• Tidak ada hasil yang ditemukan

CONCLUSIONS

Dalam dokumen NANOSCALE MATERIALS IN CHEMISTRY (Halaman 117-128)

MICROWAVE PREPARATION OF METAL FLUORIDES AND THEIR

4.8 CONCLUSIONS

growth is not inhibited). E. coli biofilm formation is inhibited until day 2 and reduced by75% compared to untreated control by day 3.

REFERENCES

1. Li Y, Peng Q, Wang X, Zhuang J. 2005. A general strategy for nanocrystal synthesis.

Nature 437:121 – 124.

2. Alivisatos AP, Dittmer JJ, Huynh WU. 2002. Hybrid nanorod-polymer solar cells. Science 295:2425 – 2427.

3. Cui Y, Duan X, Huang Y, Lieber CM, Wang J. 2001. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409:66 – 69.

4. Iijima S. 1991. Helical microtubules of graphitic carbon. Nature 354:56 – 58.

5. Alivisatos AP, Manna L, Scher EC. 2003. Shape control and applications of nanocrystals.

Philos Trans R Soc A 361:241 – 255.

6. Manoharan PT, Ramasamy S, Thangadurai P. 2004. Pb-207 MAS NMR and conductivity identified anomalous phase transition in nanostructured PbF2. Eur Phys J B 37:425 – 432.

7. Sakka S. 2005. Handbook of Sol-Gel Science and Technology. Boston: Kluwer.

8. Grob U, Kemnitz E, Rudiger S. 2007. Non-aqueous sol-gel synthesis of nano-structured metal fluorides. J Fluorine Chem 128:353 – 368.

9. Berry AD, Ling LJ, Purday AP. 1992. Sodium fluoride thin films by chemical vapor deposition. Thin Solid Films 209:9 – 16.

10. Fedorov PP, Kuznetsov SV, Osiko VV, Tkatchenko EA. 2006. Inorganic nanofluorides and nanocomposites based on them. Uspekhi Khim. 75:1193 – 1211.

11. Grob U, Kemnitz E, Krishna Murthy J, Rudiger S, Winfield JM. 2006. Sol-gel-fluorination synthesis of amorphous magnesium fluoride. J Solid State Chem 179:

739 – 746.

12. Becerra R, Bowers A, Denot E, Iba´n˜ez LC. 1960. Steroids. CXXXIX. New fluorination procedures. Part I. The addition of Br-F and I-F to cyclohexene and a variety of unsaturated steroids. J Am Chem Soc 82:4001 – 4007.

13. Kerebe I, Nojima M, Olah GA, Olah JA, Vankar YD, Welch JT. 1979. Synthetic methods and reactions. 63. Pyridinium poly(hydrogen fluoride) (30% pyridine – 70% hydrogen fluoride): A convenient reagent for organic fluorination reactions. J Org Chem 44:

3872 – 3881.

14. Chi DY, Katzenellenbogen JA, Kilbourn MR, Welch MJ. 1987. A rapid and efficient method for the fluoroalkylation of amines and amides. Development of a method suitable for incorporation of the short-lived positron emitting radionuclide fluorine-18. J Org Chem 52:658 – 664.

15. Alvernhe G, Haufe G, Lawrent A. 1987. Triethylamine tris-hydrofluoride [(C2H5)3 N.3HF]: a highly versatile source of fluoride-ion for the halofluorination of alkenes.

Synthesis 6:562 – 564.

16. Sekiya A, Shibakami M, Tamura M. 1995. Potassium fluoride-poly(hydrogen fluoride) salts as fluorinating agents for haofluorination of alkenes. Synthesis 5:515 – 517.

17. Li XY, Olah GA, Prakash GKS, Wang Q. 1993. Poly-4-vinylpyridinium poly(hydrogen fluoride): A solid hydrogen fluoride equivalent reagent. Synthesis 7:693 – 699.

