www.bam.de
HARD X-RAY SPECTROSCOPY AND IMAGING AT THE BAMLINE AND SPOT BEAMLINES
@BESSY II (BERLIN, GERMANY) Dr. Ana Guilherme Buzanich
Structural Analysis division / Dept. Analytical Chemistry
01.02.2019
Division Structural Analysis – Department of Analytical Chemistry
2 Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines
30.01.2019
Fields of expertise
• Quantitative analysis of X-ray powder diffraction
• Investigation of materials at different length scales
• Identification and refinement of crystalline structures
• Liquid and solid state NMR
• Synchrotron-based spectroscopies (XRF, XAS) & diffraction (XRD, SAXS, WAXS)
• Combination of several analytical methods: In Situ
• Surface and pore analysis of porous solids and nanomaterials
• Characterization of polymers (size, weight, chemical heterogeneity)
BAM BESSY-II close connection
30.01.2019 Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines 3
400 meters
© Google Maps
Outline
Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines 4 30.01.2019
Cu
100 µm Cu
Co
175 µm
Applications
&
Collaboration Partners Analytical
Methods
Future
Perspectives
5
Applications
&
Collaboration Partners
BAMline
& µSpot
Analytical
Methods Future
Perspectives
Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines 30.01.2019
6
Analytical methods – BAMline
Analytical Methods Information DCM
7-30 keV (10
9ph/s)
XAS - XANES
- EXAFS
Chemical speciation:
-Oxidation state - Local coordination
geometry
DMM 4-50 keV (10
11ph/s)
-(µ-)EDXRF XRF
- WDXRF Elemental composition
0.00E+00 2.00E+08 4.00E+08 6.00E+08 8.00E+08 1.00E+09 1.20E+09 1.40E+09 1.60E+09 1.80E+09
0 10 20 30 40 50
Si (111) including 0.8 mm Be filter
Energy (keV) Photon Fl ux densi ty ( ph /s
-1/m m
2)
Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines 30.01.2019
DCM Si (111) DMM
W/Si 300 layer
7
Analytical methods – µSpot beamline
Analytical Methods Information
DCM 5-20 keV (10
11p/s)
XAS Chemical speciation - Oxidation state
XRD Crystal structure SAXS/WAXS Size, shape,
polydispersity DMM
5-20 keV (10
13p/s)
XRF Elemental composition Raman
spectroscopy Molecular structure
Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines 30.01.2019
0 2E+10 4E+10 6E+10 8E+10 1E+11 1.2E+11
0 10 20 30 40
Si (111)
Energy (keV) Photon Fl ux densi ty ( ph /s
-1/m m
2)
DCM
Si (111) / Si (311) ML (Mo/BC)
Toroidal
focusing mirror
Max. Spotsize:
300 µm x 2 mm
XAS modus operandi – standard
8
I 0 I(x)
Sample Slits
Monochromator Absorption /
Transmission
Fluorescence
I(x) = I 0 e -µ(E)x
µ(E) I F /I 0
I
FI 0
Sample
30.01.2019 Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines WLS
B = 7 T 1.7 GeV
XAS modus operandi – micro-XAS
9
I
FCRL Sample
μ(E)
∝ I
F/I
0WLS B = 7 T 1.7 GeV
G. Buzanich et al. J. Anal. At. Spectrom. (2012) 27, 1803.
30.01.2019 Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines
Compound refractive lens (CRL)
narrow bandwidth (~100 eV)
workable focal lengths (350 mm)
focusing regions from 100 nm
Simple
Scanningless
Time & spatial resolution
no scattering contribution
Time-resolution 1 s
Spatial-resolution: 20 µm
Beam size up to 20 x 8 mm
2XAS modus operandi – dispersive XAS (S 2 XAFS)
10
DMM
in total Reflection
Sample
Filter 2
Band-pass
Convexly bent Si (111)
WLS B = 7 T
A. Guilherme Buzanich, M. Radtke, U. Reinholz, H. Riesemeier, F. Emmerling.
J. Synchrotron Rad. (2016), 23, 769-776.
1.7 GeV
30.01.2019 Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines
XAS modus operandi – dispersive XAS (S 2 XAFS)
11 30.01.2019 Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines
V Cr Mn Fe Co Ni Cu Zn K-lines
L
3-lines
Ce Pr Nd Pm Sm Eu Gd Tb
Ba La
XAS modus operandi – total reflection XAS (TXRF-XAS)
