrdng tiem nang, ddi thii canh tranh, san phim va khach hang mdt each hieu qua hon (Efrat & edng su, 2017, Lau&cgngs,,2016).6gdcdghpctbuat:nghign - n . y gop pban tbu h,p khoang each giua bai i r ^ nrc Mrketmgva He thdng Thdng tin. Nghien cuu nay se la ngudn tham khao cho ck A J T hpc gi. nghign cim. C.e h o c ; :^^^^^^^
.- , , . isia nghien cuu co the Sli dung nghien cim nay dj
moi trong khai pha Ml. mo ra nhung hutmg di So 275 thdng 5/2020
Abrahams, A. S., Jiao, J., Fan, W., Wang, G. A & Zhang, Z 2013, What's buzzing in the blizzard of buzz? Automotive component isolation in social media postmgs. Decision Support Systems. 55, 87! -882.
Abrahams, A. S., Jiao, J., Wang, G. A & Fan, W. 2012, Vehicle defect discovery from social media. Decision Support Systems. 54, 87-97.
Adomavicius, G. & Tuzhilin, A. 2005, Toward the next generaUon of recommender systems. A survey of the state-of- the-art and possible extensions, IEEE Transactions on Knowledge Data Engineenng, 734-749.
Agganvat, N. & Singh, R. 2004, Market orientation in Indian organizations: an empirical study. Marketing hitelhgenee & Planning.
Albadvi, A & Shahbazi, M. 2009, A hybrid recommendation technique based on product category aUributes, Expert Systems with Applications. 36, 11480-11488.
Amado, A., Corlez, P., Rita, P & Moro, S 2018, Research trends on Big Dala in Marketing: A text ininmg and topic modeling based literaUire analysis, European Research on Management and Business Economics, 24, 1-7 Amarouche, K., Benbrahim, H. & Kassou, I. 2015, Product Opinion Mining for Competitive Intelligence, Procedia
Computer Science. 73, 358-365.
Baars, H. & Kemper, H.-G. 2008, Management Support with Stmclured and UnstrucUired Data—An Integrated Business Intelligence Framework, Information Systems Management. 25, 132-148
Baesens, B., Bapna, R., Marsden, J. R., Vanthienen, J. & Zhao, J. L. 2016, Transformational issues of Big data and Analytics in Networked business, MIS Quarterly, 40
Bai, X. 2011, Predicting consumer sentiments from online text, Decision Support System.'i. 50, 732-742.
Bose, 1. &Mahapatra, R. K. 2001, Business data mining—a machine leaming perspective. Information & Management, 39,211-225.
Chen, H., Chiang, R. H. L. & Storey, V. C. 2012, Business Intelligence and Analytics - From Big Data to Big impact, MIS Quarterly 36, 1165-1188.
Chen, H. & Zimfara, D. 2010, AI and opinion mining, JEEE intelligent Systems, 25, 74-80.
Chung, W, Chen, H. & Nunamaker Jr, J. F 2005, A visual framework for knowledge discovery on the Web: An empirical study of business intelligence exploration, Journal ofManagement biformation Systems. 21, 57-84.
Dam, N. A. K., Le Dinh, T. & Menvielle, W. 2019, A systematic literature review of big data adopUon in interaationahzanon, Journal of Marketing Analytics. 7, 182-195
Di, W., Sundaresan, N., Piramuthu, R. & Bhardwaj, A, 2014. Is a picture really worth a thousand woi-ds?:-on the role of images m e-commerce. Proceedings of the 7lh ACM international conference on Web search and data mining, 2014. ACM, 633-642.
Doan, A , Ramakrishnan, R & Halevy, A. Y. 2011, Crowdsourcing systems on the world-wide web, Commuiiicalioiis of the ACM. 54, S6-96.
Efrat, K , Gilboa, S. & Yonatany, M. 2017, When markeUng and innovation interact: The case of bom-global firms, International Business Review, 26, 380-390.
Enke, D, & Thawomwong, S. 2005, The use of data mining and neural networks for forecasting stock market returns, Expert Systems with Applications, 29, 927-940.
Fan, S., Lau, R Y. K. & Zhao, J. L. 2015, Demystifying Big Data Analytics for Business Intelligence Through the Lens of Marketing Mix, Big Data Research. 2, 28-32.
Fleisher, C. S, 2008, Using open source data m developmg compelUive and marketing intelligence, European Journal of Marketing 42, 852-866.
France, S. L & Ghose, S. 2018, Marketing analytics: Methods, practice, implementation, and links to other fields.
Expert Systems with Applications. 119, 456-475
Gaham, M. & Bouzouia, B. 2009. Intelligent product-driven manufacturing control: A mixed geneUc algorithms and machine learning approach to product intelbgence synthesis. Information, Communication and Automation Technologies. 2009. ICAT2009. XX!I International Symposium on, 2009. IEEE, 1-8.
Gutt, D., Neumann, J., Zimmermann, S , Kiindisch, D. & Chen, J 2019, Design of review sysfems-Astrategic instmment lo shape online reviewing behavior and economic outcomes. The Journal of Strategic Infonnation Systems.
Hosseini, S. M. S„ Malcki, A. & Gholamian, M. R. 2010, Cluster analysis usmg data mining approach to develop CRM methodology to assess the customer loyalty. Expert Systems with Applications, 37, 5259-5264
Huster, M. 2005, Markebng intelligence, a first mover advantage. Competitive Intelligence Magazine, 8, 13-17.
Janssen, M., van der Voort, H. & Wahyudi, A. 2017, Factors influencing big data decision-making quality. Journal of Business Research, 70, 338-345.