18. Bucsi I, Marco AI, Olah GA, Prakash GKS, Rasul G, To¨ro¨k B. 2002. Stable dialkyl ether/ poly(hydrogen fluoride) complexes: dimethyl ether/poly(hydrogen fluoride), a new, con-venient, and effective fluorinating agent. J Am Chem Soc 124:7728 – 7736.

REFERENCES 101

19. Hagiwara R, Ito Y, Matsubara S, Matsumoto K, Oshima K, Yoshino H. 1993. Fluorination with ionic liquid EMIMF(HF)(2.3) as mild HF source. J Fluorine Chem 127:29 – 35.

20. Pozar DM. 1993. Microwave Engineering. Wokingham, UK: Addison-Wesley.

21. Diaz-Ortiz A, Hoz A, Moreno A. 2005. Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev. 34:164 – 178.

22. Gaillard P, Stuerga D. 1996. Microwave a thermal effects in chemistry: A myth’s autopsy.

Part I: Historical background and fundamentals of wave-matter interaction. J Microwave Power Electromag Ener 31:87 – 99.

23. Gaillard P, Stuerga D. 1996. Microwave athermal effects in Chemistry: A myth’s autopsy Part II: Orienting effects and thermodynamic consequences of electric field. J Micro P Electromag Ener 31:101 – 113.

24. Kidwai M. 2001. Dry media reactions. Pure Appl Chem. 73:147 – 151.

25. Strauss C, Trainor R. 1995. Developments in microwave-assisted organic chemistry. Aust J Chem 48:1665 – 1692.

26. Baudequin C, Baudoux J, Cahard D, Gaumont A, Levillain J, Plaquevent J. 2003. Ionic liquids and chirality: Opportunities and challenges. Tetrahedron: Asymmetry 14:

3081 – 3093.

27. Beckmann EJ, Blanchard LA, Brennecke JF, Hancu D. 1999. Green processing using ionic liquids and CO2. Nature 399:28 – 29.

28. Bon SAF, Carmichael AJ, Haddleton DM, Seddon KR. 2000. Copper(I) mediated living radical polymerisation in an ionic liquid. Chem Commun 14:1237 – 1238.

29. Borissenko N, El Abedin SZ, Endres F. 2004. Electrodeposition of nanoscale silicon in a room temperature ionic liquid. Electrochem Commun 6:510 – 514.

30. Broker GA, Farina LM, Holbrey JD, Reichert WM, Rogers RD, Swatloski RP, Visser AE.

2002. On the solubilization of water with ethanol in hydrophobic hexafluorophosphate ionic liquids. Green Chem 4:81 – 87.

31. Bukowski M, Endres F, Hempelmann H, Natter H. 2003. Electrodeposition of nano-crystalline metals and alloys from ionic liquids. Angew Chem Int Ed 42:3428 – 3430.

32. Chan TH, Law MC, Wong KY. 2004. Organometallic reactions in ionic liquids.

Alkylation of aldehydes with diethylzinc. Green Chem 6:241 – 244.

33. Deev A, Klamt A, Marsh K, Tran E, Wu A. 2002. Room temperature ionic liquids as replacements for conventional solvents: A review. Korean J Chem Eng 19:357 – 362.

34. Du JM, Gao HX, Han BX, Jiang T, Liu ZM, Wang Y, Zhang JL. 2004. Aqueous/ ionic liquid interfacial polymerization for preparing polyaniline nanoparticles. Polymer 45:3017 – 3019.

35. Dupont J, Fichtner PEP, Fonseca GS, Teixeira S, Umpierre AP. 2002. Transition-metal nanoparticles in imidazolium ionic liquids: Recycable catalysts for biphasic hydrogen-ation reactions. J Am Chem Soc 124:4228 – 4229.

36. Dupont J, Suarez P, Souza R. 2002. Ionic liquid (molten salt) phase organometallic cata-lysis. Chem Rev 102:3667 – 3691.

37. Hardacre C, Holbreg DJ, Katdare SP, Seddon KR. 2002. Alternating copolymerisation of styrene and carbon monoxide in ionic liquids. Green Chem 4:143 – 146.