12
2-fold increased intensity
Trace element speciation in ng to pg range I
FSample μ(E) ∝ I
F/I
0Reflector
WLS B = 7 T
Monochromator
1.7 GeV
XRF Detector
U. E. A. Fittschen, A. Guilherme et al. J. Synchrotron Rad. (2016), 23, 820-824.
30.01.2019 Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines
SDDetector
Amount of Ni
(pg) LOD
Sy-TXRF (pg) LOD conventional
-TXRF (pg)
10 0.06 < DL
100 0.07 8
NIST water 1640
13
Applications
&
Collaboration Partners
BAMline
& µSpot
Analytical
Methods Future
Perspectives
Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines 30.01.2019
micro-XAS – Morbus Wilson´s Disease:
Cu speciation in liver
14 200 µm
Cu K-edge XANES on two areas
30.01.2019 Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines
Cu distribution on a liver specimen
O. Hachmöller, A. Guilherme Buzanich, et al. Metallomics (2016) 8, 648.
Institute for Inorganic and Analytical Chemistry
Partners
8980 9000 9020
0.0 0.4 0.8
Normalized µ(E) a.u.
Energy (eV)
8980 8990 9000 9010
0.0 0.1 0.2
Normalized µ(E) a.u.
Energy (eV)
8990 Cu-I
8994 Cu-II
1 µm spot size
Cellular resolution
micro-XAS – identification of corrosion phases in steel
15
Ferritic steel with 2% Cr content Fe2Cr (250h @ 650°C)
2 µm Gas
Metal 200 µm
0,07060 7080 7100 7120 7140 7160 7180 7200 72200,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8
A b s o rb iert e I n te n s it ä t
Energie [eV]
26 µm 104 µm 182 µm 260 µm 338 µm 416 µm 494 µm
Energy (keV)
Normal iz ed µ(E) (arb . Units)
Gas Metal
ex situ XANES @ Fe K-edge 2 µm spotsize
K. Nützmann, A. Guilherme Buzanich, et al. Materials and Corrosion (2019) accepted.
30.01.2019 Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines
micro-XAS: Understanding the corrosion of Fe2Cr alloys in situ
16
7080 7100 7120 7140 7160 7180 7200 7220 7240
0,0 0,2 0,4 0,6 0,8 1,0 1,2
Normalized µ(E) (arb. units)
Energy (eV)
Fe2Cr
Fe2Cr @650°C, 2 min. 0.5% SO
2Fe 3 O 4 is formed under extreme conditions – inverse spinel
Fe K-edge XANES
30.01.2019 Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines
Dispersive XAS (S 2 XAFS) – In Situ Crystallization of ZIF-8
17
XANES Zn K-edge 1 second time resolution
A. Kulow et al. J. Anal. At. Spectrom. (2019) 34, 239-246.
Ionic
Covalent
Sample holder for liquids
30.01.2019 Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines
TXRF-XANES – speciation of traces in ng range
18 IF
Sample μ(E) ∝ IF/I0
Reflector
WLS B = 7 T
Monochromator
1.7 GeV
XRF Detector
10450 10500 10550 10600 10650 10700
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
N o rma lize d µ (E) a .u .
Energy (eV)
Re-Unknown NaReO4 ReI3
Re L 3 -edge XANES on 4 ng!
2p 5d
2p continuum
Energy
2p 5d 6d 7d 8d Continuum
U. E. A. Fittschen, A. Guilherme, et al. J. Synchrotron Rad. (2016), 23, 820-824.
30.01.2019 Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines
Material Analysis and Functional Solid Matter
Partners 3+
7+
XAS + Scattering (SAXS) – in situ formation of Fe nanoparticles
19
CCD
Levitated doplet
Sy-Beam X-ray detector SAXS
XANES
30.01.2019 Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines
A. Kabelitz, et al. CrystEngComm. (2015) 17, 8463-8470
Understanding of Metal Oxide/Water Systemsat the Molecular Scale:
Structural Evolution, Interfaces, and Dissolution
Humboldt University Partners
Fe K-edge XANES
XRF – Co distribution in bone by implants
20
XRF Detector
Sample/
Cell
LLA Instruments GmbH & Co. KG
Ca Co
1000 5000 100 400
Counts (a.u.)
‘on-the-fly’ XRF scan: 350 x 290 µm 2
2 µm stepsie; 4 s per point Partners
UKE (Eppendorf)
30.01.2019 Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines
21
Applications
&
Collaboration Partners
BAMline
& µSpot
Analytical
Methods Future
Perspectives
Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines 30.01.2019
The future of our hard X-ray beamlines for material characterization
22
Automation
•Control of adjusment parameters
•Faster sample adjustment
•High-throughput experiments
Reproducibility
•Ensure equal measuring conditions
•Reliable data
Flexibility
•Different technical specifications
•Cover more fields of applications
Hard X-ray Spectroscopy and Imaging at the BAMline and µSpot beamlines 30.01.2019