MOT so BANG Bill TAP HIEN HINH TROHG GIJlHG HAY HAI TAP M6N TIN HOC 11
I
V
iec dgy bdi tdp (BT) tin hpc Id mdt hinh thuc hogt ddng cOo tin hpc, dgc biet Id phdn BT lap trinh cOo Tin hpc 1 1 . Hinh thuc ndy t h i hl§n qua viee day BT li thuylt vd viec dgy BT thyc hdnh tren mdy. Khi gidng dgy BT, gido vien (GV) khdng cung nnde vdi cdch dgy BT mang tinh truyin fhdng Id ke bdng chia thdnh nhilu phdn, sou dd igl HS len vllt chuong trinh hodc trd ldi cdc cdu ldi trong sdch gido khoa (SGK), GV ddnh gid vd kit thuc. Viec Idm ndy gdn viec dgy BT vdi chuc ndng cung ed vd kilm tra nhilu hon. Bdi viit trinh bdy mdt so dgng BT md GV cd t h i tham khdo d l cd the thay dd'i, cdi hin trong qud trinh gidng dgy.1. Dd'i vdi dgng BT cung c d li thuyet Trong chuong trinh phd thdng, logi hinh BT ndy thudng xud't hidn dudi dgng nhirng cdu hdi d cudi bdi, cudi chuong nhu: - Tgi soo ngudi to phdi xdy dyng cdc ngdn ngu ldp trinh bdc cao (Bdi 1 - phdn cdu hdi vd BT 1, 2 Tin hgc 11);
- Hdy cho biet sy gidng nhau vd khde nhau cuo 2 dgng cdu lenh if-then (Bdi 1 - phdn cdu hdi vd BT 9, 10 Tin hgc 11);- Cdc phdn tu cua mdng cd f h l Id nhirng kilu du lidu gi. (Bdi 1 phdn edu h d i v d B T l l , 12, 13 Tin hgc 11).
Vdi nhung logi cdu hdi BT ndy, GV thudng ddt ro trong phdn kilm tro bdi eu hodc phdn cung CO. HS cd t h i frd ldi dOng ede edu hdi ndy bdng cdch hpc thudc Idng hodc nhin vdo sdch d l trd ldi. Chung tdi gpi y thay dd'i hinh thuc cdc edu hdi nhdm tgo hung thO, ddng thdi cd t h i td chuc HS hgc tdp, thdo Tudn theo nhdm nhd,...
Vi du i: Cd the dua ra 1 trong 2 cdu sou:
Chuong trinh dupe v l l t bdng ngdn ngu bdc eao khdng cd dgc diem ndo trong cdc dgc diem sou ddy: a) Ngdn ggn, de hieu, de hieu chinh;
b) Khdng phy thudc vdo logi mdy tinh; c) Mdy tinh ed t n l hieu vd thyc hien trye tiep chuang frinh ndy; d) Td chuc du lieu do dgng thudn tien viec md fd thudt todn; e) Gdn gui vdi ngdn ngO tu nhien thudn tien cho ddng ddo ngudi lap tnnh.
Vidu 2. Bgn Nam thdc mde rdng: «Trong edu
O Le VIET CHUNG*
lenh re nhdnh, cdu lenh 1 vd cdu lenh 2 sou tu khdo then vd else ed t h i Id mdt edu lenh re nhdnh dupe khdng? Neu vdy thi trinh bdy cdu lenh nhu the ndo cho d i hieu, de dpc vd de kiem tro". Cdc em hdy gidi thich gium ban Nam.
2. BT lien quan den kT ndng lap frinh 1) BTvidf chuang trinh:Day\a dgng BT thdng thudng dien hinh vd chilm phdn Idn ndi dung BT trong SGK vd thdi gian tren Idp. HS phd thdng hien nay rdt nggi nhi/ng BT ndy. Thyc chdt vdn de Id do GV khdng gidi thich y nghTo cOa bdi todn cOng nhu md'i lien he input vd output ciia bdi todn d l HS thdy rdng cdc em ed dO khd ndng hiiu vd gidi quyet nd. Hon nua logi BT ndy khi gidi fren bdng thi thudng it cd dieu kidn d l kilm chung cOng nhu Id ddnh gid tinh dung eua ehuong trinh. Vdi logi BT ndy GV thudng cho HS gidi tren gid'y hodc trinh bdy tren bdng den, do dd edn nhdn thuc rdng viee kiem chung tren mdy Id hinh thuc thao tdc, KTndng don gidn, viee gidi BT tren gidy, tren bdng mdi thyc sy ed tdc dyng quan trgng trong viee ren luyen ede thao tdc tu duy.