38. Holbrey JD, Rogers RD, Spear SK, Swatloski RP. 2002. Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974 – 4975.

METAL FLUORIDES AND THEIR BIOLOGICAL APPLICATION 102

39. Keim W, Wasserscheid P. 2000. Ionic liquids: New “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772 – 3789.

40. Kon Y, Min E, Wu M, Zhao D. 2002. Ionic liquids: Applications in catalysis. Catal Today 74:157 – 189.

41. Maderia Lau R, Rantwijk F, Seddon KR, Sheldon RA, Sorgedrager MJ. 2002.

Biocatalysis in ionic liquids. Green Chem 4:147 – 151.

42. Welton T. 1999. Room-temperature ionic liquids. Solvents for synthesis and catalysis.

Chem Rev. 99:2071 – 2083.

43. Wilkes JS. 2004. Properties of ionic liquid solvents for catalysis. J Mol Catal A Chem 214:11 – 17.

44. Xu L, Chen W, Xiao J. 2000. Heck reaction in ionic liquids and the in situ identification of n-hetrocyclic carbene complexes of palladium. Organometallics 19:1123 – 1127.

45. Adam D. 2003. Microwave chemistry: Out of the kitchen. Nature 421:571 – 572.

46. Kim D, Lee JK, Lee S, Song CE. 2002. Microwave-assisted Kabachnik – Fields reaction in ionic liquid. Bull Korean Chem Soc 23:667 – 668.

47. Oliver Kappe C. 2004. Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250 – 6284.

48. Chum HL, Koch VR, Miller LL, Osteryoung RA. 1975. Electrochemical scrutiny of orga-nometallic iron complexes and hexamethylbenzene in a room-temperature molten-salt.

J Am Chem Soc 97:3264 – 3265.

49. Walden P. 1914. Molecular weights and electrical conductivity of several fused salts. Bull Acad Imper Sci (St. Petersburg) 405 – 422.

50. Sugden S, Wilkins H. 1929. CLVXIL the preacher and chemical constitution. Part VII:

Fused metals and salts. J Chem Soc 29:1291 – 1298.

51. Broker GA, Huddleston JG, Reichert WM, Roger RD, Visser AE, Willauer HD. 2001.

Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156 – 164.

52. Chan BKM, Chang NH, Grimmett RM. 1977. The synthesis and thermolysis of imida-zole. quaternary salts. Aust J Chem 30:2005 – 2013.

53. Dyson PJ, Grossel MC, Srinivasan N, Vine T, White AJP, Williams DJ, Welton T, Zigras TJ. 1997. Organometallic synthesis in ambient temperature chloroaluminate(III) ionic liquids. Ligand exchange reactions of ferrocene. J Chem Soc Dalton Trans 19:

3465 – 3469.

54. Hurley FH, Weir TPJ. 1951. Electrodeposition of metals from fused quaternary ammonium salts. J Electrochem Soc 98:203 – 206.

55. Hussey CL, Levisky JA, Wilkes JS, Wilson RA. 1982. Dialkylimidazolium chloro-aluminate melts: A new class of room-temperature ionic liquids for electrochemistry, spec-troscopy and synthesis. Inorg Chem 21:1263 – 1264.

56. Wilkes JS, Zaworotko MJJ. 1992. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 13:965 – 967.

57. Handy ST. 2005. Room temperature ionic liquids: Different classes and physical proper-ties. Current Org Chem 9:959 – 988.

58. Freemantle M. 1998. Designer solvents: Ionic liquids may boost clean technology devel-opment. Chem Eng News 76:32 – 37.

REFERENCES 103

59. Hagiwara R, Ito Y. 2000. Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. Fluorine Chem 105:221 – 227.

60. Magna L, Olivier-Bourbigou H. 2002. Ionic liquids: Perspectives for organic and catalytic reactions. J Mol Catal A Chem 182:419 – 437.

61. Chauhan S, Chauhan SMS, Jain N, Kumar A. 2005. Chemical and biochemical transform-ations in ionic liquids. Tetrahedron 61:1015 – 1060.