Kohli, A. K. & Jaworski, B. J. J. T J o. M. 1990, Market orientation: the constmcl, research propositions, and managerial implications, 1-18
Sd275thdng 5/2020 65 kinllUU'llilllriOII
Lau, R. Y., Liao, S. S., Wong, K.-F. & Chiu, D. K. 2012, Web 2.0 envuonmental scanning ana ^uap-
support for business mergers and acquisitions. .MIS Quarterly, 1239-1268. ^ ented Lau, R. Y. K., Li. C. & Liao, S. S. Y 2014, Social analytics: Learning fiizzy product ontologies tor aspec -on
sentiment analysis, Decision Support S\ stems. 65, 80-94.
Lau. R. Y K., Zhao, J. L , Chen, G. & Guo, X. 2016, Big data commerce, Information & Management. 53, 9 - • Li, Y.-M. & Ll. T.-Y. 2013. Deriving market intelligence from microblogs, Decision Support Systems. 55, 206- Liang, T.-R & Liu, Y.-H. 2018, Research Landscape of Business Intelligence and Big Data analytics: A bibliometrics
study, E.xpert Systems with Applications.
Liao, S.-H,, Chu, R-H. & Hsiao, R-Y. 2012, Data mining techniques and applications - A decade review from 2000 to 2011, Expert Systems with Applications. 39, 11303-11311.
Lies, J. 2019, Marketing Intelligence and Big Data: Digital MarkeUng Techniques on their Way to Becommg Social Engineering Techniques in Marketing, International Journal ofInteraclive Multimedia & Artificial Intelligence, 5.
Moges, H.-T., Dejaeger. K., Lemahieu, W. & Baesens, B. 2013, A multidimensional analysis of data qualify for credu risk management: New insights and challenges, Informalion Management. 50, 43-58.
Navano-Garcia, A , Pens-Orilz, M. & Banera-Ban-era, R. 2016, Market intelligence effect on perceived psychic distance, strategic behaviours and export perfonnanee in industnal SMEs, Journal of Business Industrial Marketing, 31, 365-380 Ngai, E, W. T, Hu, Y, Wong. Y. H., Chen, Y. & Sun, X. 2011, The application of data mining techniques in financial fraud
detection: A classification framework and an academic review of literature, Decision Support Systems, 50, 559-569.
Ngai, E. W T., Xiu, L. & Chau, D. C. K. 2009, Application of data mining techniques in customer relationship management; A literature review and classification. Expert Systems with Applications, 36, 2592-2602.
Pan, G., Qi, G., Zhang, W , Li, S., Wu, Z. & Yang, L. T. 2013, Trace analysis and mining for smart cities: issues, methods, and applications, IEEE Communications Magazine. 51, 120-126.
Park, D. H., Kim, H K , Choi, I. Y. & Kim, J. K 2012, A hteramre review and classification of recommender systems research. Expert Systems with Applications. 39, 10059-10072.
Payne, A & Frow, P 2005, A strategic framework for customer relationship management, Journal of Marketing, 69, 167-176.
Rijsdijk, S. A., Hultink, E J & Diamantopoulos, A. 2007, Product intelbgence' its concepmalization, measurement and impact on consumer satisfaction. Journal of the Academy of Marketing Science. 35, 340-356.
Rygielski, C , Wang, J.-C. & Yen, D. C. 2002, Data mining techniques for customer relationship management.
Technology in Society, 24,483-502.
Scellato, S , Noulas, A & Mascolo, C. 2011 Exploiting place feamres in link prediction on locaUon-based social networks. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discoveiy and data mining, 20\]. ACM, 1046-1054.
Seng, J.-L. & Chen, T. C. 2010, An analytic approach to select data mining for business decision, E.xpert Svstems with Applications. 37, 8042-8057.
Shaw, M. J., Subramamam, C , Tan, G. W. & Welge, M. E. 2001, Knowledge managemem and data mining for markeixng,. Decision Support Systems. 31, 127-137
Sivarajah, U., Kamal, M M., Irani, Z. & Weerakkody, V. 2017, Cntical analysis of BigData challenges and analyUcal methods. Journal of Business Research. 70, 263-286.
Sorjonen, H. & Uusitalo, L. 2003. Market onentanon and the programmmg of performing arts organisahons AIMAC 7lh Jiilei-tialional Conference on Ails and CiiUuml Management Milan 2003
Sukumaran, S. & Sureka, A 2006, Integrating stmchtred and unstmcnrred'data usmg text tagging and annotauon Business Inlelligence Journal. 11, 8. ''^ ^ ° annotauon.
Trim, P R & Lee, Y-I. 2008, A strategic marketing intelligence and multForganisafmnil . i- .^
EumpeanJoumalofl^a,-ketms.A2.T,\.14S. « organisational resilience framework, Verhoef, P. C , Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J Q., Fabian, N & H 1 M
n-ansfomiation: A multidisciplinary reflecnon and research agenda JournalofB • ^'^p ^'"' ~^^^' ^^gita!
Webster. J. & Watson, R. T. 2002. Analyzing the past to prepare for the funire W r a i n " , ''"''' Ouarlerl.v, xin-xxiii. * " " " S " hterahire review, MIS Woo, J. Y., Bae, S. M. & Park, S C 2005, Visualization method for customer tataciin
Svstems milt Applications, 28, 763-772. ~ '^ "'''"= "Customer map, Rxpen Wright, S., Pickton, D W & Callow. .1, 2002,Competitive intelligence in UK linns a tv
<S P/o/inmg. 20, 349-360 " ^ ' ' ° ' ° 8 > ' ' " ' " ' f e n n g / n ( r f % « I « Xu. Z.. Frankwick. G L. & Ramirez, E. 2016, Effects of big data analytics and traditional ma k •
product success: A knowledge fusion perspective, Joumal of Business Research 69 V '^^'"^ analytics on new
So 275 Ihdng 5/2020