Trong hinh thuc ndy GV ludn hudng ddn HS cdch xde ldp ddu vdo, ddu ra, hudng xu li (input, output vd processing), Kep theo Id djnh hinh xde djnh kilu du lieu vdo ra vd sy rdng budc giira cdc dir kien de tim ro thudt todn.
Vi du 1: Hdy viet ehuong trinh nhdp so o (a > 0) rdi tinh vd dua ra dien tieh phdn dugc ggeh cheo frong hinh sou (kit qud Idm trdn den 4 chir sd thdp phdn) (Bdi 9 - Tin hgc 11).
Hudng don eua GV:
Input: a: Real;
Output: S (phdn ggeh cheo): Real;
N l u Idm phep quay 180° qua hxic dd'i xung to cd the thdy:
Dien tich phdn ggeh cheo bdng 1 / 2 diSn tieh hinh frdn tdm O(0,-0), bdn
* TrMig (ai hpc s« pha* - BH Sa Naii{
Tap ehi Glao due so 3 0 0 (ki a - la/aoiai
kie kinh R = a. Luu y: Sd p
Id mdt hdng frong pascal vddupe ki hiduld Pi ed gid frj 3,141592.
Wc/v2:Nhdph/bdn phim tudi eOa cho vd con (hien tgi Kidi cho Idn hon hoi Idn tudi eon vd tudi
cha hon tud'i eon it nhd't Id 25). Duo ro mdn hinh cdu trd ldi cho cdu hdi «Bao nhieu ndm nira thi Kjd'i cho gdp ddi Kidi eon?"
Hudng dan: Input: tud'i cho, fudi eon <
du lieu nguyen>
Output: Cdu trd ldi «Bao nhieu ndm nua thi Kidi cha gdp ddi Kidi eon"
Md'i lien he giua tudi cha vd Kjoi eon hien nay Id gi?
Tudi cha Idn hon hai Idn tud'i eon: tuoi cho >
2*tuoi con
Tud'i cho hon tudi eon it nhd't Id 25: tuoi cho >
= KJOI eon +25
Do dd, khi nhdp du lieu cho fudi cho vd Kidi eon, cdn phdi thda mdn d i l u kifn tren. Dd Id mdu chd't cOa bdi todn.
Chu y: 1) Trong dgng BT ndy cdn hudng ddn cho HS edeh trinh bdy mdt chuong trinh tren gid'y, fren bdng eOng nhu trdn mdy dd Id cdch frinh bdy cd cdu true cdc ISnh trong khdi thyt vdo, cOng khdi ngang nhau, chuong trinh chinh (begin vd end phdi chu hoa), cdc thu Kic, hdm phdi fdch blit cd ki hieu phdn edeh rd rdng d l chuong frinh nd'l bdt dupe tinh cd'u true, rd rdng giOp ngudi ldp frinh cung nhu ngudi hudng ddn de dpc, dd tim vd phdt hi§n loi; 2) Dieu chinh ede cdch trinh bdy dir lieu ra mdn hinh d l khi ehgy tren mdy cd dt/gc kit qud rd rdng, hgp li nhu: + Trinh bdy thO h^c nhdp du lieu bdng cdp: write ('thdng bdo:');
reodln (biln); + Trinh bdy thO hjc xud't dir lieu theo khudn dgng writein ( x:m:n);
2) Dgng BT dgc chuong trinh. Day Id logi BT dgc chuong trinh frong hinh thuc dgy gidi BT fin hpc, giup HS ren luy§n ndng lye fhav ddi nhanh chdng vd a l ddng hudng suy nghT, ijgng tu duy ihugn chuyin qua K/ duy nghjeh (ddy cung Id mdt dgng nhu tinh ddo ngupc eua qud frinh K/ duy khi suy ludn todn hgc). Ren luyen dupe ndng lye quan sdt, phdn tich Km cho sal, thSm vdo, bdt ra, phdt hien d i l u chinh, v.v... Vi dy: Dgc vd viet tir Iclf qud sang ehuong frinh vd ngupc Igi:
V i l f chuong trinh in ra bdng sou:
1 2 3 4 5 6 7 8 9 1 0
11 12 131415161718 1920
Tap ehi Glao due s6 3 0 0 (ki a • la/aoia)
91 92 93 94 95 96 97 98 99 100
Gid su sou khi GV hudng ddn vd HS dd cd ldi gidi nhu sou:
Fori;=0to9do Begin
For j:=l to 10dowrite(10'i-i-j:4);
Writein;
End;
Budc^ 1: Gid su GV tim each thay dd'i biln j frong bilu thuc V^rite( 10* j+i :4) thu xem HS dodn dugc se in ra bdng gi? Bdng mdt edeh ndo dd Thdy gido hudng dan dupe HS nhdn ro bdng kit qud Id:
10 20 30 40 50 60 70 80 90 100 11 21 31 41 51 61 71 81 91 101 19 29 39 49 59 69 79 89 99 109
Budc 2: GV mdt Idn nira Kr cho HS viet Igi ehuong trinh cho bdng dupe thay ddi theo chilu dpc nhu sou:
1 11 21 91 2 12 22 92 313 414 515 616 717 818 919
10 20 30 40 50 60 70 80 90 100
Khi HS gidi dupe bdi todn ndy thi thdt sy HS dd ndm rdt kT v l cdu lenh for vd kT ndng ldp frinh
3) Dgng BT dgc ehuong trinh vd phdt hien ra ki't qud sau khi thuc hien. Ddy Id dgng BT khd, thdng thudng ehi ed HS khd, gidi mdi ed f h l thyc hien dugc vi nd yeu edu phdi ndm rd vd hiiu kT bdn chd't cdc hdm, cdc lenh cung nhu hiiu rd thudt todn cua bdi todn, do dd khi gidi cdc BT ndy GV cdn phdi dn tdp ede edu lenh, ede hdm, ede phep todn ed lien quan d i n frong BT.
Chuang trinh sou in ra kit qud gi fren mdn hinh khi to nhdp xdu ht='Ton ngo khong' ?
Program vidu;
Varht,t;string[30]; i,n: byte;
Begin
Write('nhap ho ten:');readln(ht);
n:=length(ht); i:=n;
whilehl(i]<>' 'doi:=i-l;
t:=copy(ht,l+l,n-i);
wrile(t);
End.
4) Dgng BTtim ldi trong chuong trinh. Dgng BT ndy cd t n l cho HS Idm theo nhdm rdm ri (nhdm ldm thdi) hogt ddng Kr 5-7 phut. Dgng ndy giOp ren luyen HS khd ndng quan sdt ehuong trinh, phdn tich ehuong frinh, do dd khi dgy GV edn ehu y d i n 2 ldi thudng xdy ro Id: loi cO phdp vd ldi thudt todn. Thdng thudng, loi cu phdp HS d l phdt hien edn loi thudt todn GV hudng ddn HS each ehgy chdm vd each trinh bdy kit qud de phdt hien loi.
Vi dy 1: HS A viet dogn chuong trinh sou de kiem tro mdt mdng so nguyen dupe nhdp cd phdi Id mdng tdng hay khdng? (Mdng A dugc ggi Id mdng tdng neu to ed a [i]<=a[i-i-l] (1=1, n-1) ).
Em hdy phdt hien ldi vd dieu chinh giOp bgn.
l:=l;
while (i<=N) and (A[i-l]<=A[l]) do l:=i+l;
if l>=N then writeini'Mong vua nhap la mang tang.')
else writein ('Mang vua nhap khong phai la mang tang.');
5) Dgng BTdiin khuyi't trong chuang trinh.