62. Bartsch RA, Dzyuba S. 2001. New room-temperature ionic liquids with C-2-symmetrical imidazolium cations. Chem Commun 16:1466 – 1467.

63. Compton S, Ensor D, Ray L, Swartling D. 2000. Preliminary investigation into modification of ionic liquids to improve extraction prarameters. Bull Biochem Biotechnol 13:1.

64. Holbrey JD, Seddon KR, Wareing R. 2001. A simple colorimetric method for the quality control of 1-alkyl-3-methylimidazolium ionic liquid precursors. Green Chem 3:33 – 36.

65. Seddon KR, Stark A, Torres M. 2000. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275 – 2287.

66. Dam J, Hakvoort G, Jansen J, Reedijk J. 1975. Thermochemistry of nickel(II) imidazole complexes. J Inorg Nucl Chem 37:713 – 718.

67. De Long HC, Fox DM, Gilman JW, Trulove PC. 2005. TGA decomposition kinetics of 1-butyl-2,3-dimethylimidazolium tetrafluoroborate and the thermal effects of contami-nants. J Chem Thermodynamics 37:900 – 905.

68. Grant DM, Kuhlmann K. 1964. Spin-spin coupling in the tetrafluoroborate ion. J Phys Chem 68:3208 – 3213.

69. Brukental I, Felner I, Gedanken A, Gottlieb HE, Jacob DS, Lavi R, Makhluf S, Nowik I, Persky R, Solovyov LA. 2005. Sonochemical synthesis and characterization of Ni(C4H6N2)6(PF6)2, Fe(C4H6N2)6(BF4)2, and Ni(C4H6N2)6(BF4)2 in 1-butyl-3-methyl-imidazole with hexafluorophosphate and tetrafluoroborate. Eur J Inorg Chem 13:2669 – 2677.

70. Antonietti M, Kuang D, Smarsly B, Zhou Y. 2004. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43:4988 – 4992.

71. Demberelnyamba D, Kim KS, Lee H. 2004. Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids. Langmuir 20:556 – 560.

72. Holbrey JD, Seddon KR. 1999. The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans 13:2133 – 2139.

73. Antonietti M, Zhou Y. 2003. A series of highly ordered, super-microporous, lamellar silicas prepared by nanocasting with Ionic liquids. Chem Mater 16:544 – 550.

74. Dietz DL, Firestone MA, Miller DJ, Seifert S, Trasobares S, Zaluzec NJ. 2005. Ionogel-templated synthesis and organization of anisotropic gold nanoparticles. Small 7:754 – 760.

75. Bachtold A, Birk H, Fokkink LGJ, Henny M, Huber R, Kruger M, Schmid C, Schonenberger C, Staufer U, van der Zande BMI. 1997. Template synthesis of nanowires in porous polycarbonate membranes: Electrochemistry and morphology. J Phys Chem B 101:5497 – 5499.

76. Bohmer MR, Fokkink LGJ, Schonenberger C, van der Zande BMI. 2000. Colloidal dispersions of gold rods: Synthesis and optical properties. Langmuir 16:451 – 458.

METAL FLUORIDES AND THEIR BIOLOGICAL APPLICATION 104

77. Crowley TA, Erts D, Holmes JD, Lyons DM, Morris MA, Olin H, Ziegler KJ. 2003.

Synthesis of metal and metal oxide nanowire and nanotube arrays within a mesoporous silica template. Chem Mater 15:3518 – 3522.

78. Jirage K, Kang M, Martin CR, Nishizawa M. 2001. Investigations of the transport properties of gold nanotubule membranes. J Phys Chem B 105:1925 – 1934.

79. Martin CR. 1996. Membrane-based synthesis of nanomaterials. Chem Mater 8:

1739 – 1746.

80. Alfredsson V, Andersson M, Kjellin P, Palmqvist AEC. 2002. Macroscopic alignment of silver nanoparticles in reverse hexagonal liquid crystalline templates. Nano Lett 2:1403 – 1407.

