• Tidak ada hasil yang ditemukan

Comparison of Feature Extraction Mel Frequency Cepstral Coefficients and Linear Predictive Coding in Automatic Speech Recognition for Indonesian

N/A
N/A
Protected

Academic year: 2017

Membagikan "Comparison of Feature Extraction Mel Frequency Cepstral Coefficients and Linear Predictive Coding in Automatic Speech Recognition for Indonesian"

Copied!
7
0
0

Teks penuh

Loading

Gambar

Figure 1. Research Method
Figure 2. Detail Process of Speech Recognition
Table 3. Testing Results 1 st Scenario with the MFCC Feature Extraction
Table 6. Test Results 2nd Scenario with LPC Feature Extraction

Referensi

Dokumen terkait

This study intends to evaluate to which extent Mel-Frequency Cepstral Coefficients (MFCC) features, besides Teager energy feature, derived from Indonesian speech signal

Pada sistem penelitian ini digunakan metode MFCC (mel frequency cepstrum coefficients) dimana MFCC ini mampu menangkap karakteristik pengenalan suara manusia atau dengan kata

Rizal Isnanto “Aplikasi pengenalan ucapan dengan ekstraksi Mel Frequency Cepstrum Coefficients (MFCC) melalui jaringan syaraf tiruan (JST) Learning Vektor. Quantization (LVQ)

Abstract— Since the parameterization in the perceptually relevant aspects of short-term speech spectra in ASR front-end is advantageous for speech recognition, such as Mel-LPC,

CONCLUSION This research aims to detect heart attack or myocardial infarction using DWT Discrete Wavelet Transform, MFCC Mel Frequency Cepstral Coefficients, and Entropy feature

72 4.3.2 CCA, MFCC and W-DFT In audio feature analysis, the cepstral coefficients of the maqamat speech signal are used as parameters to extract significant features of the maqamat

In order to minimize the obstacle and to ease the learning process we implement speech recognition techniques based on Mel Frequency Cepstral Coefficient MFCC features and Gaussian

KESIMPULAN Berdasarkan hasil penelitian yang telah dilakukan Penerapan Metode Mel Frequency Cepstral Coefficients Pada Sistem Pengenalan Suara Berbasis Desktop, maka diperoleh