Dgng BT ndy GV cho trude mdt chuang trinh (dogn chuong trinh) hodn chinh vd d l khuyet nhung cdu lenh edn thilt. HS dpc, phdt hien vd dien vdo dd cdu lenh thich hpp. Dgng BT ndy thudng dugc HS thich thu vd soy me thyc nien trong gid BT. GV cd t h i cho cdc phuong dn a,b,c vd d de HS lya chpn thay vdo d trdng hodc cho HS ty tim ra ddp dn drr dien vdo, tOy theo trinh dp HS cuo Idp dgy.
Vi dy 1: Dien vdo d trdng ede lenh, phep todn,... thich hgp cOo ehuong trinh, in ra td'ng ede chu sd cuo mdt so gdm 3 chir sd dugc nhdp vdo to bdn phim.
Write (' nhap vao so n co 3 chu so;'); readin (n);
t : = n a i 0 0 ; c=(nD10)D10;
d:=nD 10;
Writein (' tong cac chu so la:', t+c+d);
Hodc GV cd t h i cho trude mdt so lenh, hdm, phep todn d l HS lya chpn n h u : ' / ' , '*', div, mod Vi dy 2: Chuong trinh sou cho phep nhdp lien Kip cdc so nguyen vd chi dung khi nhdp so nguyen dm, sou dd duo ro kit aud tdng cdc sd chon, td'ng ede so le vd ede sd dupe nhdp. Bgn hdy diln vdo cdc d frdng trong ddu ngodc ede edu ISnh, cdc hdm, b i l n , phep todn thich hpp d l cd mdt chuong trinh dung ddn.
Program vidu;
Var n,dem,tc,ll: integer;
BEGIN
Dem:={);lc:=();H:={);
writeCnhap n:');readln(n);
while n{} 0 do begin dem:=dem+1;
if ( ) then tc:=tc+n else ():=ti+n;
write ('nhap n:');readln(n);
end;
writein ('tong cac so chan la:',tc);
writein ('tong cac so le la:',tl);
writein ('So coc so duoc nhap la:', dem );
END.
Vdn cdn rdt nhilu dgng khdc nhau nlu GV chju khd tim tdi, thay dd'i cdc dgng BT. Thyc te sou nhieu ndm Idm viee vdi GV phd thdng cung nhu hudng ddn kiln tdp, thyc tdp cho thdy, nhOng GV ndo ddi mdi cdc hinh thuc BT se tgo dupe hung thu hpc tap cung nhu phdt huy dupe tinh tieh eye vd ndng lye sdng tgo cho HS nhilu hon vd d i l u ndy se Idm cho HS ham hgc vd yeu thich mdn hoe hon. •
Tai li$u tham kliao
H6 ST Dam (chu bien). Tin hoc U . NXB Gido dvc H.2007.
SUIVIMARY
In computing the current program, the teaching of difficult assignments, such as for some more exercise too little, lack of content diversity exercises, teachers did not improve the new method... article presents several types of exercises that teachers can refer to the progress in the teaching process.
Cong tac quan li hd sff...
(Tiip theo trang 52)
3. Trdn Thj Thu Phucmg. Nghibp vii hdnh chinh - viin ph6ng. NXB Tgng hop TP. Hd Chi Minh, 2008.
4. Vuong Dinh QuySn. Li lu$n \i phinmg phip cAng tac van thir. NXB Chinh tri qudc gia, H. 2007.
3. van ban chi dao, huong dSn cOng tic vSn ph6ng e&p iy dia phinmg. NXB Chinh tn quSc gia, H. 2000.
6. VO Thanh Vj. Quan li hanh chinh vin phdng. NXB Thd'ng ki. H. 2002.
SUMIt/IARV
Doccument management is very important to es- tablish devekipmenf policies in the institude. There- fore, we search the realistic of document manage- ment process of Organization and Students manage- ment offices in Ngo Gia Tu College of Education wNle also present analysis on reasons of its. Hence, we sug- gest some measures enhancing effectiveness on docu- ment management. The information wcxMsenre as a useful reference to people wtio interested in this area.