81. Bender CM, Gao JX, Murphy CJ. 2003. Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19:9065 – 9070.

82. Derre A, Faure C, Neri W. 2003. Spontaneous formation of silver nanoparticles in multi-lamellar vesicles. J Phys Chem B 107:4738 – 4746.

83. Esumi K, Ghosh SK, Kundu S, Mandal M, Pal T. 2002. UV photoactivation for size and shape controlled synthesis and coalescence of gold nanoparticles in micelles. Langmuir 18:7792 – 7797.

84. Firestone MA, Seifert S, Tiede DM. 2000. Magnetic field-induced ordering of a polymer-grafted biomembrane-mimetic hydrogel. J Phys Chem B 104:2433 – 2438.

85. Huang LM, Mitra AP, Wang HT, Wang ZB, Yan YH, Zhao D. 2002. Cuprite nanowires by electrodeposition from lyotropic reverse hexagonal liquid crystalline phase. Chem Mater 14:876 – 880.

86. Hu X, Qi R, Wang W, Zhu Y. 2004. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew Chem Int Ed 43:1410 – 1414.

87. Costerton JW, Hall-Stoodley L, Stoodley P. 2004. Bacterial biofilms: From the natural environment to infectious diseases. Nature Rev Microbiol 2:95 – 108.

88. Kaplan HB, Kolter R, O’Toole G. 2000. Biofilm formation as microbial development.

Annu Rev Microbiol 54:49 – 79.

89. Davies D. 2003. Understanding biofilm resistance to antibacterial agents. Nature Rev Drug Discov 2:114 – 122.

90. Costerton JW, Fux CA, Stewart PS, Stoodley P. 2005. Survival strategies of infectious biofilms. Trends Microbiol 13:34 – 40.

91. Costerton JW, Greenberg EP, Stewart PS. 1999. Bacterial biofilms: A common cause of persistent infections. Science 284:1318 – 1322.

92. Costerton JW, Fux CA, Hall-Stoodley L, Stoodley P. 2003. Bacterial biofilms: A diagnostic and therapeutic challenge. Expert Rev Anti Infect Ther 1:667 – 683.

93. Parsek MR, Singh PK. 2003. Bacterial biofilms: An emerging link to disease pathogen-esis. Annu Rev Microbiol 57:677 – 701.

94. Arciola CR, Costerton JW, Montanaro L. 2005. Biofilm in implant infections: Its production and regulation. Int J Artif Organs 28:1062 – 1068.

95. Costerton JW, Donlan RM. 2002. Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167 – 193.

96. Darouiche RO, Engl N. 2004. Treatment of infections associated with surgical implants.

J Med 350:1422 – 1429.

REFERENCES 105

97. Bagge-Ravn D, Gadegaard N, Gram L, Kingshott P, Wei J. 2003. Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 19:6912 – 6921.

98. Busscher HJ, Kaper HJ, Norde W. 2003. Characterization of poly(ethylene oxide) brushes on glass surfaces and adhesion of Staphylococcus epidermidis. J Biomater Sci Polym Ed 14:313 – 324.

99. Hetrick EM, Schoenfisch MH. 2006. Reducing implant-related infections: Active release strategies. Chem Soc Rev 35:780 – 789.

100. Ballesteros A, Gill I. 1998. Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers: An efficient and generic approach. J Am Chem Soc 120:8587 – 8598.

101. Guggenbichler JP, Samuel U. 2004. Prevention of catheter-related infections: The potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 23:S75 – S78.

102. Liu W, Wang H, Yu M, Zhang Y, Zhao T. 2006. The physical properties of aqueous sol-utions of the ionic liquid [BMIM][BF4]. J Solution Chem 35:1337 – 1346.

103. Caruso F, Davis SA, Donath E, Mo¨hwald H, Sukhorukov GB. 1998. Novel hollow poly-mer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37:2202 – 2205.

104. Chan B, Lorents DC, Malhotra R, Ruoff RS, Subramoney S. 1993. Single-crystal metals encapsulated in carbon nanoparticles. Science 259:346 – 348.

105. Choi CJ, Kim BK, Kim JC, Wang ZH, Zhang ZD. 2003. Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vapor-condensation process. Carbon 41:1751 – 1758.

106. Chowdari BVR, Dong ZL, Shaju KM, Sharma N, Subba Rao GV, White TJ. 2004.

Carbon-coated nanophase CaMoO4as anode material for Li ion batteries. Chem Mater 16:504 – 512.

107. Jung YS, Lee KT, Oh SM. 2003. Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J Am Chem Soc 125:5652 – 5653.

108. Kirkpatrick EM, Majetich SA, McHenry ME. 1995. Synthesis, structure, properties and magnetic applications of carbon-coated nanocrystals produced by a carbon arc. Mater Sci Eng A 204:19 – 24.

109. Fostiropoulos K, Huffman DR, Kra¨tschmer W, Lamb LD. 1990. Solid C-60 a new form of carbon. Nature 347:354 – 358.

110. Gedanken A, Pol SV, Pol VG. 2004. Reactions under autogenic pressure at elevated temperature (RAPET) of various alkoxides: Formation of metals/metal oxides-carbon core-shell structures. Eur J Chem A 10:4467 – 4473.

111. Hao GM, Ling J, Liu Y, Zhang XG. 2003. Preparation of carbon-coated Co and Ni nanocrystallites by a modified AC arc discharge method. Mater Sci Eng B 100:186 – 190.

112. Clock SA, Marquis RE, Mota-Meira M. 2003. Fluoride and organic weak acids as modu-lators of microbial physiology. FEMS Microbiol Rev 26:493 – 510.

113. Kolter R, O’Toole GA. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: A genetic analysis. Mol Microbiol 28:449 – 461.

114. Christian W, Warburg O. 1942. Isolierung und Kristallisation des Ga¨rungsferments Enolase. Biochem Z 310:384 – 421.

METAL FLUORIDES AND THEIR BIOLOGICAL APPLICATION 106

PROBLEMS

1. What are ionic liquids? How can an ionic liquid act as a surfactant? Give some examples of ionic liquids as surfactants.

2. Calculate the change in surface area when spherical particles of 500 mm size are ground to cubic 50 nm sizes? What will be the effect on the rate of reaction if we use 50 nm particles instead of 500 mm?

3. Plot the graph from the data given below. Match the pattern of the graph with the PDF data using a search match program. Calculate the particle size from the XRD plot of the given data. Give the (hkl) plane for the peaks in the XRD plot and cal-culate the Miller index of the (hkl) planes from the given data.

4. Why is Raman spectroscopy the best tool to detect different types of carbon?

ANSWERS

1. Ionic liquids are salts that are liquid at room temperatures. The ionic liquid consists of organic cation and inorganic anion. The polar cation contains an hydrophobic tail and hydrophilic ðPF6Þ or hydrophilic ðBF4Þ anions, ionic liquid acts as surfactant.

Example: 1-Dodecyl-3-methylimidazolium bromide, 1-dodecyl-3-methylimida-zolium hexafluorophosphate, 1-hexadecyl-3-methyl-imida1-dodecyl-3-methylimida-zolium chloride.

2. The change in surface areas of one particle is 0.785 mm2. The surface area is cal-culated by the famous formula 4pR2, where R is the radius of the particle. The rate of a reaction is affected by the physical size of the particles. Decreasing the par-ticle size from 500 mm to 50 nm will increase the number of parpar-ticles for a given weight. With small particles the rate of reaction will increase because the surface area of the particles has been increased.

3. Hints: (1) Use Excel for the plot; (2) match the peaks using search match program;

(3) use Scherrer equation to calculate the size of the particles, l¼ 0.154 nm;

(4) to find Miller index, first find the intercepts, then reciprocal of the intercepts and convert it into the lowest integer.

4. Different types of carbon have various bonding state which shows strong corre-lation between shape and width of the vibrational signals and the structure of the amorphous arrangement and hence because of the resonance phenomena Raman spectroscopy is the best tool to detect different types of carbon. The assignment of the G and D bands of the Raman spectrum of carbon is not in debate. On the other hand the interpretation of solid state NMR is still in doubt.

ANSWERS 107

DataforXRDPlot 2uIntensity2uIntensity2uIntensity2uIntensity2uIntensity2uIntensity 258.395228.7578.7258639.95112.84543.7126.7756748.554.8424452.317.23977 25.0511.2013928.877.7320540139.7845243.75132.5818548.65.3152952.3517.71262 25.111.7409128.8576.9382440.05168.9907143.8136.5213748.656.5881452.420.25214 25.1512.0137628.976.0110940.1201.2635643.85138.2608948.75.1276652.4521.59166 25.212.0199528.9574.8839440.15232.3364243.9138.9337548.756.0671852.522.06451 25.2513.69282976.0234640.2269.942643.95137.9399348.85.8733752.5523.73737 25.314.3656529.0576.2963240.25306.4154644133.0794548.855.6128952.624.47689 25.3515.0385129.176.9691740.3339.0216444.05128.1523148.96.4857452.6525.48307 25.416.0446929.1576.5753640.35373.0278344.1123.7584948.955.4252652.727.62259 25.4518.4508829.276.5148840.4398.3673544.15116.76468494.4314552.7532.36211 25.519.0570729.2574.9877340.45419.7068744.2112.3708749.054.904352.834.50163 25.5519.9965929.375.0605840.5433.7130644.25103.5770549.15.7104952.8541.30782 25.619.8694429.3575.0667740.55441.2525844.391.9165749.155.9166852.949.51401 25.6521.3422929.475.0729640.6442.592144.3580.3894349.27.3228652.9558.78686 25.720.1484829.4572.4791440.65438.6649544.470.9289549.256.262385369.79305 25.7522.0213329.570.2853340.7429.4711444.4562.801849.36.001953.0583.2659 25.820.9608529.5571.1581840.75410.5439944.555.5413249.354.9414253.1101.07209 25.8521.7003729.670.8310440.8385.0835145.6517.1502849.43.4142853.15119.67827 25.923.0398929.6571.3038940.85355.2230345.716.2231349.453.0871353.2144.48446 25.9526.3794129.770.3767440.9323.6292245.7517.0959849.52.0933253.25170.49065 2626.585629.7569.5829340.95287.035445.815.9688449.551.499553.3196.9635 26.0529.2584529.868.4557841252.1082645.8514.7083649.61.9723653.35222.03635 26.131.3979729.8567.3286441.05218.7811145.915.7812149.650.9785453.4245.97587 26.1533.4708329.966.2014941.1185.1206345.9515.9207349.71.1180653.45269.24873 26.236.0770129.9566.3410141.15156.593484615.3935849.753.2575853.5286.38825 26.2539.68323067.2138641.2132.3996746.0514.5997749.82.8637753.55301.72777 26.345.1560537.515.7418641.25113.6725246.114.8726249.852.5366253.6309.66729 108

26.3552.7622437.5514.6147141.399.2787146.1513.8788149.92.9428153.65316.60681 26.458.5017637.613.7542341.3587.6182346.214.08549.952.4156653.7316.81299 26.4567.0412837.6514.2937541.479.2910846.2512.49118503.3551853.75313.88585 26.573.1141337.712.6999441.4571.3639346.311.230750.052.6280353.8306.02537 26.5580.7869937.7510.3727941.564.7034546.3510.2368950.12.7675553.85293.16489 26.691.1265137.810.2456441.5560.3096446.49.5764150.152.7070753.9277.43774 26.65103.1326937.8510.5851641.658.1158346.4510.8492650.22.3799353.95254.71059 26.7117.4055537.911.5246841.6557.0553546.510.3221250.254.3861154231.11678 26.75136.478437.9511.664241.755.128246.5510.928350.34.392354.05205.4563 26.8158.551253813.3370641.7552.4677246.611.9344950.355.3318254.1182.06249 26.85186.9574438.0511.5432441.850.1405746.6511.6740150.46.1380154.15157.93534 26.9219.2969638.110.5494341.8547.8134346.710.3468650.456.3441954.2133.40819 26.95255.4364838.1512.7556241.947.4862846.759.4197250.55.4837154.25112.54771 27292.8426738.213.6284741.9545.2924746.88.2925750.556.089954.396.42057 27.05334.1155238.2516.234664244.4319946.857.8987650.68.0960954.3582.82675 27.1367.5883738.316.7075142.0543.5048446.97.9049450.659.0356154.469.76627 27.15400.5278938.3516.7803642.143.4443646.957.7111350.79.1084654.4561.10579 27.2427.0674138.416.5198842.1542.11721477.7173250.759.0479854.553.84531 27.25451.273638.4519.259442.241.2567347.058.123550.88.0541754.5547.78483 27.3469.8131238.520.9322642.2540.9295947.18.2630250.857.5270254.644.85768 27.35477.6193138.5520.8717842.339.8024447.157.4025450.97.4665454.6540.26387 27.4480.7588338.620.7446342.3540.6086347.27.9420650.958.0060654.738.07006 27.45475.8983538.6520.2174842.439.1481547.257.81492517.2122554.7535.00958 27.5466.371238.720.4903442.4540.2876747.36.8877751.057.8184354.832.81576 27.55450.4440538.7520.4965242.539.4271947.355.8272951.16.6912954.8529.75528 27.6430.5835738.822.0360442.5539.9667147.45.6334851.157.1641454.928.02814 27.65403.3897638.8523.9755642.641.7062347.455.6396651.27.8369954.9527.10099 27.7370.9959438.925.0484242.6541.0457547.55.1791851.257.776515526.70718 27.75335.4021338.9525.9212742.743.0519347.557.6520451.37.7160355.0525.6467 (Continued) 109

2uIntensity2uIntensity2uIntensity2uIntensity2uIntensity2uIntensity 27.8296.408323924.7941242.7544.9247947.66.7248951.356.8555555.126.05288 27.85260.0811739.0526.9336442.845.7976447.656.6644151.46.1950755.1525.3924 27.9227.3540239.131.2731642.8545.4038347.76.7372651.456.4012655.225.93192 27.95196.9602139.1533.4126842.947.6100147.758.0101251.56.8074555.2525.20478 28170.6997339.232.2855442.9547.616247.87.7496451.557.5469755.325.1443 28.05148.6392539.2531.425064349.0890547.858.3558251.68.2198255.3524.41715 28.1133.2454439.334.2979143.0551.2952447.98.3620151.659.2926755.425.75667 28.15119.6516239.3535.5707643.151.3680947.958.2348651.79.9655355.4526.62952 28.2112.1911439.440.3102843.1553.90761487.1077251.7510.1717155.528.50238 28.25103.86439.4541.5164743.257.4471348.057.5805751.810.577955.5530.77523 28.399.5368539.543.3893243.2563.1866548.18.1200951.8511.6507555.632.78142 28.3592.5430439.5547.2621843.369.1261748.157.7929451.912.3236155.6536.5876 28.488.7492239.650.0683643.3572.7990348.28.865851.9512.6631355.741.59379 28.4586.4887439.6553.4078843.479.8718848.258.738655213.7359855.7547.06664 28.584.2282639.757.4807443.4584.8780748.37.011552.0514.475555.851.87283 28.5581.0344539.7563.5535943.590.5509248.356.3510252.114.4150255.8555.61235 28.680.6406439.869.9597843.55102.5571148.45.4905452.1514.4878755.961.35187 28.6577.6468239.8579.299343.6112.2966348.454.163452.214.7607355.9568.95806 28.777.7196839.993.1054843.65118.9028148.54.5029252.2514.766915678.36424 Intensity(a.u.) 110

5

TRANSITION METAL NITRIDES

Dalam dokumen NANOSCALE MATERIALS IN CHEMISTRY (Halaman 117-128)